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Abstract In recent years, point cloud registration has achieved great success by learning geometric features

with deep learning techniques. However, existing approaches that rely on pure geometric context still suffer

from sensor noise and geometric ambiguities (e.g., flat or symmetric structure), which limit their robustness

to real-world scenes. When 3D point clouds are constructed by RGB-D cameras, we can enhance the learned

features with complementary texture information from RGB images. To this end, we propose to learn a

3D hybrid feature that fully exploits the multi-view colored images and point clouds from indoor RGB-D

scene scans. Specifically, to address the discrepancy of 2D-3D observations, we design to extract informative

2D features from image planes and take only these features for fusion. Then, we utilize a novel soft-fusion

module to associate and fuse hybrid features in a unified space while alleviating the ambiguities of 2D-3D

feature binding. Finally, we develop a self-supervised feature scoring module customized for our multi-modal

hybrid features, which significantly improves the keypoint selection quality in noisy indoor scene scans. Our

method shows competitive registration performance with previous methods on two real-world datasets.
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1 Introduction

Point cloud registration, which aims to align two 3D point cloud fragments into a unified coordinate,
is widely utilized in many 3D vision applications, such as 3D reconstruction [1, 2], pose estimation [3],
loop closing [4], and mapping [5]. The key component of this task is to establish reliable correspon-
dences between partial scans, which practically determines the registration quality when solving rigid
transformation [6].

Over the decades, enormous efforts have been made to construct point correspondences by matching
with geometry features [7–13]. However, in practice, scene-scanned point cloud is often noisy and in-
complete, and pure geometry cues face the ambiguity issue (e.g., flat or symmetric geometry), which
inevitably introduces mismatches that degrade the registration performance. Fortunately, in scene-level
applications such as robotics and 3D scene reconstruction, depth sensors and LiDAR scanners are often
accompanied by RGB cameras, and many laser scanners (e.g., Faro Focus 3D-X330 used by Redwood [14])
also support simultaneous overlay photo capture. In cases where the scene is captured by RGB-D cam-
eras, we can simultaneously obtain multi-view images and depth. This rich texture information in images
can improve the discrimination of descriptors if we can coalesce the point cloud and the images.

In this paper, we take a further step toward complementing 3D geometric features with multi-view
images. By extracting features in 2D image planes and 3D space, we successfully find out discriminative
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Figure 1 (Color online) Loosely coupled feature association. Our Hybrid3D lifts 2D features to 3D space based on pixel depth

and camera parameters. In this way, multi-view 2D features and 3D point cloud features are loosely coupled in a unified 3D space.

patterns that only exist in the texture domain (e.g., textured poster with a flat geometry) or geometry
domain (e.g., furniture or corners with a poor texture). As illustrated in Figures 1 and 2, by fusing multi-
view and multi-modal features, we obtain a strong hybrid descriptor and detector, which takes advantage
of both 2D and 3D feature learning, and achieves superior registration performance. However, effectively
fusing multi-view image features and 3D geometric features while improving registration performance is
non-trivial, as we address below.

Discrepancy of 2D-3D observations. In general, visual observations in the image domain are
much denser than geometry observations in the point cloud domain; i.e., an image of 640×480 resolution
yields almost 30000 pixel-wise visual features, which can be tens of large when considering multi-view
images for one point cloud fragment, and soon become unaffordable if directly binding them to geometric
features in 3D space. To solve this problem, we propose to select only a few informative features from the
multi-view image domain and then project them to 3D space. Intuitively, the selected 2D features should
be consistent among different views and discriminative to different 3D points. Previous 2D image feature
learning frameworks [15–18] mainly rely on pairwise 2D correspondences for supervision, which shows
inferior consistency in multi-view images. By contrast, we train our network with a novel clustering and
projection strategy, which fully leverages multi-view observations by grouping and filtering all the 2D
proposals in a unified 3D coordinate, and repeatedly yields pseudo-labels for 2D keypoint supervision. In
this way, pixels belonging to the same 3D point in multi-view images are encouraged to produce coherent
predictions. Thus, the learned features are more robust and can benefit 3D registration.

Ambiguity of 2D-3D feature association. To perform multi-modal feature fusion, we need to
determine the relationship/correspondence of 2D-3D features in advance. However, many technical chal-
lenges hinder feature fusion in multi-view cases. First, a 3D point can be observed in an indefinite number
of images, which is regarded as a one-to-many mapping problem and stumps the methods that directly
concatenate 2D-3D features [19–23]. Second, hard 2D-3D correspondence assignments can generate mis-
leading hybrid features once the correspondence is erroneous due to sensor noises and geometric errors
(e.g., pose or calibration error). Third, due to the different spatial densities of 2D and 3D features (i.e.,
dense 3D features and sparse 2D features), a näıvely feature association might lead to degraded perfor-
mance (see Subsections 3.3 and 4.4). To tackle all these challenges, we propose a novel loosely-coupled
feature association, as illustrated in Figure 1. Instead of manually finding relationships with geometry
projection or pixel-wise assignment, we first generate a hybrid point cloud by mixing up 2D features and
3D point features in a unified space, so the cross-modality features are loosely-coupled based on their
coordinates. Then, we extract 3D hybrid features with soft feature fusion, where the balanced fusion
strategy allows 3D points to fully interact with surrounding 2D features while alleviating the problem
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Figure 2 (Color online) Geometric registration comparison with different features. We show a challenging example of a RANSAC-

based geometric registration from the Redwood dataset. The SOTA geometric feature-based method, i.e., OverlapPredator [24] and

the texture feature-based method SuperPoint [17] both struggle to register the two fragments due to the geometric ambiguity (flat

walls) and insufficient texture. By contrast, our Hybrid3D leverages multi-modal information and faithfully registers the fragments.

caused by unbalanced feature densities (see Subsection 4.4).
Absence of multi-modal keypoint selection. The mainstream point cloud registration for indoor

scene scans usually obtains matches with random keypoints, so they require a large number of keypoints
(e.g., 5000 keypoints in most studies) to ensure the registration quality, which is inefficient for practical
applications. Moreover, the sampled keypoints at non-saliency regions (e.g., flat planes) would degrade the
performance [11]. However, existing approaches applicable for noisy point clouds either rely on pairwise
inputs [24, 25], or only focus on the 3D geometry saliency which is still far from satisfactory when only
a small number of keypoints is allowed [11, 26]. None of the existing keypoint detectors are suitable for
such multi-view and multi-modal feature learning diagrams. To this end, we customize a lightweight
3D scoring module for our multi-modal features. Instead of finding saliency keypoints from the pure
geometry context or 2D image domains, our scoring approach directly qualifies learned descriptors, and
learns to prioritize hybrid descriptors self-supervised by on-the-fly descriptor discriminative statistics.
Thanks to the 3D scoring module, we can achieve state-of-the-art registration performance with only
a few keypoints compared with the existing methods. The source code of our method is available at
https://github.com/zju3dv/hybrid3d/.

In summary, our key contributions are as follows:
• We propose a 3D hybrid feature learning framework for point clouds built by RGB-D cameras, which

effectively complements point features with information from multi-view images. Our Hybrid3D achieves
competitive registration performance with previous methods on two real-world datasets.

• To fill the gap of 2D-3D feature densities, we propose a 2D feature proposal (2DFP) module to select
informative features at image planes. Guided by a self-supervised clustering and projection strategy, the
2DFP achieves cross-view robustness.

• We propose a novel 3D soft fusion (3DSF) module that fuses multi-modal features with a loosely
coupled 2D-3D association, which tackles several challenges of 2D-3D feature binding.

• We propose a self-supervised keypoint scoring module that is customized for our multi-modal features
and significantly improves keypoint selection quality in noisy indoor scenes.

2 Related work

2.1 3D keypoint description and matching

Early studies are mainly hand-crafted [9], e.g., using histogram statistic [27–30] or neighbor relation-
ships [31] to produce 3D local descriptors [9], which generally fail to work when feeding with scene-
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scanned point clouds [32] due to their poor generalization and robustness. In recent years, an increasing
number of researchers have focused on learning 3D local descriptors and keypoint matching with deep
neural networks. The most common studies [4, 11, 33–38] use point cloud patches as the network input
and build upon existing point networks [39–42]. 3DMatch [32] and 3DSmoothNet [43] leverage a voxel
grid representation and train a 3D-ConvNet-based descriptors for 3D feature matching, which not only
outperforms the PointNet-like approaches but also sacrifices the inference speed. Choy et al. proposed
FCGF [44] that adopt sparse tensor representation [45] for point clouds. Ao et al. [46], Spezialetti et
al. [47] and Chen et al. [48] proposed to improve the equivariance of geometry descriptor or matching.
Choy et al. [6] and Bai et al. [49] boosted the existing RANSAC-based correspondence selection with
learning-based spatial context. Inspired by Sarlin et al. [50], Huang et al. [24] and Yu et al. [25] leveraged
a cross-attention mechanism to improve the matching quality in low-overlapping cases. However, these
lines of work rely on pairwise point clouds as the input and require duplicated network forwarding for
each point cloud with multiple matching candidates, which might not be applicable in real applications
as matching candidates grow. Besides, some studies also tend to learn 3D descriptors with multi-view
rendered geometry patches [51,52] or image features [53]. Recently, Banani et al. proposed to learn point
cloud registration self-supervised with visual cues [54, 55], but lacked proper ways to handle multi-view
observations. However, in terms of the network input and feature extraction, none of them tried to jointly
fuse multi-view colored images with 3D point cloud for descriptor learning.

2.2 3D keypoint detectors

In contrast to the vigorous development of 3D keypoint description and matching, existing 3D keypoint
detectors [31,56,57] are mainly hand-crafted, which are susceptible to sensor noise and hard to generalize
on scene-scanned point clouds [26]. Recently, a few studies [11,26,58] have focused on detecting keypoints
in a data-driven manner. USIP [26] is the first to explicitly learn keypoint detection, which outperforms
traditional detectors in outdoor scenes and CAD models but degenerates in real-world indoor scanned
data [11]. D3Feat [11] makes use of a spatial and channel-wise maximum of descriptors to predict the
scores and is supervised by online feature matching results during training. In this paper, we also borrow
such an idea from D3Feat [11]. However, existing 3D keypoint detectors only make use of pure geometry
context, but they are not applicable to leverage rich contexts in 2D image domains. By contrast, our
keypoint scoring module directly qualifies the distinctiveness of learned descriptors, which can be naturally
customized for multi-modal features.

2.3 2D-3D feature fusion

Colored images and point clouds both contain rich information on different domains. Therefore, many
studies in 3D vision tend to fuse these two kinds of observations. In the field of object detection and
semantic segmentation, some studies [20, 23, 59–64] focused on fusing 2D and 3D features using various
network architectures, and then predicted objects or performed segmentation upon the fused features.
To achieve online scene segmentation (i.e., real-time 3D scene reconstruction along with semantic seg-
mentation), Zhang et al. [63] and Huang et al. [64] also fused multi-modal and cross-frame features with
tree-based 3D convolution or supervoxel convolution, but they neglected the undetermined issue of 2D-3D
association (i.e., indefinite number of observations and misleading correlation due to sensor noise). In
object pose estimation, DenseFusion [19] and PVN3D [22] use PointNet++ [40] to process 3D data, and
then concatenate image features to point cloud features for dense fusion. Other studies [21,65] leveraged
sparse point clouds to enhance image-based depth completion. In 3D local feature learning, 3DTNet [66]
concatenates and fuses multi-scale 2D/3D learned features in a single view, and only evaluates between
frames instead of scenes. Besides, one class of related studies [67–69] contributes to matching 2D and
3D cross-domain features, which is different from ours that focus on learning cross-domain feature fu-
sion. Nevertheless, existing studies either performed single-view 2D-3D feature fusion [19, 20, 22, 66], or
used RGB images with fixed [60] or limited views [61, 62] for multi-view 2D-3D feature fusion. None of
them tackles the problem of jointly fusing features across arbitrary 2D observations and point clouds in
real-world scene scans.
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Figure 3 (Color online) Hybrid3D framework pipeline. Given a 3D point cloud and corresponding RGB images, we first use a

sparse convolution to extract 3D features on the point cloud and project them to 2D image planes. Then, we abstract sparse 2D

features from the projected 3D features and RGB images with the 2D feature proposal module (2DFP). After that, we lift the

multi-view 2D features to a unified 3D space via pixel depth and camera parameters, and generate a hybrid point cloud by softly

associating 2D features and 3D features in 3D space. Then, we exploit the 3D soft fusion module (3DSF) to extract 3D hybrid

features from the hybrid point cloud. Finally, we utilize a 3D feature scoring module to predict scores for keypoint selection.

3 Methods

3.1 Overview

We propose a multi-modal 3D feature detection and description framework, named Hybrid3D. As illus-
trated in Figure 3, our framework consists of four stages. First, we extract 3D geometric features with
sparse convolution [44] (upper-left of Figure 3). Second, we dig out representative 2D features from
multi-view RGB images and projected geometric features on 2D image views within the 2DFP module
(lower-left of Figure 3). Third, we lift all these 2D feature proposals to 3D space via pixel depth and
camera poses, and generate a hybrid point cloud that contains 2D-3D mixed features. It is noteworthy
that we do not explicitly associate 2D features to a certain 3D point or vice versa, but utilize a 3DSF
module to adaptively handle all scattered multi-modal features and distill 3D hybrid features for regis-
tration (middle of Figure 3). Forth, to boost the feature matching efficiency, we leverage a lightweight 3D
scoring module (right side of Figure 3), which directly regresses the distinctiveness/quality of the hybrid
feature and is the key to achieving superior registration quality with only a few keypoints.

3.2 Multi-view 2D feature proposal

For indoor scene scans, a point cloud is often reconstructed by multi-view 2D observations (e.g., RGB-D
frames), so it is inefficient to lift all the 2D dense image features to 3D space as former studies [19,23,66].
Moreover, 2D features lie in texture-less areas (e.g., white walls or solid color carpets) and generally cannot
provide valuable information for feature matching. To this end, we settle on selecting informative sparse
features from multi-view images by 2DFP module, and only lift these sparse features to 3D space. In this
way, we can save computation resources while preserving sufficient texture information for multi-modal
feature fusion.

3.2.1 2DFP module architecture

As illustrated in the lower-left part of Figure 3, the 2DFP module takes both inputs from projected 3D
point features and RGB images, and forwards with two independent encoders, followed by a pixel-wise
dense fusion to obtain a multi-modal feature map. Specifically, we concatenate pixel-wise feature maps
from two modalities and then use a convolutional neural network (CNN) layer to fuse features (see the
supplementary for network details). Then, we use three output decoders to regress descriptor maps, score
maps, and location maps. Similar to previous studies [18, 70], these output maps are all in a downscale
(1/8) image domain for better efficiency and convergence. (1) The score map indicates the confidence of
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Figure 4 (Color online) Clustering and projection strategy. In 2DFP training, we lift 2D predicted keypoints from multi-view

images to 3D space and cluster them to several 3D centers, then back-project these centers for 2D supervision.

keypoints. (2) The location map predicts the relative keypoint offset to each score map’s pixel center.
By incorporating score maps (with non-maximum-suppression (NMS) keypoint selection) and location
maps (with local offset added to the NMS’s resulting coordinate) [18, 70], we can obtain sub-pixel level
keypoints. Besides, we apply a threshold clipping and a non-maximum-suppression to select salience
keypoints on score maps, and utilize the location map to get the accurate 2D keypoint coordinates. (3)
The descriptor map contains the fused multi-modal features, where the interpolated descriptors on the 2D
keypoints will be lifted to 3D space according to the corresponding pixel depth and camera parameters.

3.2.2 2DFP supervision

We now seek a proper way to take advantage of multi-view contexts for supervision. Most of the existing
studies [15–18] employed contrastive learning with pairwise correspondence. However, pairwise supervi-
sion may lead to feature drifting along with the correspondence transitivity [71]. In contrast, we leverage
the geometric relationships among multi-view observations to set up a clustering and projection strategy
in a self-supervised fashion. By encouraging corresponding pixels in multi-view images to generate con-
sistent features, our 2DFP can infer more robust 2D features with view-point variation, which benefits
point cloud registration.

Cross-view supervision. We use overlapped point cloud fragment pairs with corresponding images
as training input. As illustrated in Figure 4, for a specific fragment pair, we first uniformly sample M
image views from the corresponding image sequence. Then we use 2DFP to detect keypoints in image
planes. Subsequently, we project these keypoints along with the predicted scores to 3D space by camera
parameters and pixel depths, and use a score-weighted mean-shift clustering to form cluster centers
C = {Cj}. Specifically, we first initialize K centers by farthest point sampling (FPS) [40], and compute
the shifted center positions via the score weighted mean of the neighboring point positions within a radius
of rc = 0.05 m. We iterate the above center-shifting 10 times, which is enough to make center positions
converge. Finally, to filter out dangling clusters, we also perform a non-maximum suppression with a
radius of 0.15 m to remove centers too close to each other and only preserve the centers with more than
5 neighboring points nearby. These cluster centers will be back-projected to generate supervision signals
for 2DFP. As training goes on, 2D detection and 3D cluster centers will gradually converge, which yields
highly repeatable keypoint detection and maintains a multi-view coherence descriptor learning.

Score map learning. To encourage the network to predict highly repeatable keypoints across multiple
views, we use the projections of these cluster centers to supervise the detection. Specifically, we project C
to 2D views, and obtain visible projections {cij} by removing the projections whose z-axis is far from the
sensor depth. We generate ground-truth score maps by setting 1 inside a filled circle around projections,
and use a binary cross-entropy loss to supervise the score maps {si} on all the M frames, as

L2d score = −
1

M

M
∑

i=1

mi

[

(1 − κ) · sgti · log si + κ · (1− sgti) · log (1− si)
]

, (1)

where sgti is the ground-truth score maps, and mi is the covisible mask based on the fragment pair
overlapping (or mutually observed) areas. Specifically, mi is constructed by gathering the overlapped
points from the lifted depth frames, and then back-projecting them into 2D image planes. By using mi,
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the network will focus on training the image regions with mutually observed viewpoints. κ = 0.05 is used
to balance the gradient between 0 and 1.

To further improve the detection consistency, i.e., the predicted scores should be consistent across
views, we also apply a score consistency loss in a multi-view fashion. This can be considered as a general
extension of the two-view version [18, 70]. In detail, we assemble the predicted scores from the same
cluster center as {Sj}, and minimize the variance of scores in each Sj . Besides, as a good keypoint
detection is thought to have a consistent location prediction, we compute the reprojection errors (RPE)
of cluster center projections at the location map, and maximize or minimize the average scores if the
related RPE is less or greater than the average RPE. To this end, we design the score consistency loss as

L2d cons =
1

|C|

∑

j

[

var(Sj) + Sj · (ej − e)
]

. (2)

var(·) calculates the variance of Sj. The reprojection error e is computed as e = ||l(pn)−pn||2, where pn

is the cluster’s projected location, l(·) denotes the sub-pixel level coordinate obtained from the location
map when given a rounded projected pixel location. Sj and ej are the average scores and reprojection
errors of a specific cluster center Cj . And e is the overall average reprojection error in the current
fragment pair.

Location map learning. We enforce the predicted location map to be consistent by minimizing all
the reprojection errors of |C| centers projected on M image views, with the reprojection error loss defined
as follows:

L2d rpe =
1

|C| · M

∑

n

e2n. (3)

Note that we aim at enforcing accurate local offsets for location maps, so we only consider the reprojection
error between the accurate and rounded projections of the clusters, and omit the original lifted 2D
keypoints.

Descriptor map learning. We follow Revaud et al.’s work [16], and employ AP-Loss [72] for con-
trastive learning, which optimizes the differential approximation of average precision (AP). Instead of
sampling anchors on a regular grid in R2D2 [16], we use cluster center projections as anchors to gener-
ate descriptor sets, and treat the anchors from the same cluster center as having the same label. The
descriptor loss is defined as follows:

L2d desc =
1

|C| ·M

∑

n

LAP(qn), LAP(q) = 1−AP(q), (4)

where LAP(q) computes the AP for each query q [72] (i.e., projected cluster centers on image views).

The overall training loss for 2DFP is the weighted sum of the above losses:

L2d = w2d scoreL2d score + w2d consL2d cons + w2d rpeL2d rpe + w2d descL2d desc. (5)

We empirically set w2d score = 10.0, w2d cons = 0.1, w2d rpe = 0.1 and w2d desc = 5.0.

3.3 3D hybrid feature fusion

Previous studies [19,20,22,23,66] usually concatenate 2D and 3D features through the pixel-wise associ-
ation of image and pixel depth. However, in multi-view scenarios, one point in 3D space may correspond
to multiple 2D observations, which is regarded as a one-to-many mapping. This also perplexes some
view-pooling methods [51, 53, 73] which use fixed number of views. Besides, due to the noise of depth
sensors and the estimation error of camera poses, directly binding 2D features to 3D by point locations
may also introduce false associations. To this end, we propose a novel loosely coupled 2D-3D feature
fusion mechanism, which naturally handles the association issue.

3D soft feature fusion. As illustrated in Figures 1 and 5, we first generate a hybrid point cloud
by mixing up K lifted multi-view 2D features (128-dimensional) and N (32-dimensional) 3D features in
the same coordinate. To unify the feature-length and avoid feature confusion, we apply feature padding
with zero vectors on both types of features, which yields K + N multi-modal features with a length of
160. After that, we perform a soft feature fusion with SA (set abstraction) and FP (feature propagation)
layers [40] to extract 3D hybrid features (64-dimensional) from the mixture of K + N features, where
the neighboring relationships such as relative positions of multi-modal features are all considered and
encoded by the network. In this way, we let the network learn how to deal with the position noise of
multi-view observations and 3D points, and gracefully fuse arbitrary numbers of observations with point
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Figure 5 (Color online) A 2D toy example of soft feature fusion. (a) We use the set abstraction and feature propagating layer to

fuse and extract hybrid features from the mixture of 2D and 3D features. (b) During feature grouping, 3D point cloud features (black

dots) and multi-view 2D features (red dots) have different spatial densities. The default grouping operations of set abstraction [40]

might inevitably ignore the sparse 2D features. (c) With the balanced fusion strategy, 2D features would be preferentially grouped.

features at a single 3D location, instead of manually concatenating 2D-3D features as input. Please refer
to the supplementary for more details.

Balanced fusion strategy. However, due to the different spatial densities of multi-modal features,
the vanilla grouping and encoding operations in set abstraction layers are more likely to exploit the point
cloud features and accidentally ignore the multi-view 2D features, as illustrated in Figure 5. To address
this issue, we integrate a balanced fusion strategy into the fusion pipeline, which alters and balances the
sampling and grouping operations for features from different resources. Specifically, in the sampling step,
we separately sample N3d = 5120 anchors in pointcloud and N2d = 1024 anchors in the 3D positions
of the lifted 2D features. The overall anchor is a combination of these two groups of anchors. In the
grouping step, we set the number of features to query in the neighborhood of an anchor as S = 32,
and also set a balancing ratio µ = 0.7. For each grouping operation in the anchor, we search for all
the features within a radius of r = 0.1. Assuming we find out M multi-view 2D features nearby, when
M > µS, which means sufficient multi-view 2D features around the anchor, therefore we will preserve
µS 2D features in the grouped features. Otherwise, when M < µS, that is insufficient multi-view 2D
features in radius, and we retain all the 2D features found in the grouping operation. As shown in our
experiments (Subsection 4.4), this strategy further improves the effectiveness of feature fusion.

3D hybrid feature learning. To train the 3D hybrid features, we adopt the hardest-contrastive
loss [44, 74, 75] by mining hard-negative quadruplet pairs. Given a partially overlapping fragment pair,
we first sample anchors from the overlapping areas of the point cloud pair to construct positive descriptor
pairs P = {(fi,f

′
i)}. The negative pairs are constructed by mining hardest-negative both for fi and f ′

i

in the random subset of the fragment pair, with a safe radius bound to avoid choosing negative pairs too
close to each other. Thus, our 3D descriptor loss is defined as

L3d desc =
1

|P|

∑

i

{

[

Dposi −mpos

]2

+
+

(

[

mneg −Dnegi

]2

+
+
[

mneg −Dneg
′
i

]2

+

)

/2
}

, (6)

where Dposi is the Euclidean distance of positive pairs. Dnegi and Dneg
′
i
are the Euclidean distance of

negative pairs both for fi and f ′
i . [·]+ denotes the maximum operation, as [·]+ = max(·, 0). mpos = 0.1

and mneg = 1.4 are the margins for positive and negative pairs.

3.4 3D scoring module

To improve the registration performance when only a few keypoints are allowed, we design a compact 3D
scoring module, which aims to find the most repeatable and distinguishable keypoints for our multi-modal
features. Unlike previous methods [11, 67] that rely on local value maximum of descriptors or rely on
pairwise input for cross-attention [24, 25], we directly take as standalone input descriptors and regress
the score without any extra information. During inference, we apply a 3D non-maximum suppression to
avoid selecting keypoints too close to each other.

Self-supervised detection score learning. In D3Feat [11], Bai et al. used on-the-fly feature match-
ing results to guide the score prediction. However, at the early stage of network training, the matching
results are unstable, which may confuse the score learning with the opposite gradient direction. In con-
trast, we design a new detector loss that leverages descriptor distinctiveness via statistics of average
negative distances D∗

i . We reuse information from 3D descriptor learning, and obtain D∗
i by calculating
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the average descriptor distance from anchors to all the negatives. We define our 3D score distinctive loss
as

L3d score =
1

|P|

∑

i

[(

D∗ −D∗
i

)

(s3Di + s3D
′
i)
]

, (7)

where D∗ is the mean value of average negative distances for each fragment pair. s3Di and s3D
′
i are

the predicted scores for anchors from positive pairs. Intuitively, if an anchor comes with a relatively
larger average negative distance, the distinctiveness of the associated descriptor is also better, so we will
encourage the network to predict a higher score and vice versa. Compared to D3Feat, our 3D score
distinctive loss provides consistent gradient direction even at the early stage of training, which benefits
the detection performance as shown in our experiment.

Besides, to ensure a better convergence, we also apply 3D score peakiness loss and 3D score consistency.
The 3D score peakiness loss aims to maximize the local peakiness of 3D scores by encouraging the local
maximal scores to be larger than the local average scores, as

L3d peaky =
1

|P|

∑

i

[SN (pi)−max(SN (pi)) +mscore]+, (8)

where SN (p) is the scores of the neighboring points around the point p (within a radius of 0.075 m),
and S computes the average scores in S. mscore = 0.3 is the margin of score peakiness. The 3D score
consistency loss is used to maintain the scoring consistency among different fragments, as

L3d cons =
1

|P|

∑

i

‖s3Di − s3D
′
i‖2, (9)

where s3Di and s3D
′
i are the scores of positive anchors in P . We will show the effectiveness of all these

losses in our experiments (Subsection. 4.4).

3.5 Overall training loss

The overall training loss for 3D detection and description training is the weighted sum of these four losses:

L3d = L3d score + L3d cons + L3d desc + w3d peakyL3d peaky. (10)

During training, since a large peaky loss might affect the training process by strongly suppressing other
informative keypoints and only allowing one point in the preset domain to be activated, so we empirically
set w3d peak = 0.05.

Please refer to the supplementary material for more details on model structure and training configu-
rations.

4 Experiments

In this section, we first introduce the two datasets we experiment on and the evaluation metrics. Then,
we compare our Hyprid3D features with other state-of-the-art methods and perform ablation studies to
inspect the design of our modules and losses.

4.1 Dataset preparation

3DMatch [32] is constructed from several RGB-D reconstructions, which contains images and depth with
ground-truth poses. We use the official split for training and testing. Since the original evaluation
data do not contain the associated image sequence indices, we regenerate point cloud fragment pairs
with 3DMatch toolbox [32]. Specifically, we utilize the official 3DMatch toolbox’s [32] TSDF fusion to
build up point cloud fragment pairs with more than 30% overlap, where each fragment is fused from 50
consecutive depth frames. Since the original RGB and depth frames in 7-Scenes (one subset of 3DMatch)
have not been aligned at the pixel level, we warp the depth frames to the RGB image planes according to
the extrinsic between RGB and depth sensor, which is similar to that in [76]. Besides, we also adaptively
adjust the TSDF volume according to the bounds of view-frustum points (i.e., initialize volume bounds
from the convex hull of the lifted depth points), so as to obtain more complete point clouds and also
reduce the case that multi-view 2D features are lifted to somewhere without 3D points. To make a fair
comparison, we use our generated fragments for all the tests, so the final evaluation results are different
from the previous [11, 43, 44].
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Redwood [14] contains five indoor RGB-D scanned scenes (apartment, bedroom, boardroom, lobby,
and loft) with camera poses. To analyze the generalization of our methods, we only train our model on
the 3DMatch dataset and test it on the Redwood dataset. We adopt the same pipeline as 3DMatch to
process the data, and randomly sample 200 fragment pairs per scene for evaluation. Different from the
previous studies [26, 32], we use the real-world scanned Redwood sequences [14] instead of the synthetic
set [77] to show the performance in practice scenarios. Similar to 3DMatch, a point cloud fragment in
the datasets is fused by 50 consecutive depth frames with TSDF fusion.

4.2 Evaluation metrics

Keypoint detection evaluation. Following previous studies [11, 26], we adopt the relative repeata-
bility to measure the performance of a keypoint detector. Given the ground truth relative pose of two
pointcloud fragments, we can transform a keypoint from the source fragment to a location in the target
fragment. A keypoint is repeatable if the distance of the nearest keypoint in the target fragment to its
corresponding location is smaller than 10 cm. We calculate the percentage of repeatable keypoints as
relative repeatability. As the keypoints are selected by predicted scores, relative repeatability can be
regarded as the evaluation metric for 3D keypoint scores.

Feature matching evaluation. Similar to 3DMatch [32], we consider a matched point pair to be
inlier if the distance to the correspondence is smaller than τ1 = 10 cm when given the ground-truth
transformation, and use feature matching recall and average inlier match ratio to reveal the descriptor
quality for matching. Feature matching recall calculates the percentage of fragment pairs whose inlier
match ratio is above τ2 = 5%. Average inlier match ratio computes the average inlier match ratio for the
fragment pairs whose inlier match ratios are above τ2 = 5%.

Point cloud registration evaluation. Registration recall reflects the point cloud registration ac-
curacy using given 3D features, which is calculated by the percentage of successfully aligned pairs with
transformation error RMSE < 0.2 m. Following D3Feat [11], we use RANSAC with a maximum of 50000
iterations to estimate the transformations.

In addition, we both evaluate description and detection under different keypoint number settings (i.e.,
from 50 to 5000), so as to show the extreme performance when only given a small number of keypoints.

4.3 Comparison with the state-of-the-arts

We compare our method with the state-of-the-arts 3D point cloud detection and description methods,
including 3DSmoothNet [43], D3Feat [11], FCGF [44], OverlapPredator [24], BYOC [55], and USIP [26].
Among them, BYOC is also supervised with RGB-D data, while the others only use pure geometric
features. In addition to that, we compare our method with 2D image features (i.e., SuperPoint [17] and
KP2D [18]) since our method leverages image information. To evaluate the performance in point cloud
registration, we use 16 associated color images as network input, and lift their detected 2D features and
corresponding scores to 3D space via pixel depth and camera parameters. For a fair comparison with 2D
image features, we provide the results of Our 2D (RGB), which directly use keypoints predicted by our
2DFP and only accept RGB images as inputs.

Comparisons of keypoint detection. We first compare the relative repeatability in Figures 6 and 7.
The Random strategy can be regarded as the lower bound of relative repeatability. As shown in Figure 6,
the keypoint provided by USIP [26] do not work well in indoor scenes (Figure 6). The follow-up work
D3Feat significantly improves the keypoint detection quality on the noisy indoor scans, but there is still
room for improvement. On both 3DMatch and Redwood datasets, our detector achieves the overall best
performance and improves the repeatability by a large margin when the keypoint numbers are extremely
small (i.e., 128 or less). Besides, the results of KP2D are also very competitive, which highlights the
potential value of visual cues for better keypoint selection. We also visualize 2D score maps predicted by
KP2D and our 2DFP module in Figure 8, which demonstrates robust keypoint selection ability of our
method due to the clustering and projection strategy.

Comparisons of feature matching. We then compare the feature matching performance method
with 3D features (3DSmoothNet [43], D3Feat [11], BYOC [55], OverlapPredator [24] FCGF [44]) and
2D features (SuperPoint [17] and KP2D [18]). As shown in Tables 1 and 2 (best results in bold), our
complete model (Our 3D) outperforms other methods in all metrics thanks to the effective feature fusion
of point cloud and multi-view images. Interestingly, the 2D features (SuperPoint and KP2D) also present
reasonable performance even though they are not designed to work in 3D. As RGB images provide more
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Figure 6 (Color online) Relative repeatability on 3DMatch and Redwood.

Fragment

D3Feat

keypoints

Our

keypoints

Figure 7 (Color online) Visualization of 3D keypoints (top 500 in the order of scores). We show the 3D keypoints selected by

D3Feat [11] and Hybrid3D on the the Redwood dataset [14] and the 3DMatch testing dataset [32]. Thanks to the 3D scoring

module and the novel score loss, our Hybrid3D tends to select more keypoints on distinctive areas (e.g., corners or edges), which

brings about high relative repeatability, and is the key to achieving leading geometric registration performance when only given

limited keypoints.

information than 3D points, they can even achieve higher feature matching recall and smaller average
inlier match ratio on the 3DMatch dataset than the 3D point features 3DSmoothNet and FCGF when we
select less than 500 keypoints. These results reveal the importance of image information. Besides, Our
2D (RGB), which is our image-only version, surpasses Superpoint and KP2D on feature matching recall
and average inlier match ratio, which demonstrates that our cluster-and-projection learning strategy
successfully guides the features to be more coherent in 3D space.

Comparisons of point cloud registration. We compare the holistic performance of point cloud
registration in Table 3 and visualize in Figure 9. On the track of 2D features, even though KP2D
and SuperPoint present convincing performance in feature matching evaluation, they are not directly
applicable in point cloud registration. As shown in Table 3 (best results in bold), our full model (Our
3D) achieves SOTA registration performance even without the pairwise point cloud cross-attention as
OverlapPredator [24] does. We can surpass many methods that use 5000 keypoints by using only 500
keypoints, which shows the extraordinary robustness of our method. Moreover, when using 50 keypoints,
our hybrid3D exceeds the secondary runner (D3Feat) by 22.4% on the Redwood dataset and 26.1% on
the 3DMatch dataset.
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Input image

KP2D score map

blended with image KP2D score map
Out score map

blended with image Our score map

Figure 8 (Color online) Visualization of 2D score maps. We show the score maps predicted by KP2D [18] and our 2DFP module

(image-only version) on the the Redwood dataset [14] and the 3DMatch testing dataset [32]. The flavors of different detectors

are mainly due to the different training strategies. KP2D uses pairwise supervision with a homography adaptation mechanism,

which limits the detection consistency of view-point variations, and also makes the network sensitive to noise and locally repetitive

patterns (e.g., noisy detection on the carpet, as shown in the last row). By contrast, our method exploits multi-view supervision

with clustering and projection strategy, which yields a more robust keypoint selection at ‘middle-level’ repeatable patterns (e.g.,

junctions of furniture).

Table 1 Feature matching evaluation results on 3DMatch dataset

# Keypoints
Feature matching recall (%) Average inlier match ratio (%)

50 100 250 500 1000 2500 5000 50 100 250 500 1000 2500 5000

SuperPoint 75.5 78.3 84.4 86.1 87.3 88.8 89.2 34.4 37.3 39.7 42.1 44.2 45.4 45.5

KP2D 81.0 85.1 86.4 87.2 87.1 87.7 87.9 44.7 42.8 43.0 43.3 43.1 43.0 43.0

Our 2D (RGB) 79.1 87.3 90.5 91.7 91.6 91.6 91.6 54.3 51.6 52.1 51.3 50.7 50.5 50.5

3DSmoothNet 41.7 55.8 69.3 76.9 82.9 87.7 88.6 14.2 15.8 19.4 22.7 26.3 30.9 33.9

D3Feat 86.0 88.5 91.7 92.6 92.7 92.9 93.0 44.7 45.0 43.6 42.3 40.9 39.1 38.8

FCGF 72.6 86.0 94.0 96.0 97.0 97.2 97.3 17.1 22.0 31.1 38.4 44.7 50.6 53.4

BYOC 36.7 37.5 45.0 51.0 53.7 56.8 59.0 10.8 13.2 14.2 14.6 15.8 17.6 18.8

Predator 87.1 92.0 94.3 95.4 94.9 95.5 95.3 17.1 22.0 31.1 38.4 44.7 50.6 53.4

Our 3D 92.7 95.3 96.3 96.9 97.4 97.5 97.7 59.3 57.9 57.1 56.6 55.4 54.9 56.1

Table 2 Feature matching evaluation results on Redwood dataset

# Keypoints
Feature matching recall (%) Average inlier match ratio (%)

50 100 250 500 1000 2500 5000 50 100 250 500 1000 2500 5000

SuperPoint 65.6 67.9 71.5 73.9 76.4 77.5 77.1 29.6 32.5 35.8 36.8 37.8 38.8 39.0

KP2D 64.2 71.3 74.2 74.1 72.9 73.5 73.5 37.6 35.1 34.3 34.4 35.3 34.6 34.9

Our 2D (RGB) 63.6 73.6 77.2 78.5 79.3 79.0 79.0 46.5 42.3 41.9 41.5 41.0 41.1 41.1

3DSmoothNet 48.3 62.5 77.2 83.1 84.4 86.9 87.2 15.9 18.2 22.1 25.6 30.2 34.4 37.2

D3Feat 80.4 82.4 87.8 89.2 88.5 88.0 87.8 38.9 40.4 38.8 38.2 37.5 36.9 38.1

FCGF 77.2 84.2 90.6 91.9 92.7 92.4 92.6 19.1 25.1 33.8 39.9 44.4 48.7 50.8

BYOC 38.4 41.4 46.9 51.7 54.7 56.4 57.7 12.1 13.9 15.4 16.1 17.4 19.6 21.1

Predator 85.6 89.8 91.4 91.3 91.1 90.7 91.5 30.8 38.2 44.9 47.6 48.9 49.1 47.7

Our 3D 85.8 90.7 91.7 92.1 92.9 93.5 93.8 52.8 50.4 48.6 46.6 46.4 49.8 52.9
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Table 3 Point cloud registration evaluation results on 3DMatch and Redwood datasets

# Keypoints
Registration recall on 3DMatch (%) Registration recall on Redwood (%)

50 100 250 500 1000 2500 5000 50 100 250 500 1000 2500 5000

SuperPoint 27.3 39.5 55.6 61.0 67.2 72.2 72.0 17.8 31.5 43.3 50.9 56.0 57.9 57.9

KP2D 37.1 51.6 66.1 70.7 73.7 73.5 72.3 23.1 35.6 48.4 53.4 55.2 51.2 51.4

Our 2D (RGB) 30.6 46.6 70.6 77.4 79.6 80.2 78.5 19.6 31.4 50.7 59.2 60.7 60.5 60.4

3DSmoothNet 6.9 19.3 43.1 54.9 62.9 70.2 72.4 7.6 23.6 46.9 57.2 61.5 64.8 65.9

D3Feat 48.3 66.5 77.9 83.2 85.1 84.8 82.6 38.4 53.6 69.9 73.3 75.3 70.1 68.0

FCGF 16.2 42.2 69.3 78.4 83.6 84.6 85.3 16.7 41.1 63.1 71.2 71.3 71.6 72.7

BYOC 6.1 16.6 35.3 43.6 47.7 49.9 52.3 8.6 17.8 33.1 39.3 43.7 46.1 44.4

Predator 44.5 67.7 82.5 85.2 87.5 87.4 88.3 49.1 66.8 76.6 78.1 79.2 78.7 77.6

Our 3D 60.9 74.3 85.0 88.3 87.3 87.5 87.4 60.1 71.4 78.8 77.4 76.5 78.7 78.4

Fragment 1 Fragment 2 Ground-truth 3DSmoothNet FCGF D3Feat BYOC Predator Ours

Figure 9 (Color online) Visualization of point cloud registration by different methods with 5000 keypoints and RANSAC. We

shows the geometric registration results by 3DSmoothNet (also known as PerfectMatch) [43], FCGF [44], D3Feat [11], BYOC [55],

OverlapPredator [24] (also known as Predator) and our Hybrid3D on the the Redwood dataset [14] and the 3DMatch testing

dataset [32]. Our method successfully registers fragment pairs with only small overlap areas.

4.4 Ablation study

In this subsection, we perform ablation studies of our network design and strategies on the 3DMatch
dataset. We show the results of registration recall and relative repeatability.

2D feature fusion. We ablate the 3DSF and directly use the keypoints from 2DFP to validate the
effectiveness of multi-modal feature fusion in 2D image planes. Our 2D (RGB) only accepts RGB images
and Our 2D (fuse) uses both RGB images and projected 3D point features. Besides, Our 2D (fuse w/o
score cons.) also uses both multi-modal features but is trained without 2D score consistency loss (Eq. (2)).
As shown in Table 4 (best results in bold) and Figure 10, Our 2D (fuse) achieves higher registration recall
than Our 2D (RGB) because of the favorable 3D point features, and the proposed 2D score consistency
loss can further improve the registration performance.

3D feature fusion. We analysis the effectiveness of balanced fusion strategy (Our 3D (w/o balance.)),
3D score consistency loss (Our 3D (w/o cons.)) and 3D score peakiness loss (Our 3D (w/o peak.)). As
shown in in Table 4 and Figure 10, the performance without the above strategy or losses will decrease in
varying degrees, especially in small keypoint number settings (e.g., 500 keypoints or less).

FCGF with our scoring strategy. To exhibit the generalization of our 3D scoring module and score
loss, we train the 3D scoring module on the FCGF, and report the registration recall at FCGF (score).
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Table 4 Ablation study: registration recall (%) on 3DMatch

# Keypoints 50 100 250 500 1000 2500 5000

Our 3D 60.9 74.3 85.0 88.3 87.3 87.5 87.4

Our 2D (RGB) 30.6 46.6 70.6 77.4 79.6 80.2 78.5

Our 2D (fuse w/o score cons.) 27.6 48.7 71.7 81.6 84.1 85.0 84.8

Our 2D (fuse) 29.9 51.8 74.7 82.2 85.5 84.6 85.4

Our 3D (w/o balance.) 50.4 66.1 80.4 84.5 87.2 85.7 87.4

Our 3D (w/o cons.) 37.6 60.7 79.4 86.1 86.3 85.7 88.5

Our 3D (w/o peak.) 37.4 52.7 74.2 81.6 84.4 84.3 85.5

Our 3D (rand) 17.8 43.1 70.1 79.1 83.4 84.4 85.3

FCGF 16.2 42.2 69.3 78.4 83.6 84.6 85.3

FCGF (score) 46.0 63.8 78.7 84.7 86.4 86.2 86.6

Sparse 5k: FCGF 15.8 36.3 57.9 66.9 69.9 73.0 72.8

Sparse 5k: FCGF (score) 26.4 42.0 61.7 69.1 73.4 74.4 72.8

Sparse 5k: Our 3D 34.9 51.4 69.4 74.9 78.0 79.0 78.5

Sparse 1k: FCGF 2.4 4.8 8.0 8.7 10.2 – –

Sparse 1k: FCGF (score) 2.8 4.6 6.9 8.9 9.9 – –

Sparse 1k: Our 3D 8.9 16.1 26.9 33.7 52.3 – –

50

40

30

20

10

0

R
ep

ea
ta

b
il

it
y
 (

%
)

4 8 16 32 64 128 256 512

Keypoint numbers

Our 3D

Our 2D (RGB)

Our 2D (fuse)

Our 3D (w/o balance.)

Our 3D (w/o cons.)

Our 3D (w/o peak.)

FCGF (score)

Sparse 5k: FCGF (score)

Sparse 5k: Our

Sparse 1k: FCGF (score)

Sparse 1k: Our

Figure 10 (Color online) Ablation study: relative repeatability on 3DMatch.

The result in Table 4 shows that our scoring strategy significantly improves the FCGF registration
performance under small keypoint number settings. However, this result still does not exceed the Our
3D, which shows the vital help of multi-view features.

Sparse point cloud. To further study the registration performance under sparse point cloud settings,
we downsample the input point clouds to 5k points and 1k points. We set up the vanilla FCGF and FCGF
with our scoring strategy as the baseline. By equipping our scoring strategy to the FCGF, FCGF (score)
presents better performance than FCGF in both Table 4 and Figure 10. It means that our score can
also work when cooperating with the FCGF features. In Table 4, our full method (Sparse 1k: Our 3D)
outperforms FCGF and FCGF (score) when using only 1000 points as input, which shows the great
robustness of our Hybrid3D thanks to the effective cross-modal feature fusion.

Please refer to the supplementary material for more experiments on view-pooling methods and scoring
strategies.
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5 Conclusion

In this study, we propose a novel framework named Hybrid3D, which faithfully exploits and fuses geometry
cues from point clouds and texture cues from multi-view images, and then delivers the ability of robust
3D feature detection and description. The experiments demonstrate that the Hybrid3D achieves SOTA
registration performance even with very limited keypoints. RGB-D cameras are very common sensors
and are widely used in many public datasets and modern devices (e.g., smartphones, tablets, UAVs, and
robots). Many other 3D vision tasks, such as 3D scene reconstruction, AR/VR, and SLAM, are also facing
the problem of efficiently utilizing multi-view RGB images and point clouds. Extending the proposed
framework to these tasks will be our future work. In addition, as we require pixel depth to lift 2D features
to 3D space, we only deploy our method to indoor scenarios with commodity-level RGB-D sensors, while
the outdoor datasets such as KITTI and RobotCar, or other range sensors such as Laser/LiDAR scanner,
are not included (i.e., LiDAR point cloud might not be fully covered with RGB images). Extending our
framework to handle outdoor point clouds with partially overlapped images and the discrepancy among
different range sensors will be another future work.
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