
Graph-based Asynchronous Event Processing for Rapid Object Recognition

Yijin Li, Han Zhou, Bangbang Yang, Ye Zhang, Zhaopeng Cui, Hujun Bao, Guofeng Zhang*

State Key Lab of CAD&CG, Zhejiang University†

Abstract

Different from traditional video cameras, event cam-
eras capture asynchronous events stream in which each
event encodes pixel location, trigger time, and the polar-
ity of the brightness changes. In this paper, we introduce
a novel graph-based framework for event cameras, namely
SlideGCN. Unlike some recent graph-based methods that
use groups of events as input, our approach can efficiently
process data event-by-event, unlock the low latency nature
of events data while still maintaining the graph’s structure
internally. For fast graph construction, we develop a ra-
dius search algorithm, which better exploits the partial reg-
ular structure of event cloud against k-d tree based generic
methods. Experiments show that our method reduces the
computational complexity up to 100 times with respect to
current graph-based methods while keeping state-of-the-art
performance on object recognition. Moreover, we verify the
superiority of event-wise processing with our method. When
the state becomes stable, we can give a prediction with high
confidence, thus making an early recognition.

1. Introduction

Rapid object recognition is essential for a variety of ap-
plications, such as autonomous driving and flying drones.
For instance, when an autonomous vehicle is driving at high
speed, the low latency is desirable to identify obstacles or
moving objects once they appear. Due to its low frame rate,
the standard video camera is not ideal for this task. Fast-
speed video cameras can have more than 1000 frames per
second, while they are normally very expensive and the in-
formation is also highly redundant. As a result, event cam-
eras [3, 28, 16] attracts more attention recently due to their
high temporal resolution and low latency (both in the or-
der of microseconds) as well as high dynamic range with-
out motion blur. Compared with video cameras that output

*Corresponding author: Guofeng Zhang.
†Emails: {eugenelyj, hanzhou, ybbbbt, yezhang509, zhpcui, baohujun,

zhangguofeng}@zju.edu.cn. The authors except Zhaopeng Cui are also
affiliated with ZJU-SenseTime Joint Lab of 3D Vision. This work was
partially supported by NSF of China (No. 61822310 and 61932003).

images with a specific frame rate, event cameras are event-
driven. When a certain brightness change occurs on a pixel,
the event camera will trigger an individual event. In this
way, they naturally discard redundant information by only
measuring brightness.

However, since the output of an event camera is a
sparse asynchronous events stream, existing efficient meth-
ods [15, 37] which typically work on frames can not be
directly applied for event cameras. As a result, most
works [11, 8, 33] transform such events stream to regu-
lar 2D event frames or 3D voxel grids before processing.
However, these data representation transformations discard
the sparsity of events data and quantify event timestamps,
which are likely to obscure the natural invariance of the
data Another type of approach is directly tailored to the
sparse and asynchronous nature of event-based data. Time-
surface-based methods [17, 36] and Spiking Neural Net-
works (SNNs) [27, 19, 1] are two dominant classes of meth-
ods for event-by-event processing. Despite keeping low
latency, both methods have limited accuracy in high-level
tasks, mainly due to their sensitivity to tuning and difficulty
in the training procedure, respectively. To fully utilize the
spatial-temporal sparsity of event data, some recent meth-
ods [41, 34, 4, 22] introduce a compact graph representa-
tion that interprets an event sequence as a graph on event
cloud and employs graph convolutional networks. Although
these graph-based methods, e.g., [4, 22], reach state-of-the-
art performance, they rely on integrating events over a cer-
tain number of events or events within a period. They gather
the information contained in groups of events at the cost of
discarding the low latency nature of events data.

Based on all these observations, in this paper, we pro-
pose a novel graph-based recursive algorithm with a sliding
window strategy that can process the stream event-by-event
efficiently while maintaining high accuracy. However, it is
non-trivial to apply the sliding window strategy for graph-
based and event-wise processing. The naive sliding win-
dow strategy is inefficient because it needs to process all
the nodes in the graph even with a minor change, although
many nodes’ features don’t change. Moreover, graph con-
struction is prerequisite for graph neural networks, and
the radius search is normally adopted [4, 22] to determine



nodes’ connection, which is very slow. Take the k-d tree
based search as an example, frequent insertion and deletion
will make it unbalanced and cause query performance to
drop while rebuilding the index will bring the extra cost to
insertion.

To solve these problems, we first propose a novel incre-
mental graph convolution, namely slide convolution, that
exploits the local spatial connectivity of convolution and
reuses previous calculations in order to avoid processing all
nodes. For a single layer, it is rather simple to just compute
the features around newly added nodes. For multiple-layer
GCN, we need to solve the propagation of modified features
between layers with different graph topologies. Thus we de-
rive a series of propagation rules. In this way, we reduce the
computational complexity up to 100 times in comparison
with the naive sliding window strategy. Moreover, consid-
ering that events locate in the image grid (which consists
of two limited and discrete dimensions) rather than generic
3D continuous metric spaces, we introduce a novel radius
search algorithm for the structure of event cloud, cutting
the search cost by half and reducing the cost of insertion
and deletion operations to O (1).

A straightforward application of event-wise processing
is early object recognition, as when enough information is
received, the prediction result becomes stable and it is not
necessary to process more events. Previous works either fo-
cus on how to process event-by-event efficiently or reach a
certain level of accuracy with less information, but lack the
ability of early recognition. In this paper, we further apply
our graph-based recursive method to early object recogni-
tion by designing a state-aware module to predict whether
it reaches the stable state. In this way, we can enable ac-
curate recognition with confidence as early as possible. To
the best of our knowledge, we are the first ones to verify the
superiority of event-wise processing in early object recog-
nition.

To summarize, the contributions of this paper are as fol-
lows:

• We propose a novel graph-based recursive algorithm
that enables efficient event-wise processing for event
cameras.

• We introduce a novel incremental graph convolution
for event-wise processing. It reduces the computa-
tional complexity up to 100 times compared to the
naive sliding-window-based graph convolution.

• We propose an event-specific radius search algorithm
that reduces query and insertion/deletion costs to make
graph construction faster.

• Experiments demonstrate that our efficient event-wise
algorithm achieves similar performance with batch-

wise methods on standard recognition task while en-
abling early object recognition with confidence.

2. Related Work
Here we review the existing representation for event-

based data in three parts: (1) event-specific representation;
(2) event images and voxel grid; (3) point set and graph.
Event-Specific Design. Traditional methods have designed
an event-specific representation, namely time surface [17],
which is manifested as a 2D map formed with the times-
tamps of the most recent events. Typically followed by
a lightweight model, this representation can be easily up-
dated with each newly arrived event, unlocking the low la-
tency advantage of the event camera. Time surface has
been applied in different tasks, e.g., stereo event-based
SLAM [44] and image reconstruction [24]. While many
variants [36, 20] have been developed, their performance
degrades on highly textured scenes [23] due to the “mo-
tion overwriting” problem. Another type of method tai-
lored for event cameras adopts the Spike Neural Network
(SNN) [19, 25, 27, 1], which is also bio-inspired designed
like event cameras. SNN exploits the sparse and asyn-
chronous nature of events data, but training such networks
is difficult due to their non-differentiable character.
Event Images and Voxel Grid. These methods [8, 11, 33]
try to make event data compatible with frame-based tech-
nologies. Earlier approaches use simple ways (e.g., count-
ing events or accumulating pixel-wise polarity) to convert
the event stream into 2D event frames [9]. Such event
frames, which reveal spatial information of scene edges,
have been applied to several tasks, e.g., visual odome-
try [32], feature tracking [12]. However, they quantify the
timestamp and discard the sparsity property of events data.
To improve the temporal resolution, Zhu et al. [45, 40]
suggest discretizing the time dimension into consecutive
temporal bins. They accumulate events into a voxel grid
through a linearly weighted accumulation similar to bilin-
ear interpolation. Messikommer et al. [21] further exploit
spatial and temporal sparsity by adopting sparse convolu-
tion [13] and developing a recursive convolution formula.
However, their operations are still on sparse volumes. It’s
challenging for them to process vast event clouds due to the
expensive computation cost of 3D convolution.
Point Set and Graph. Ryad et al. [2] solve optical flow
estimation by plane fitting to the event point cloud, an early
work that interprets an event sequence as 3D point clouds.
Recent works, for example, Wang et al. [41] further use
a PointNet [29, 30]-like framework, which utilizes multi-
layer-perceptron to learn features of each point separately,
and then outputs object-level responses (e.g., classification
labels) through global max operations. For event-wise pro-
cessing, Sekikawa et al. [34] first develop a recursive ar-
chitecture, namely EventNet. Specifically, it formulates de-



Figure 1. Our graph-based Asynchronous Event Processing Framework. It can efficiently process in an event-wise manner and enable
early object recognition, which is mainly thanks to (b) an event-specific radius search algorithm for graph construction, (c) incremental
graph convolution for efficient event-wise processing, and (d) bottom branch for object recognition prediction and top branch, i.e., a
state-aware module predicting whether it reaches the stable state.

pendence on causal events to the output recursively using
a novel temporal coding and aggregation scheme and pre-
computes the node features corresponding to specific spatial
coordinates and polarities. However, due to its approximate
calculation and the lack of hierarchical architecture, extend-
ing EventNet to other high-level tasks is challenging. To
better exploit the topological structure, [43, 4] interpret the
event cloud in the form of space-time graphs. In particular,
Bi et al. [4] show that such compact graph representation
requires less computation and memory than conventional
CNNs while achieving superior results to the state-of-the-
art in various datasets. Mitrokhin et al. [22] show that cap-
turing the changes over large time intervals can resolve mo-
tion ambiguities. However, such a large time interval will
result in a very low response frequency. A recursive for-
mula for graph-based processing needs to be studied, which
motivates this paper.

3. Preliminaries
We first introduce how to build a graph from the event

stream. Then we introduce spatial graph convolution, which
is the basis of our slide convolution.

3.1. Event Graph

Event cameras respond to changes in the logarithmic
brightness signal L(ui, ti)=̇logI(ui, ti) asynchronously
and independently for event pixel [10]. An event is trig-
gered at pixel ui = (xi, yi) and at time ti as soon as the
brightness increment since the last event at the pixel reaches
a threshold ±C (with C > 0):

L(uk, tk)− L(uk, tk −∆t) ≥ pkC, (1)

where pi ∈ {−1, 1} is the polarity of the brightness change
and ∆t is the time since the last event at ui. An asyn-
chronous event stream can be expressed as a sequence of

events:
{eventi}B = {xi, yi, ti, pi}B , (2)

where B is the length of events sequence.
From an event stream, we can construct a graph which

is denoted as G = {V,E} where V and E represent nodes
and edges, respectively. Each event is a node in the event
graph, which contains a 3D coordinate (xi, yi, ti) and nodes
attribute (pi). It is also possible to remove or include addi-
tional attributes like event-surface normals.

The connectivity of nodes in the graph is usually estab-
lished by the radius-neighborhood graph strategy. Namely,
neighboring nodes vi and vj are connected with an edge
only if their weighted Euclidean distance di,j less than ra-
dius distance R. Before radius search, the temporal axis of
the event cloud is upscaled by a factor to keep the density of
events more uniform across the x, y, t axes. Each edge has
its own attribute eij , which is often computed by relative
Cartesian coordinates of linked nodes. To limit the size of
the graph, the connectivity degree for each node is usually
constrained to a parameter Dmax.

3.2. Spatial Graph Convolution

Spatial Graph Convolution [14, 39] works by construct-
ing a local neighborhood graph and applying convolution-
like operations on the edges connecting neighboring pairs
of points. Formally, it aggregates a new feature vector for
each vertex using its neighborhood information weighted
by a trainable kernel function. By using summation as the
aggregation operation, it can be defined as:

(f ⊗ g)(i) =
∑
j∈E(i)

f(j)hθ,

hθ = hθ(f(i), f(j), eij),

(3)

where⊗ is the graph convolution operator, g is kernel func-
tion, f is node feature. E(i) is the set of node i’s neigh-



Figure 2. An example of the propagation of modified features
between different layers. (a) A newly active node in layer 0 (de-
noted as G(0)). The active state means that it needs to be updated.
(b) Graph pooling which causes a change in the topology. (c) Ac-
tive nodes in G(1).

bor and hθ is a function determining how the features are
aggregated by making use of two node features and edge
attributes.

4. Method
Inspired by [34, 21], we develop a recursive formula

for spatial graph convolution, namely slide convolution.
Specifically, slide convolution takes events one by one as
input and responds in an event-wise manner while main-
taining the structure of the past graph internally (Sec-
tion 4.1). To make graph construction faster, we develop
a radius search algorithm which better exploits the struc-
ture of events cloud against generic 3D continuous metric
space (Section 4.2). In Section 4.3, we introduce how to ap-
ply our graph-based method to early object recognition by
combining it with a state-aware module. Fig. 1 overviews
the proposed pipeline.

4.1. Slide Convolution

To enable spatial graph convolution (denoted as convolu-
tion for short in the following) work in an event-wise man-
ner, one straightforward idea is to use a sliding window
strategy, i.e., consecutively updating the graph by sliding
new events in and sliding events out, then apply convolution
on the full graph. This way, however, is infeasible because
it requires processing the entire window of events again and
again at a high event rate. A simple way to improve it will
be just computing the features around the newly active or in-
active nodes (corresponding to the events of sliding in and
sliding out). But it only works for the case of single layer,
while current modern architecture usually contains multi-
ple layers, which even cause a change in graph topology
(Fig. 2). Slide convolution solves these problems by deriv-
ing a series of propagation rules which helps to propagate
the changes from the input layer to deeper layers. The fol-
lowing will focus on how to derive these propagation rules.

Firstly we rewrite the convolution in a multi-layer archi-
tecture as:

fn+1(i) =
∑

j∈N(i)

fn(j)hθ, for i ∈ An+1,

(4)

where fn and fn+1 are node features at layer n and n + 1
respectively (layer 0 is input layer). An+1, namely existing
set, represents all existing nodes in the graph at layer n+ 1
(which will change with different sliding windows). N(i)
is a map that stores which nodes at layer n contribute to
node i at layer n+1. Here for convolution, N(i) is one-hop
neighbour of node i.

Eq. (4) leads of course to redundant computation. We
seek to leverage the temporal sparsity of the event stream,
i.e., some nodes stay same values at two consecutive times-
tamp, for efficient computing, which has the following
form:

f t+1
n+1(i) = f tn+1(i) + ∆n+1(i),

∆n+1(i) =
∑

(j,i)∈En+1

(f t+1
n (j)− f tn(j))hθ, (5)

The most critical part is En+1, a set of directed edges
containing all the edges that point to modified nodes. If we
know En+1, we can calculate the change of features at time
t + 1 compared to that at time t, i.e., ∆n+1 and update the
node features.

Notice that for newly active nodes, their states at time t
are undefined (similar for newly inactive nodes). In order to
distinguish these nodes, we divide nodes that need to be up-
dated into three categories: the ones deleted from the graph,
the ones newly added to the graph, and the nodes that locate
in the receptive fields of these two types of nodes. We use
V del, V add, V up to represent these three kinds of nodes and
further split the E into Edel, Eadd, Eup according to which
node it points to.

At time t+ 1, for layer 0, V add0 , V del0 , V up0 is initialized
as events sliding into the window, events sliding out of the
window and an empty set, respectively. E0 is initialized
as an empty set. Then we can deduce layer n + 1 through
simple set operations when layer n is given:

V addn+1 = V addn , V deln+1 = V deln ,

V upn+1 = {i | for i ∈ Atn+1 \ V deln+1, if ∃j ∈ N(i) ∧ j ∈ Vn},
Vn+1 = V addn+1 ∪ V deln+1 ∪ V

up
n+1,

At+1
n+1 = Atn+1 ∪ V addn+1 \ V deln+1,

(6)



Figure 3. The pixel queue stores events, where each event is a
four-tuple. The numbers on the ball represent the order of events
(figure adapted from [38]).

Edeln+1 = {(j, i) | for i ∈ V deln+1 then ∀j ∈ N(i) ∧ j ∈ At+1
n },

Eaddn+1 = {(j, i) | for i ∈ V addn+1 then ∀j ∈ N(i) ∧ j ∈ At+1
n },

Eupn+1 = {(j, i) | for i ∈ V upn+1 then ∀j ∈ N(i) ∧ j ∈ Vn},
En+1 = Eaddn+1 ∪ Edeln+1 ∪ E

up
n+1,

(7)

In Eq. (6), V addn+1 and V deln+1 are directly inherited from last
layer since the convolution does not change graph topology.
Notice that each time Vn+1 and En+1 is built from state at
previous layer, so we do not need to keep their state at previ-
ous moment. An+1, on the contrary, evolved from the state
at previous moment, thus we need to distinguish between
Atn+1 and At+1

n+1. After reducing V and E, we also need
to augment those undefined nodes for calculating ∆n+1(i).
Specifically, we expand feature map f tn+1 and assign to ze-
ros for V addn+1 while for V deln+1, we assign f t+1

n+1 to zeros. Now
we know how to derive En+1, but we can only deal with
convolution. To extend to pooling operations, we need to
know the corresponding set of neighborhoods N(i). Take
voxel grid pooling as an example. For nodes located in the
same voxel (denoted as a set S(voxel)), it will be clustered
to a center node. Thus for this center node, its correspond-
ing N(i) is S(voxel).

In the supplementary, we prove that using Eq. (5) to pro-
cess events one by one is equivalent to using Eq. (4) to pro-
cess all events at once. In this way, we can replace spatial
convolution with our sliding convolution, leveraging exist-
ing graph-based architecture to process events one by one
efficiently without sacrificing accuracy. Note that though
we use summation for aggregation in the above formula-
tion, it is easy to replace summation by another way, such
as max/min aggregation, as long as we know how En+1

evolves.

4.2. Pixel Queue based Graph Construction

Recent graph-based methods on event cameras de-
fine node connectivity in the graph based on the radius-
neighborhood graph strategy, namely radius search. It is

Figure 4. A two-stage radius search based on pixel queue. To
search events given the radius, we first determine candidate pixels
in the image grid, as shown in (a). Candidate pixels are represented
in lime. Secondly, for each pixel queue, we collect events between
lower bounds tbottom and upper bounds tup, as shown in (b).

usually done by k-d tree, a space-partitioning data structure
for organizing points in a k-dimensional space. However,
we argue that k-d tree does not leverage the structure of the
event cloud. What’s worse, k-d tree is inefficient when fre-
quent insertions and deletions occur. This is because adding
points will make the tree unbalanced, resulting in perfor-
mance degradation. The same is true for deletion.

Instead of k-d tree, we employ pixel queue (See Fig. 3)
to store events, which is an event-specific data structure that
has been used in a number of works [38, 44, 43]. Pixel
queue stores the most recent events at each location sorted
by the time of their arrival. Based on pixel queue, we pro-
pose a two-stage radius search algorithm (see Fig. 4). The
first step is to search in the image grid and filter out the can-
didate pixel queues that contain the events we want. It can
be done with the help of distance field, which describes how
far the other pixels away from an anchor pixel. The distance
field is similar to the partitioning technology used in k-d
tree but only needs to be calculated once. For a query event
(x0, y0, t0) and the radius R, we can determine candidate
pixels and corresponding queues whose spatial distance is
smaller than the radius by looking up the pre-computed dis-
tance field.

In the second step, we traverse these candidate
pixel queues. For a candidate pixel queue with spa-
tial offset (δx, δy) from the query event, the target
events contained in it must have lower bound t0 −√
R2 − (δx2 + δy2) (denoted as tbottom) and upper bound

t0 +
√
R2 − (δx2 + δy2)) (denoted as tup). We get these

events by finding the index of tup and tbottom using bi-
nary search. Collecting events in all candidate pixel queues
gives a final query result. We evaluate the performance of
our method compared to the k-d tree based method in Sec-
tion 5.1 and analyze the computation complexity in the sup-
plementary.



4.3. State-aware Module

With the increase of input events and information, the
prediction result will be stable from a certain moment. By
this time, it is meaningless to process more events, and the
system should give an early recognition result. We fulfill
this goal with the help of our state-aware module, i.e., top
branch in Fig. 1-(d). Specifically, we use a multi-layer per-
ceptron, i.e. MLP, to represent a state-aware function which
maps the graph feature map to a binary prediction. The pre-
diction result means whether it achieves the stable status.
Then during inference, we interpret the value after activa-
tion as the confidence score.

Given the object recognition branch pre-trained, we can
generate ground truth labels for training state-aware mod-
ule. One possible way is to analyze prediction as a func-
tion of event index. When the prediction does not change
with event index increasing, we consider it stable and de-
fine the ground truth as one, otherwise, we define it as zero.
For simplification, we adopt an approximate approach, i.e.,
considering a prediction stable if it is equal to that at the last
event index. The ground truth will be compared with net-
work prediction by Binary Cross Entropy with Logits Loss.
As for the training data, we randomly crop sequences to
variable lengths (from 5ms to 50ms) and hope it learn to
predict corresponding confidence in different states. It is
noteworthy that we do not crop sequences when we train
the object recognition branch.

5. Experiments
5.1. Object Recognition

(1) Dataset and Evaluation Metrics. Event-based object
recognition is to predict the category of the object through
the input event stream. We verify our method’s superiority
on four datasets, including N-Caltech101 [26], N-Cars [36],
CIFAR10-DVS [18], and MNIST-DVS [35].

N-Caltech101, CIFAR10-DVS, and MNIST-DVS are
converted from standard frame-based datasets. This is done
by displaying a moving image on a monitor and record-
ing with a fixed event camera or fixing the monitor in-
stead of the camera. The same as the original Caltech101,
N-Caltech101 contains 8246 samples and 101 categories.
CIFAR10-DVS, on the contrary, randomly select one-sixth
of the original frame-based image dataset, thus contain-
ing 6,000 samples per class and 60,000 samples in total.
MNIST-DVS consists of 10,000 symbols sampled from the
standard MNIST 70,000-picture database, with each of the
10,000 symbols displayed at three different scales, thus con-
taining 30,000 samples in total. Different from the former,
N-Cars are created by directly recording objects in real-
world environments with an event camera. N-Cars com-
prises two class labels, namely 12,336 car samples and
11,693 non-car samples (background). We sample some se-

quences from these datasets for visualization in the supple-
mentary material.

To evaluate task performance and the potential ability of
event-by-event processing, we consider two metrics: pre-
diction accuracy and floating point operations per second
(FLOPs). While the first indicates the quality of the pre-
diction, the second shows the computational complexity re-
quired for each event update.
(2) Implementation Details. We implement two graph
convolution networks to evaluate our SlideGCN. Adapt-
ing from [4], our first architecture, namely NVS, consists
of two parts: a backbone and a prediction head. The
backbone is comprised of 4 “GraphConv-ELU-Bn” layers,
where “GraphConv” will be replaced by our slide convo-
lution during inference. The prediction head comprises one
fully connected layer to map the features to classes. In order
to reduce overfitting, a dropout layer with a probability of
0.3 is added after the first fully connected layer. Compared
with the original architecture, we replace the cluster-level
pooling layer with a readout function, which summarizes
the graph-level representation by taking both the max/mean
of hidden representations of sub-graphs [42]. The second
architecture, which is inspired by [22], is named EvS . Fol-
lowing the idea from [22], we used two constraints when
computing edges for EvS. One of them is to keep only the
points lying in the upper (along the temporal axis) hemi-
sphere of a point, and the other is to filter the edges so that
they are parallel to the event surface. This preserves most
of an event’s temporal motion information while obtaining
sparser edges. We also add the normal of the event surface
to the input. We use these two networks as our baseline and
then replace their convolution layers with our slide convo-
lution during evaluation. Please refer to the supplementary
material for more details about the parameters like time in-
terval and network depths.
(3) Comparison to the State-of-the-Art. Table 1 compares
our results with other state-of-the-art methods. All these
methods are able to process event stream event-by-event.
Thanks to the effective expression of the graph structure,
the EvS(baseline) we implemented has reached state-of-the-
art on the challenging datasets N-Caltech101 and CIFAR10-
DVS. The graph convolution layer is further replaced with
our slide convolution, namely EvS(SlideGCN), which re-
duces the computational complexity up to 100 times with-
out sacrificing the original performance. Another method,
i.e., NVS does not perform on par with state-of-the-art, but
it is lightweight and requires less computation.

Our method strikes a balance between event-specific
low-latency and high-performance high-latency methods.
On the one hand, it has less calculation (11.5 vs. 202 on
N-Caltech101 and 33.2 vs. 103 on CIFAR10-DVS) than
other second-best methods. On the other hand, it achieves
15.6% higher accuracy on N-Caltech101 and 29.7% higher



N-Caltech101 CIFAR10-DVS MNIST-DVS N-Cars
Methods Representation Acc ↑ Mps/ev ↓ Acc ↑ Mps/ev ↓ Acc ↑ Mps/ev ↓ Acc ↑ Mps/ev ↓
H-First [27] Spike 0.054 - 0.077 - 0.595 - 0.561
Gabor-SNN [6, 36] Spike 0.196 - 0.245 - 0.824 - 0.789 -
HOTS [17] TimeSurface 0.210 54.0 0.271 26 0.803 26 0.624 14.0
HATS [36] TimeSurface 0.642 4.3 0.524 0.18 0.984 0.18 0.902 0.03
DART [31] TimeSurface 0.664 - 0.658 - 0.985 - - -
YOLE [7] VoxelGrid 0.702 3659 - - 0.961 - 0.927 328.16
Asynet [21] VoxelGrid 0.745 202 0.663 103 0.994 112 0.944 21.5
NVS-B (Ours) Graph 0.670 221 0.602 601 0.986 154 0.915 57.9
NVS-S (Ours) Graph 0.670 7.8 0.602 22.8 0.986 10.1 0.915 5.2
EvS-B (Ours) Graph 0.761 1152 0.680 3020 0.991 548 0.931 251
EvS-S (Ours) Graph 0.761 11.5 0.680 33.2 0.991 15.2 0.931 6.1

Table 1. Comparison with different representations for object recognition. We color code each row as best , second best and
third best . *-B means baseline and *-S means SlideGCN. Our graph-based baseline (EvS-B) achieves the state-of-the-art-performance

(i.e. 0.761 on N-Caltech101 and 0.680 on CIFAR10-DVS). Replacing by our slide convolution, the computational complexity reduces up
to two orders of magnitude (1152 vs. 11.5 and 3020 vs. 33.2). As a result, our method (EvS-S) strikes a balance between event-specific
low-latency and high-performance high-latency methods.

Figure 5. Qualitative results of stream-based object recognition. The accuracy improves and stabilizes as events accumulate. We
selected points at three moments in this process, which are circled by red, green, and orange.

accuracy on CIFAR10-DVS, than hand-crafted and event-
specific methods, i.e., HATS [36], which have a low-level
computation complexity.

Besides the computation complexity, we timed our ex-
periments conducted on N-Caltech101 by measuring the
processing time for each event update on an i7-9700K CPU
(using a single core). Our method requires 16.9 ms, while
the baseline needs 130.4 ms. Therefore, our method is
roughly 8 times faster by reusing previous calculations. We
expect that our method will significantly reduce the running
time on the GPU or specific hardware as its lower number
of FLOPs. Please refer to our supplementary material for

more comparisons with the methods that cannot efficiently
process event data.

(4) Efficiency of Pixel Queue based Radius Search. We
evaluate the efficiency of our pixel queue based radius
search with nanoflann [5] , which is a popular k-d tree im-
plementation supporting dynamic update. Specifically, we
use a window of 100,000 events, and each time slide by 100
events, followed by a radius search on the newly sliding-in
events. We repeat sliding 1,000 times and show the cumu-
lative cost of insertion, deletion, and searching in Fig. 6.

The insertion and deletion cost of nanoflann is an or-
der of magnitude higher than our method on average, and



Figure 6. Comparison of our radius search method and k-d tree
based method (with nanoflann implementation).

it rises rapidly sometimes. That is because nanoflann uses
lazy deletion, which does not rebuild the index immedi-
ately after removing elements. The cost will have a sig-
nificant rise when it rebuilds the index. As for searching,
our method reduces the time cost by half by leveraging the
spatial locality of the event cloud.

5.2. Stream based Object Recognition

Method Batch size (ms) Accuracy Index

Batch-wise

10 0.362 3829
20 0.490 7611
30 0.615 11041
40 0.718 14771
50 0.761 19154

SlideGCN 12∗ 0.669 3118

Table 2. Comparison of SlideGCN and batch-wise method on
stream based object recognition. 12∗ means that time consum-
ing is 12 ms, not batch size.

Methods Size Cum MFLOPS Avg MFLOPS Index

SlideGCN
1 17711 5.68 3118

10 8936 28.58 3127
100 3041 95.64 3170

Batch-wise - 1152 - 19154

Table 3. Cumulative MFLOPS with different mini-batch sizes.

We designed the stream based object recognition task to
verify the effectiveness of our event-wise processing. In
this task, we evaluate the prediction accuracy when the al-
gorithm claims it gives a reliable response. Specifically, we
consider it a reliable result for our event-wise method when
our state-aware module provides a high confidence score.
While for the batch-wise method, we consider that the con-
fidence of each processing is equal to one. In this way, we
measure the accuracy and the latency at the same time.
(1) Comparison to the batch-wise way. We use a window
configuration of 50 milliseconds to train the network. Us-
ing the same network, we test in the batch-wise way and
event-wise way (by replacing with our slide convolution)
separately. As shown in Table 2, for the batch-wise way,

decreasing batch size reduces latency but also causes drops
in accuracy. On the contrary, our SlideGCN performs close
accuracy (0.669 vs. 0.761) with the best configured batch-
wise manner but response much earlier (3118 vs. 19154 in
terms of event index and 12ms vs. 50ms in terms of time).
Here we analyze how our method works. In Fig. 5 we show
how the accuracy increases with cumulative events for two
kinds of objects. The curves vary because the texture rich-
ness of the objects is different. Different kinds of motion
also cause discrepancies. As a result, it is not trivial to tune
a perfect batch size for batch-wise methods. While choos-
ing a big batch size ensures high accuracy (a big batch size
means that it receives enough information for most of the
objects), it requires too many events as input. Choosing
a small batch size, on the contrary, can not guarantee to re-
ceive enough information for many objects, thus resulting in
low accuracy. Unlike the batch-wise way, our method is not
limited to fixed batch size and works in an event-wise man-
ner. Combined with our state-aware module, it can process
event-by-event, predict a confidence score simultaneously.
As soon as it detects a stable state with high confidence, we
can stop processing the following events and make an early
recognition.
(2) Trade-off between latency and computational effort.
In practice use, there is a trade-off between the latency and
the computation load. Event-wise processing minimizes
the latency of the data, but it also makes the computation
load very large. We declare that our method is not lim-
ited to event-wise processing but can be extended to mini-
batch and batch-wise. In Table 3 we compare cumulative
MFLOPS (denoted as Cum MFLOPS) with different mini-
batch sizes. The table shows that although the event-wise
method owns the lowest latency, it causes higher cumula-
tive FLOPs. Increasing the mini-batch size will reduce cu-
mulative FLOPs but in the cost of bringing more latency (an
extreme case is that the entire window is used as a batch). In
practical use, we can set a mini-batch size of 100 to achieve
a balance between computation load and latency.

6. Conclusion
In this paper, we introduce a novel graph-based recur-

sive algorithm for event cameras, which is able to keep a
high performance of graph convolution networks as well as
the ability of event-by-event processing. To achieve this,
we propose a novel incremental convolution method that
significantly reduces computational complexity compared
to the naive sliding window strategy. To make graph con-
struction faster, we also exploit the structure of the events
cloud and develop an event-specific radius search algorithm
based on pixel queue. The experiments demonstrate that our
efficient event-wise algorithm achieves similar performance
with batch-wise methods on standard recognition task while
enabling early object recognition with confidence.



References
[1] Arnon Amir, Brian Taba, David J. Berg, Timothy Melano,

Jeffrey L. McKinstry, Carmelo di Nolfo, Tapan K. Nayak,
Alexander Andreopoulos, Guillaume Garreau, Marcela
Mendoza, Jeff Kusnitz, Michael DeBole, Steven K. Esser,
Tobi Delbrück, Myron Flickner, and Dharmendra S. Modha.
A low power, fully event-based gesture recognition system.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 7388–7397. IEEE Computer So-
ciety, 2017. 1, 2

[2] Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi
Ieng, and Chiara Bartolozzi. Event-based visual flow. IEEE
Trans. Neural Networks Learn. Syst., 25(2):407–417, 2014.
2

[3] Raphael Berner, Christian Brandli, Minhao Yang, Shih-Chii
Liu, and Tobi Delbruck. A 240× 180 10mw 12us la-
tency sparse-output vision sensor for mobile applications. In
2013 Symposium on VLSI Circuits, pages C186–C187. IEEE,
2013. 1

[4] Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze,
and Yiannis Andreopoulos. Graph-based object classifica-
tion for neuromorphic vision sensing. In Proceedings of
IEEE/CVF International Conference on Computer Vision,
pages 491–501. IEEE, 2019. 1, 3, 6

[5] Jose Luis Blanco and Pranjal Kumar Rai. nanoflann: a
C++ header-only fork of FLANN, a library for nearest
neighbor (NN) with kd-trees. https://github.com/
jlblancoc/nanoflann, 2014. 7

[6] Alan C. Bovik, Marianna Clark, and Wilson S. Geisler. Mul-
tichannel texture analysis using localized spatial filters. IEEE
Trans. Pattern Anal. Mach. Intell., 12(1):55–73, 1990. 7

[7] Marco Cannici, Marco Ciccone, Andrea Romanoni, and
Matteo Matteucci. Asynchronous convolutional networks for
object detection in neuromorphic cameras. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 1656–1665. Computer Vision Foun-
dation / IEEE, 2019. 7

[8] Marco Cannici, Marco Ciccone, Andrea Romanoni, and
Matteo Matteucci. A differentiable recurrent surface for
asynchronous event-based data. In Proceedings of European
Conference on Computer Vision, volume 12365 of Lecture
Notes in Computer Science, pages 136–152. Springer, 2020.
1, 2

[9] Matthew Cook, Luca Gugelmann, Florian Jug, Christoph
Krautz, and Angelika Steger. Interacting maps for fast visual
interpretation. In Proceedings of International Joint Confer-
ence on Neural Networks, pages 770–776. IEEE, 2011. 2

[10] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara
Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,
Andrew J. Davison, Jörg Conradt, Kostas Daniilidis, and Da-
vide Scaramuzza. Event-based vision: A survey. CoRR,
abs/1904.08405, 2019. 3

[11] Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpa-
nis, and Davide Scaramuzza. End-to-end learning of repre-
sentations for asynchronous event-based data. In Proceed-
ings of IEEE/CVF International Conference on Computer
Vision, pages 5632–5642. IEEE, 2019. 1, 2

[12] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Da-
vide Scaramuzza. EKLT: asynchronous photometric fea-
ture tracking using events and frames. Int. J. Comput. Vis.,
128(3):601–618, 2020. 2

[13] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3D semantic segmentation with submanifold sparse
convolutional networks. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 9224–
9232. IEEE Computer Society, 2018. 2

[14] William L. Hamilton, Zhitao Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. In Proceed-
ings of Neural Information Processing Systems, pages 1024–
1034, 2017. 3

[15] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. 1

[16] Giacomo Indiveri. Neuromorphic engineering. In Springer
Handbook of Computational Intelligence, Springer Hand-
books, pages 715–725. Springer, 2015. 1

[17] Xavier Lagorce, Garrick Orchard, Francesco Galluppi,
Bertram E. Shi, and Ryad Benosman. HOTS: A hierarchy
of event-based time-surfaces for pattern recognition. IEEE
Trans. Pattern Anal. Mach. Intell., 39(7):1346–1359, 2017.
1, 2, 7

[18] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and
Luping Shi. Cifar10-dvs: an event-stream dataset for ob-
ject classification. Frontiers in neuroscience, 11:309, 2017.
6

[19] Qianhui Liu, Haibo Ruan, Dong Xing, Huajin Tang, and
Gang Pan. Effective AER object classification using seg-
mented probability-maximization learning in spiking neural
networks. In Proceedings of AAAI Conference on Artificial
Intelligence, pages 1308–1315. AAAI Press, 2020. 1, 2

[20] Jacques Manderscheid, Amos Sironi, Nicolas Bourdis, Da-
vide Migliore, and Vincent Lepetit. Speed invariant time
surface for learning to detect corner points with event-based
cameras. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 10245–10254. Com-
puter Vision Foundation / IEEE, 2019. 2

[21] Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and
Davide Scaramuzza. Event-based asynchronous sparse con-
volutional networks. In Proceedings of European Confer-
ence on Computer Vision, volume 12353 of Lecture Notes in
Computer Science, pages 415–431. Springer, 2020. 2, 4, 7

[22] Anton Mitrokhin, Zhiyuan Hua, Cornelia Fermüller, and
Yiannis Aloimonos. Learning visual motion segmentation
using event surfaces. In Proceedings of IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14402–14411. IEEE, 2020. 1, 3, 6

[23] Elias Mueggler, Chiara Bartolozzi, and Davide Scaramuzza.
Fast event-based corner detection. In Proceedings of British
Machine Vision Conference. BMVA Press, 2017. 2

[24] Gottfried Munda, Christian Reinbacher, and Thomas Pock.
Real-time intensity-image reconstruction for event cam-
eras using manifold regularisation. Int. J. Comput. Vis.,
126(12):1381–1393, 2018. 2



[25] Garrick Orchard, Ryad Benosman, Ralph Etienne-
Cummings, and Nitish V. Thakor. A spiking neural
network architecture for visual motion estimation. In
Proceedings of IEEE Biomedical Circuits and Systems
Conference (BioCAS), pages 298–301. IEEE, 2013. 2

[26] Garrick Orchard, Ajinkya Jayawant, Gregory Cohen, and
Nitish V. Thakor. Converting static image datasets to
spiking neuromorphic datasets using saccades. CoRR,
abs/1507.07629, 2015. 6

[27] Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings,
Christoph Posch, Nitish V. Thakor, and Ryad Benosman.
Hfirst: A temporal approach to object recognition. IEEE
Trans. Pattern Anal. Mach. Intell., 37(10):2028–2040, 2015.
1, 2, 7

[28] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt.
A QVGA 143 db dynamic range frame-free PWM image
sensor with lossless pixel-level video compression and time-
domain CDS. IEEE J. Solid State Circuits, 46(1):259–275,
2011. 1

[29] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 77–85. IEEE Computer Society, 2017. 2

[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Proceedings of Neural Infor-
mation Processing Systems, pages 5099–5108, 2017. 2

[31] Bharath Ramesh, Hong Yang, Garrick Orchard, Ngoc
Anh Le Thi, Shihao Zhang, and Cheng Xiang. DART: dis-
tribution aware retinal transform for event-based cameras.
IEEE Trans. Pattern Anal. Mach. Intell., 42(11):2767–2780,
2020. 7

[32] Henri Rebecq, Timo Horstschaefer, Guillermo Gallego, and
Davide Scaramuzza. EVO: A geometric approach to event-
based 6-dof parallel tracking and mapping in real time. IEEE
Robotics Autom. Lett., 2(2):593–600, 2017. 2

[33] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide
Scaramuzza. Events-to-video: Bringing modern computer
vision to event cameras. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 3857–
3866. Computer Vision Foundation / IEEE, 2019. 1, 2

[34] Yusuke Sekikawa, Kosuke Hara, and Hideo Saito. Eventnet:
Asynchronous recursive event processing. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3887–3896. Computer Vision Foundation / IEEE,
2019. 1, 2, 4

[35] Teresa Serrano-Gotarredona and Bernabé Linares-Barranco.
Poker-dvs and mnist-dvs. their history, how they were made,
and other details. Frontiers in neuroscience, 9:481, 2015. 6

[36] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier
Lagorce, and Ryad Benosman. HATS: histograms of aver-
aged time surfaces for robust event-based object classifica-
tion. In Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1731–1740. IEEE Com-
puter Society, 2018. 1, 2, 6, 7

[37] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In Pro-

ceedings of International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pages 6105–6114. PMLR, 2019. 1

[38] Stepan Tulyakov, François Fleuret, Martin Kiefel, Peter V.
Gehler, and Michael Hirsch. Learning an event sequence em-
bedding for dense event-based deep stereo. In Proceedings
of IEEE/CVF International Conference on Computer Vision,
pages 1527–1537. IEEE, 2019. 5

[39] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph at-
tention networks. CoRR, abs/1710.10903, 2017. 3

[40] Lin Wang, S. Mohammad Mostafavi I., Yo-Sung Ho, and
Kuk-Jin Yoon. Event-based high dynamic range image and
very high frame rate video generation using conditional gen-
erative adversarial networks. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
10081–10090. Computer Vision Foundation / IEEE, 2019. 2

[41] Qinyi Wang, Yexin Zhang, Junsong Yuan, and Yilong Lu.
Space-time event clouds for gesture recognition: From RGB
cameras to event cameras. In Proceedings of IEEE Win-
ter Conference on Applications of Computer Vision, pages
1826–1835. IEEE, 2019. 1, 2

[42] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and Philip S. Yu. A comprehensive survey
on graph neural networks. IEEE Trans. Neural Networks
Learn. Syst., 32(1):4–24, 2021. 6

[43] Yi Zhou, Guillermo Gallego, Xiuyuan Lu, Siqi Liu, and
Shaojie Shen. Event-based motion segmentation with spatio-
temporal graph cuts. CoRR, abs/2012.08730, 2020. 3, 5

[44] Yi Zhou, Guillermo Gallego, and Shaojie Shen. Event-based
stereo visual odometry. IEEE Transactions on Robotics,
2021. 2, 5

[45] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Unsupervised event-based learning of op-
tical flow, depth, and egomotion. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition,
pages 989–997. Computer Vision Foundation / IEEE, 2019.
2


