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Abstract

This paper tackles the intricate challenge of object removal to update the radiance
field using the 3D Gaussian Splatting [15]. The main challenges of this task
lie in the preservation of geometric consistency and the maintenance of texture
coherence in the presence of the substantial discrete nature of Gaussian primitives.
We introduce a robust framework specifically designed to overcome these obstacles.
The key insight of our approach is the enhancement of information exchange among
visible and invisible areas, facilitating content restoration in terms of both geometry
and texture. Our methodology begins with optimizing the positioning of Gaussian
primitives to improve geometric consistency across both removed and visible areas,
guided by an online registration process informed by monocular depth estimation.
Following this, we employ a novel feature propagation mechanism to bolster texture
coherence, leveraging a cross-attention design that bridges sampling Gaussians
from both uncertain and certain areas. This innovative approach significantly
refines the texture coherence within the final radiance field. Extensive experiments
validate that our method not only elevates the quality of novel view synthesis for
scenes undergoing object removal but also showcases notable efficiency gains
in training and rendering speeds. Project Page: https://w-ted.github.io/
publications/gscream

1 Introduction

3D object removal from pre-captured scenes stands as a complex yet pivotal challenge in the realm
of 3D vision, garnering significant attention in computer vision and graphics, particularly for its
applications in virtual reality and content generation. This task extends beyond the scope of its
2D counterpart, i.e. image in-painting [3]], which primarily focuses on texture filling. In 3D object
removal, the intricacies of geometry completion become equally crucial, and the choice of 3D
representation plays a significant role in the effectiveness of the model and rendering quality. [13;[10;
11519; 315 1175 [37]].

Recently, the radiance field representation has revolutionized the community due to the superior
quality of scene representation and novel view synthesis. Among these, the Neural Radiance Field
(NeRF) [21]] has emerged as the groundbreaking implicit 3D representation approach, offering photo-
realistic view synthesis quality. The high-quality rendering capabilities of NeRF have spurred further
development in 3D object removal techniques based on it [17; 235415 42 [22]]. However, the intrinsic
drawbacks of implicit representation, particularly its slow training and rendering speeds, pose severe
limitations for practical applications based on object removal. For instance, it is highly expected that
the system can quickly model the scene given any object mask condition for object removal, which
enforces a straight requirement in terms of training efficiency. Another critical issue is that the object
removal task relies on a flexible scene representation that can learn effective multi-view consistency
to synthesize high-quality scene images with objects masked.
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Figure 1: Illustration of the Object Removal using 3D Gaussian Representations. Given a
set of multi-view posed images and object masks, our goal is to learn a 3D consistent Gaussian
representation modeling the scene with the object removed, which enables the consistent novel view
synthesis without the specific object.

To effectively address the dual challenges of producing an enhanced radiance field for object removal,
we introduce a pioneering strategy leveraging 3D Gaussian Splatting (3DGS) [15]]. Unlike implicit
representations, 3DGS explicitly models the 3D scene using tons of Gaussian primitives. This
approach has demonstrated notable advances in rendering efficiency and quality, surpassing traditional
NeRF-based methods [241]]. However, applying 3DGS to object removal presents unique challenges,
primarily from two aspects: 1) Geometry Accuracy: The inherently discrete nature of a significant
number of Gaussians can result in an inaccurate representation of the underlying geometry in the
standard 3DGS model. This inaccuracy poses a considerable challenge in executing geometry
completion and ensuring geometric consistency in the object removal areas within a 3D space. 2)
Texture Coherence: Filling the region behind the removed object with consistent textures under the
3DGS framework represents another unexplored challenge. Achieving texture coherence across
various viewing angles is essential, yet the methodologies to realize this goal within the 3DGS
paradigm are currently underdeveloped.

The cornerstone of our approach lies in augmenting the interaction between Gaussians in both the
in-painted and visible regions, encompassing geometry and appearance enhancements. Initially,
to bolster geometric consistency across the removal and visible areas, our method incorporates
monocular depth estimation from multi-view images as a supplementary geometric constraint. This
enhances the precision of 3D Gaussian Splatting (3DGS) placements. Employing a novel online depth
alignment strategy, we refine the spatial arrangement of Gaussians within the removal area, ensuring
improved alignment with adjacent regions. In terms of texture synthesis, our goal is to achieve a
seamless blend between the visible and in-painted regions. Distinct from approaches tailored for
implicit representations, which predominantly rely on image domain guidance for supervision, such
as generating multi-view in-painted images [23} 42} 41] or simulating pseudo-view-dependent effects
from NeRF [22], the explicit characteristic of Gaussian representations opens the door to innovative
solutions. We introduce a novel method that facilitates feature interactions between Gaussian clusters
from both visible and in-painted regions. This is achieved through a meticulously designed attention
mechanism, which significantly improves the alignment of apparent and in-painted appearances. By
sampling Gaussians positioned within both masked and unmasked areas, we refine their features
via cross-attention in preparation for the final rendering. This self-interaction strategy capitalizes
on the explicit nature of Gaussians to fine-tune the feature distribution in 3D spaces, culminating in
enhanced coherence in the rendered outcomes. Furthermore, to mitigate the computational burden
associated with directly manipulating millions of diminutive Gaussians, we implement a lightweight
Gaussian Splatting architecture, Scaffold-GS [19], as our base model. Scaffold-GS introduces a novel
paradigm that organizes Gaussians around anchor points, using the features associated with these
anchors to decode attributes for the respective Gaussians. This approach not only streamlines the
processing of Gaussian data but also significantly enhances the efficiency and effectiveness of our
rendering process.

To the end, we propose a holistic solution coined GScream for object removal from Gaussian
Splatting while maintaining the geometry and feature consistency. The contribution of our paper is
threefold summarized below:

* We introduce GScream, a model that employs 3D Gaussian Splatting for object removal,
specifically targeting and mitigating issues related to geometric inconsistencies and texture



incoherence. This approach not only achieves significant efficiency but also ensures superior
rendering quality when compared to traditional NeRF-based methods.

* To overcome the geometry inconsistency in the removal area, we incorporate multiview
monocular depth estimation as an extra constraint. This aids in the precise optimization of
Gaussian placements. Through an online depth alignment process, we enhance the geometric
consistency between the removed area and the surrounding visible areas.

* Addressing the challenge of appearance incoherence, we exploit the explicit representation
capability of 3DGS. We propose a unique feature regularization strategy that fosters im-
proved interaction between Gaussian clusters in both the in-painted and visible sections of
the scene. This method ensures coherence and elevates the appearance quality of the final
rendered images.

2 Related Works

2.1 Radiance Field for Novel View Synthesis

Photo realistic view synthesis is a long-standing problem in computer vision and computer graph-
ics [30; 1165 132 [18]. Recently, the radiance field approaches [21]] revolutionized this task by only
capturing scenes with multiple photos and brought the reconstruction quality to a new level with the
help of neural implicit representations [33;[25] and effective positional encoding [215 35]. While
the implicit representation benefits the optimization, the extensive queries of the network along the
ray for rendering make the entire rendering speed costly and time-consuming [1; 2]. Recently, there
have been several attempts to facilitate the rendering speeds [7} 265 245 [15]. Among all of them, the
3D Gaussian splitting (3DGS) representation [[15;19] stands as the most representative one which
reaches a real-time rendering with state-of-the-art visual quality. 3DGS represents the radiance
field as a collection of learnable 3D Gaussian. Each Gaussian blob includes information describing
its 3D position, opacity, anisotropic covariance, and color features. With the dedicated design of
a tiled-based splatting solution for training, the rendering of 3DGS is real-time with high quality.
However, 3DGS is only proposed for novel view synthesis. It remains challenging to tame it if we
want to remove objects from the pre-captured images.

2.2 Object Removal from Radiance Field

As the fidelity of 3D scene reconstruction advances, the ability to edit pre-captured 3D scenes
becomes increasingly vital. Object removal, a key application in content generation, has garnered
significant interest, particularly within the realm of radiance field representation. Several methods
have been proposed to tackle this challenge [[17}; 4151425 23 122]]. For instance, NeRF-in [17] and
SPInNeRF [23] utilize 2D in-painting models to fill gaps in training views and rendered depths.
However, these approaches often result in inconsistent in-painted images across different views,
leading to “ghost” effects in the removed object regions. View-Subtitude [22] offers an alternative
by in-painting a single reference image and designing depth-guided warping and bilateral filtering
techniques to guide the generation in other views. Despite these innovations, the underlying issue of
slow training and rendering speed persists in these NeRF-based methods. The recent 3DGS-based
general editing framework, GaussianEditor [6]], includes the operation of deleting objects. However,
despite its faster editing efficiency compared to NeRF-based methods, it still lacks specific constraints
in the 3D domain. For the object removal task, purely fitting the 2D priors provided by the image
in-painting model can also result in discontinuities in the 3D domain.

In response to these limitations, our work proposes a novel solution utilizing the 3D Gaussian Splatting
(3DGS) [13] representation to achieve efficient object removal. The 3DGS method offers a more rapid
training and rendering process, making it a suitable candidate for this application. However, 3DGS, in
its standard form, primarily focuses on RGB reconstruction loss, leading to less accurate underlying
geometry for complex scenes. To make it suitable for recovering a scene without a selected object,
we approach the problem in two stages: depth completion followed by texture propagation. We first
enhance the geometric accuracy of 3DGS using monocular depth supervision. With a more refined
geometric base, we then employ this improved structure to propagate 3D information outside the
in-painted region to refine the texture in the in-painted region. These processes ensure not only the
efficient removal of objects but also the maintenance of the scene’s visual and geometric integrity.
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Figure 2: Illustration of our GScream framework. It consists of two novel components, which
are monocular depth guided training and cross-attention feature regularization. Our 3D Gaussian
splatting (3DGS) representation is initialized by the 3D SfM points and supervised by both images
and multi-view monocular depth estimation. The additional depth losses help refine the geometry
accuracy within the 3DGS framework. The following 3D feature regularization performs texture
propagation to refine the appearance within the 3D in-painted region.

3 The Propose Framework: GScream

As illustrated in Fig. [I} given N multi-view posed images {I;|i = 0, ..., N} of a static real-world
scene with the corresponding binary masks specifying the object {M;|i = 0,..., N}. The object
mask M; is a binary mask with the object region set as 1 and the background set as 0. We assume
these masks are provided for training, which can be obtained trivially by video segmentation [[17; 8]
or a straightforward 3D annotation [42} 5]. Our goal is to learn a 3D Gaussian representation to
model the real-world scene with the object removed. To address this problem, we propose a novel
framework named GScream, and the overview of it can be found in Fig. @ First, we select one
view as the reference view and perform the 2D in-painting [27; 28] to complete the content by the
corresponding mask. Without loss of generality, we denote the selected view with index O and the
in-painted image as . We use the in-painted one single image to train the final 3DGS. The overview
of our proposed GScream is shown in Fig.[2]

The organization of this section is presented as follows: we will introduce the preliminary about
3D Gaussian Splatting and its variants in Sec. [3.1] and then dive into the details about the core
design of our framework in terms of geometry consistency and appearance coherence in the following
subsection.

3.1 Preliminary: 3D Gaussain Splatting

3D Gaussian Splatting We use the 3D Gaussian representation as our underlying modeling structure.
Each Gaussian blob has the following attributes: 3D coordinates g, scale matrix S, rotation matrix R,
color features ¢, and its opacity. With these attributes, the Gaussians are defined by the covariance
matrix ¥ = RSSTRT centered at point p:

G(z) = exp 2@ w27 @—p) (1)

This Gaussian is multiplied by the opacity in the rendering process. By projecting the covariance
onto the 2D plane following Zwicker et al. [45]], we can obtain the projected Gaussian and adopt the
volume rendering (a-blending) [20] to render the color in the image plane.

K k—1
C= chak H(l — o), 2)
k=1 j=1

where K means the number of sampling points along the ray and « is given by evaluating the
projected Gaussian of G(x) and the corresponding opacity. The initial 3D coordinates of each 3D



Gaussian blob are initialized as the coordinates of the SfM points [29]. All the attributes of Gaussians
are optimized by the reconstruction loss of the image. More details can be found in [15].

Scaffold-GS While the sparse initial points are insufficient to model the entire scene, 3DGS designs
a densification operation to split and merge Gaussians to capture more details. It will result in better
rendering quality while leading to a heavy storage burden. Therefore, we adopt a lightweight Gaussian
Splatting structure, Scaffold-GS [[19]. The key contribution of it is to use anchors to generate new
Gaussian attributes with several decoders. There will be a learnable feature embedding attached to
each anchor, and all the new Gaussian attributes can be extracted from the anchor features. With
the densification performed in the anchor points, the storage requirement of Scaffold-GS can be
significantly reduced and benefit the modeling of the radiance field. We adopt it as our base model
to propose an efficient object removal solution for Gaussian Splatting. More details can be found
in [19].

3.2 Improve Geometry Consistency by Monocular Depth Guidance

One of the challenges to performing object removal upon 3DGS is the underlying geometry is too
noisy [15], which further leads to difficulty when performing geometry completion for the removal
region. To improve the quality, we propose to leverage the guidance from estimated monocular
depth as extra supervision. Concretely, we use the depth estimation model [14]] to extract the depth
D = {D,|i = 0,..., N} of each image from the in-painted image I and other views Z. Here D
corresponds to the estimated depth of 1.

Online Depth Alignment and Supervision The monocular depth estimation is not a metric depth [14].
Therefore, we propose an online depth alignment design to utilize the depth guidance. However, the
inconsistent depth estimation of I and Z brings an additional issue. The Z contains the object that we
want to remove, while I depicts an image without the object. Therefore, we propose the following
weighted depth loss to solve this problem:

1 .
Laeptn = 77 > Ml (wDi +) = Di 3)
MM;+ X1 —M;), ifi=0
M, = ’ . 4
Z {Ag(l—Mix ifi 0 @
Where D is the rendered depth map from 3D Gaussian Splatting calculated similar to the Equ. by:
K k—1
D= tray [J(1 - ay), Q)
k=1 j=1

where ¢, is the z-coordinates of Gaussian mean pi, in the corresponding camera coordinate system.
The depth obtained from the monocular estimator D; and the rendered depth D; by the 3D Gaussians
have different numerical scales, so we cannot directly calculate the loss. We employ an online
alignment method to address the scale issue. Specifically, we align the rendered depth using scale and
shift parameters, denoted as w and ¢, to match the scale of the monocular depth before calculating
the loss. The scale and shift are obtained by solving a least-squares problem [14;143]]. For the image
in Z, we only use the points outside the mask region, and the resulting scale and shift are applied to
the entire depth map. We design different weights to calculate the depth loss as in Equ. d With this
design, the depth supervision is applied to the entire depth map D, for the reference view, while it
is applied on the background region for other views’ depth {D;|i = 1,..., N}. The A1, Ao, A3 are
hyper-parameters to balance the influence of mask weights. In addition to the point-wise L1 loss, we
also enforce a total variation loss to enforce smoothness in the depth difference as follows:

1 ~
Lo =5 S MIV((wD; + ) Do) ©)

Color Loss Following [[155[19]], we also apply the multi-view color reconstruction loss for both the
training:
1 .
color = Tr1rs M 1_)\ssim i_Ii
Leotor = 7 3 M G — L
+ Xssim SSIM(Cy, 1)),
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Figure 3: Illustration of the Cross-attention Feature Regularization. Our regularization module
consists of 3D Gaussian Sampling and a Bidirectional Cross-Attention Module, propagating the
3D feature from surrounding blobs to the in-painted region. As a complement to the 2D prior, the
cross-attention mechanism enables the transmission of information among 3D Gaussian blobs, further
ensuring the similarity of appearance between the in-painted region and its surroundings.

where C is the rendered image from 3DGS. Thanks to the rendering efficiency of 3DGS, we can
render the entire image and perform a structural image reconstruction loss [40] SSIM to constrain the
RGB image reconstruction. The overall training loss is the weighted sum of depth and color loss:

['total = )\depthﬁdepth + Atvﬁtv + Lcolor (8)

3.3 Cross-Attention Feature Regularization

Through monocular depth-guided training, we enhance the geometry of the 3D Gaussian repre-
sentation. The following question is how we can refine the texture in the missing region from the
surrounding environment.

Prior approaches in the realm of 3D object removal commonly employ a strategy that involves
generating pseudo-RGB guidance to refresh the scene’s information. This typically relies on lever-
aging multi-view in-painted images to update NeRF/3DGS models [23} 142} 6], or on producing
view-dependent effects as a form of guidance [22]]. However, these methods tend to be sensitive
to the quality of the pseudo-ground truth and often overlook the intrinsic relationships between the
in-painted regions and their visible counterparts.

The key insight of our model is to propagate the accurate texture in the surrounding region into
the in-painted region in a certain manner. The explicit nature of 3DGS provides us the possibility
to use the information from visible parts to update the content in the in-painted region. We expect
this propagation can provide reliable information for the in-painted region in 3D space and ensure
the propagated content is consistent across multiple viewpoints. Specifically, as shown in Fig. 3
we perform a two-stage procedure to achieve texture propagation, i.e., 3D anchors sampling, and
subsequent bidirectional cross-attention.

3D Gaussian Sampling First, for each view ¢, we sample the patch that can simultaneously cover
both the inside and the outside of the mask M;. Then, we project the center coordinates of the 3D
Gaussian anchors to the current view, to determine which anchor’s 2D projection falls within the
sampled 2D patch. After we identify the clusters of Gaussian anchors whose projections fall within
the patch, we can easily categorize them into two groups based on whether their 2D projections are
inside or outside the 2D mask. In this way, we sample 3D Gaussian anchors in both the in-painted
and surrounding regions. Our goal is to sample 3D points in both the in-painted region and the
surrounding region, as shown in the left part of Fig. [3] Although there are alternative sampling
methods such as using depth for point back-projection, we believe that our approach based on 2D
mask back-projection is sufficient to achieve our objectives.



Bidirectional Cross-Attention After obtaining the 3D Gaussian anchors from both regions, we per-
form bidirectional cross-attention between the two sets of Gaussian features to propagate information
between the anchors. Specifically, we concatenate the two sets of Gaussian features as two tokens and
take them as input to a bidirectional cross-attention structure following the classical definition [36]

Attention(Q, K, V) = softmax( ?/Iid: )V, where dy, is the token length.

The output of the cross-attention structure, which represents the updated features, is then assigned
back to the corresponding Gaussian anchors. The bidirectional structure of the cross-attention is
designed to facilitate bidirectional information propagation between the features inside and outside
the in-painted regions. It can be seen as two sets of shared-parameter cross-attention modules,
enabling information exchange between the two sets of features. As shown in Fig.[3] let us assume
that the sampled tokens in the in-painted and surrounding regions are represented by the f;,, and fgy;.
After passing them through the cross-attention module, the updated features can be denoted as fm

and fSUT:

fin = Attention(Q = flnaK = fsuer = fsur)

. 9
fsur = Attention(Q = fSUT7K = fzan = fzn) ©

As shown in Fig. 2] when the sampled anchors complete the feature updates, all anchors undergo
neural blobs growing and differentiable rendering as usual in [19]]. The rendered depth map and
image under the current viewpoint are then supervised by the total loss introduced in 8]

The 3D Gaussian sampling strategy together with the shared bidirectional cross-attention augments
the anchor feature with similarity towards higher consistency. Through the gradients backpropagated
to the anchors’ features in the visible region, the similar anchors in the unpainted region can also be
updated due to the attention mechanism. This design improves the consistency between the in-painted
region and visible certain areas, which leads to better texture coherence in our experiments.

4 Experiments

4.1 Experimental Setup

Dataset Following previous methods, we conducted experiments on the SPIn-NeRF dataset [23]] and
IBRNet dataset [38]] for object removal. SPIn-NeRF dataset is proposed by [23], consisting of 10
forward-facing in-the-wild scenes, including three indoor scenes and seven outdoor scenes. Each
scene has 100 multi-view images with annotated foreground object masks. The training set consists
of 60 images with objects, while the remaining 40 images without objects are used for testing. To
ensure a fair comparison, we directly utilize the camera parameters and sparse reconstructed points
from the dataset’s released Structure-from-Motion (SfM) results instead of re-performing the sparse
construction as [42]. IBRNet dataset is constructed by [38] for novel view synthesis, including
selected scenes from existing datasets and 102 scenes collected by mobile phones. We use five real
scenes captured by mobile phones from IBRNet for experimentation. More details can be found in
the supplementary material.

Baselines We compare our methods with three recent baseline methods: SPIn-NeRF [23]], OR-
NeRF [42], and View-Sub [22]. We re-train and test the model using their open-source code to
compare the first two baselines. We borrow the reported quantitative and qualitative results directly
from the paper [22] due to the unavailable of open-source code.

Evaluation Metric Since we are more interested in the visual quality for the final radiance field, we
calculate the PSNR, SSIM [39], and LPIPS [44] scores on the full image and within the mask region.
We also calculate the Frechet Inception Distance (FID) [[12] score, which measures the similarity
between the generated and real images regarding the feature distributions. Furthermore, we record
the training time for each method to evaluate their efficiency. Please note that the scenes in IBRNet
do not have ground truth images with objects removed, so quantitative metrics such as PSNR cannot
be calculated. We only showcase partial quantitative results for these scenes. All experiments were
conducted on an NVIDIA GeForce RTX 3090 with 24GB RAM.



Table 1: Quantitative comparison on novel view synthesis with the object removed. We compared our
method with three baselines: SPIn-NeRF [23]], OR-NeRF [42]], and View-Sub [22]. ‘-’ indicates the
metrics are not reported by the authors in the paper. ‘*’ indicates the metrics are directly borrowed
from the paper of the corresponding method.

Methods H PSNR 1T masked PSNR1T SSIM 1 masked SSIM1 LPIPS| masked LPIPS| FID| Training Time |
SPIn-NeRF [23] 20.18 15.80 0.46 0.21 0.47 0.58 58.78 ~ 3.0h
OR-NeRF [42] 20.32 15.74 0.54 0.21 0.35 0.56 38.69 ~ 6.0h
View-Sub [22] - - - - 0.45* - -
GScream (Ours) || 20.49 15.84 0.58 0.21 0.28 0.54 36.72 ~1.2h
Sample View & Mask (a) SPIn-NeRF (b) OR-NeRF (c) View-Sub (d) Ours

Figure 4: Qualitative results compared with the most representative object-removal approaches.
[lustration of the rendered qualitative images with object removed, compared with SPIn-NeRF [23],
OR-NeRF [42], and View-Sub [22]. Our approach can synthesize high-quality images with natural
removal effect.

4.2 Comparison with the State-of-the-art Methods

We present quantitative and qualitative comparisons between our method and three baseline methods
in Tab. [T]and Fig. 4] respectively.

Quantitative Comparison As detailed in Tab. |1, our method either matches or surpasses SPIn-
NeRF or OR-NeRF across all evaluated metrics. Notably, our approach yields superior similarity
metrics, such as SSIM and LPIPS, suggesting that the images rendered by our method bear a closer
resemblance to the ground truth in the test set. It is worth mentioning that SPIn-NeRF and OR-NeRF
both utilize patch-based LPIPS loss in their optimization objective, which we did not employ. Despite
this, our results still show an advantage in LPIPS, demonstrating the effectiveness of our method. Our
method also performs better in terms of FID, indicating that the feature distribution of our rendered
images is more consistent with real images without objects. Moreover, thanks to the efficiency of
3DGS representation rendering and optimization, our method achieves training times that are 1.5
and 4.0x faster than SPIn-NeRF and OR-NeRF, respectively. Regarding the View-sub method, due
to the unavailability of its code, our comparison was limited to the masked LPIPS as reported in their
paper, where our results were comparable. However, our method shows promise for an even more
significant advantage in training efficiency.
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Figure 5: Qualitative results of the effective depth-guided training. We visualize the scene in 3D
Gaussian Splatting format and 2D rendered image by ablating the depth-guide training. The geometry
guidance provides more information to fill the missing area with Gaussian blobs.

Qualitative Comparison Fig. [4] presents a qualitative comparison across five different scenes.
For the first three scenes, we select of the nearest neighboring viewpoints based on the View-sub
paper, enabling a coherent rendering comparison among all approaches. Despite slight camera pose
differences, we believe these variations are negligible concerning the overall assessment of rendering
quality. The leftmost column shows randomly selected scene images and their corresponding mask.
Upon analysis, it is evident that while all methods exhibit competence in completing mask regions
across certain scenarios, such as the regular wall depicted in the third row and the simple textured
fence in the fourth row, SPIn-NeRF and OR-NeRF occasionally struggle with more complex regions.
For instance, in the scenarios requiring the completion of both soil and bush textures (as seen in the
first row), these methods often resort to inserting repetitive, unrealistic gray textures. In contrast, both
the View-Sub method and our results can complete appropriate grass and plants. Similarly, in the
second row, our completed railing appears more reasonable. While minor discrepancies in viewpoint
exist between the results of the View-sub and ours, the fidelity of the completed textures in the first
three scenes remains notably comparable.

Further analysis of the last two rows in Fig. [d] which shows two indoor scenes with more complex
depth from the IBRNet dataset, reveals our method’s proficiency. For instance, in the scenario
involving lamp removal, our method naturally completes the curtain behind the lamp compared to
SPIn-Nerf and OR-Nerf. In the case of table removal, our method reconstructs the chair legs and
carpet more accurately.

4.3 Ablation Study

We conduct ablation experiments on mono-depth supervision and cross-attention feature regularization
and present the quantitative and qualitative results in Tab. 2] Fig. 5} and Fig.

Analysis of Depth Supervision We first analyze our first contribution: introducing multi-view depth
maps to aid in the 3D geometry learning of the in-painted area. Fig.[5](a) and (b) show the results
supervised by using Equ. [7] and Equ. [§] based on the original Scaffold-GS. Note that the former
does not have mono-depth supervision while the latter has mono-depth supervision. We visualize
the learned Gaussian blobs and 2D images before and after incorporating depth supervision (all
visualized in novel views). From Fig.[5] we can observe that in (a), where depth supervision is
lacking, the positions of the Gaussian blobs within the red box are floating in the air, with noticeable
holes interspersed in between. The corresponding 2D rendered images also exhibit noticeable texture
floating. However, the involvement of depth supervision in (b) leads to more plausible positions of
the 3D Gaussian blobs: most blobs are located within areas with objects (grass and bushes) rather



Table 2: Quantitative comparison of different variants of our proposed method. We remove one
or both of the Mono-Depth Supervision and Cross-Attn (Cross-Attention) Regularization components
and compare the quantitative results.

Variants | PSNRT masked-PSNR 1 SSIMT masked-SSIM T LPIPS| masked-LPIPS |
GScream w/o Cross-Attn & Mono-Depth 20.12 14.87 0.58 0.19 0.26 0.56
GScream w/o Cross-Attn 20.47 15.63 0.58 0.20 0.26 0.50
GScream (Our Full Model) | 20.49 15.84 0.58 0.21 0.28 0.54

than floating in the air as in (a). The corresponding 2D rendered images are noticeably more realistic
and plausible. This demonstrates that our depth supervision significantly constrains the position of
Gaussian blobs and improves the geometric accuracy of 3DGS, which enables the realism of the 2D
renderings in novel views.

Quantitative Analysis of Key Components We further disable Mono-Depth Supervision and Cross-
Attention Feature Regularization modules individually based on the full model GScream, and present
more quantitative and qualitative results of these ablation experiments in Tab. [2]and Fig.[6] Disabling
Cross-Attention Feature Regularization means training only with Equ. [§] without performing 3D
Gaussian sampling and bidirectional cross-attention. Disabling both means only retaining the color
loss term in Equ. [§]

From the Tab. |2} we can observe that removing the cross-attention feature regularization modules
leads to a degradation in the metrics PSNR and SSIM. For instance, the masked PSNR decreases
from 15.84 to 15.63, indicating that the content filled in the masked regions becomes less reasonable.
This suggests that improvements in depth accuracy and feature propagation are beneficial for the
results. Furthermore, if both modules are disabled, the metrics become even worse. Compared to the
full model, the masked PSNR decreases to 14.87, and the masked-SSIM further decreases to 0.19,
suggesting poorer depth and no 3D regularization in masked regions lead to worse results.

Qualitative Analysis of the Mono-Depth Module. The label (a)(b)(c) in Fig. [] represent (a)
GScream w/o Cross-Attention & Mono-Depth; (b) GScream w/o Cross-Attention Regularization and
(¢) Our Full Method (GScream), respectively. For both Scene-1 and Scene-2, by comparing Fig. [6] (a)
with (b)(c), we can observe that removing depth supervision results in poor depth prediction, with
significant noise present in the red box region and along the image edges. The texture quality of
scene (a) suffers notably due to the absence of depth supervision, resulting in texture holes when
viewed from novel perspectives.

Qualitative Analysis of the Cross-Attention Module. While our experiments revealed a marginal
reduction in the LPIPS metric upon deactivating the cross-attention module, we are poised to showcase
this module’s substantial role in enhancing our results in Fig. [f] While Fig.[6](b) benefits from the
incorporation of monocular depth supervision, leading to improved texture filling and depth accuracy,
the outcomes still fall short of naturalness due to the absence of 3D feature regularization. In Scene-1
(b) of Fig.[6] when the perspective shifts to the left side of the tree trunk, black holes become visible
in areas distanced from the frontal view, as indicated by the red arrow (zooming in is recommended
for clarity). This scenario underscores the limitations of solely relying on 2D priors for supervision,
which are unable to remediate texture gaps in unseen regions. However, the introduction of 3D feature
regularization in (c) effectively addresses these shortcomings by filling the previously observed
holes. This enhancement reveals the critical role of 3D feature interactions in supplementing 2D
priors, enabling the propagation of appropriate textures to obscured areas and thereby ensuring more
cohesive rendering in novel views. In Scene-2, a side-by-side comparison of (a) and (b) reveals
that, while (b) demonstrates depth enhancements over (a), both still exhibit a pronounced sharp
boundary, as indicated by the red arrow, which detracts from naturalism. However, integrating feature
cross-attention in (c) significantly mitigates this issue. The previously stark gap softens, eliminating
the noticeable boundary. This transformation suggests that facilitating feature information exchange
can harmonize originally disjointed textures at boundaries, ensuring a more seamless and consistent
texture transition.

5 Conclusion

In conclusion, our innovative framework for object removal, which leverages 3D Gaussian Splat-
ting, has proven to be both effective and more efficient than traditional NeRF-based approaches.
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Figure 6: Qualitative results of the ablation study. We provide the visualization of different variants
of our method. From the top to bottom, (a) GScream w/o Cross-Attention & Mono-Depth; (b)
GScream w/o Cross-Attention Feature Regularization; (¢) Our Full Method GScream. We visualize
the rendered RGB and depth to verify the effectiveness of our proposed components. Our full model
produces a more reasonable depth and RGB image. Please zoom in for a better view.

Through the integration of monocular-depth guided training and cross-attention feature regularization
techniques, our method facilitates rapid training speeds while simultaneously preserving multi-view
geometric and texture consistency in the inpainted textures. Experimental validations confirm that our
approach outperforms existing NeRF-based methods in terms of both efficiency and effectiveness.

6 Supplementary Material

In this supplementary material, we provide additional experimental results in Sec.[7] We also provide
a video demo for more qualitative state-of-the-art comparisons and ablation studies as discussed in
Sec. (8

7 Additional Experiments

7.1 Comparison with GaussianEditor

In addition to the comparisons in the main text with the NeRF-based method [23; 42 22]], we also
compared our approach GScream with the GaussianEditor [6], which is a general editing pipeline
also based on Gaussian Splatting representation. They utilize 2D prior from the diffusion model to
guide the updates of the Hierarchical Gaussian splatting (HGS) in order to achieve stabilized editing.
The qualitative comparison of object removal with GaussianEditor is illustrated in Fig.[7} From the
Fig.[7] our method can fill the mask region with more realistic and plausible textures.

7.2 Ablations on using different Depth Estimation Models

In our method GScream, we use a depth estimation model to obtain depth maps for each viewpoint
independently. In this subsection, we compare two different single image depth estimation methods:
Midas [4] and Marigold [[14] for obtaining depth prior, which is utilized to supervise our GScream.
As shown in Fig. [8] the depth predicted by Midas at the red fence is not particularly continuous,
resulting in the texture and depth of the learned GScream at the red fence being less continuous as
well. On the other hand, Marigold can predict more continuous depth, thereby guiding a relatively
more continuous GScream. This also demonstrates that accurate depth guidance is crucial for learning
geometric continuity in the representation of 3D Gaussian Splatting.
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Sample View & Mask (a) GaussianEditor (b) GScream (Ours)

Figure 7: Qualitative comparison of object removal with the 3D Gaussian Splatting-based
method GaussianEditor [6].

N
Depth Estimated by Midas GScream Supervised by Midas Depth
h
Sample View & Mask I:'|>
Depth Estimated by Marigold GScream Supervised by Marigold Depth

Figure 8: Qualitative results of using different monocular depth estimation models: Midas [4]
and Marigold [14].

=> o

Reference In-painted by LaMa GScream Guided by LaMa Reference
Sample View & Mask :‘!>
V- o
Reference In-painted by SD GScream Guided by SD Reference

Figure 9: Qualitative results of using different 2D in-painting models: LaMa [34] and Stable
Diffusion (SD) [28]
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7.3 Ablations on using different 2D In-Painting Models

In our method, we use a 2D in-painting model to obtain a reference image from a certain viewpoint
as guidance. In this subsection, we compare two different methods using different 2D in-painting
models: LaMa [34] and Stable Diffusion [28] to obtain guidance for GScream. As shown in Fig.[9}
LaMa removes both the metal sink and the indentation, while Stable Diffusion removes the metal sink
but retains the indentation. Both results from these two in-painting methods can serve as guidance for
obtaining reasonable GScream results. This indicates that the choice of the in-painting method for
obtaining the reference is not crucial; what matters more is obtaining a reasonable reference. As long
as there is a reasonable reference, GScream can generate 3D geometry and texture continuous results.

8 Video Demo

We also provide a demo video for more qualitative state-of-the-art comparisons and ablation studies.
The video demo can be found from the project page: https://w-ted.github.io/publications/
gscream
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