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Abstract

In this paper, we propose a novel multi-view stereo (MVS) framework that gets
rid of the depth range prior. Unlike recent prior-free MVS methods that work in
a pair-wise manner, our method simultaneously considers all the source images.
Specifically, we introduce a Multi-view Disparity Attention (MDA) module to
aggregate long-range context information within and across multi-view images.
Considering the asymmetry of the epipolar disparity flow, the key to our method
lies in accurately modeling multi-view geometric constraints. We integrate pose
embedding to encapsulate information such as multi-view camera poses, providing
implicit geometric constraints for multi-view disparity feature fusion dominated by
attention. Additionally, we construct corresponding hidden states for each source
image due to significant differences in the observation quality of the same pixel
in the reference frame across multiple source frames. We explicitly estimate the
quality of the current pixel corresponding to sampled points on the epipolar line
of the source image and dynamically update hidden states through the uncertainty
estimation module. Extensive results on the DTU dataset and Tanks&Temple
benchmark demonstrate the effectiveness of our method. The code is available at
our project page: https://zju3dv.github.io/GD-PoseMVS/.

1 Introduction

Multi-view stereo matching (MVS) is a crucial technique in 3D reconstruction, which aims to recover
robust and reliable 3D representations from multiple RGB images [1; 2; 3]. Traditional methods
[4; 5; 6] rely on hand-crafted similarity metrics and regularizations to compute dense correspondences
between the input images. These methods are prone to degradation in challenging scenarios, such as
varying illumination, textureless regions, and occlusion regions. Recently, learning-based methods
[7; 8; 9; 10; 11] directly learn discriminative features from the input images through neural networks
such as CNN and Transformers. By sampling some possible depth hypothesis within a given depth
range, they warp the features from the source images to the reference view (i.e., the plane sweep
algorithm [12]) and compute the cost volume, which is then regularized also through the neural
network to obtain the final depth maps. However, obtaining a suitable depth range is non-trivial when
applied in real-world scenarios while these methods are generally sensitive to the depth range, which
limits their application.

To get rid of the dependence on depth range, some methods [13; 14; 15] transform the regression
problem in the given depth space into a matching problem on the epipolar lines. Similar to optical
flow [16] and feature matching [17; 18; 19; 20], these methods also adopt a pair-wise manner. For
example, DispMVS [14] computes the depth map of the source image multiple times through pairs
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that contain different source images and computes the final depth map by weight of sum. However,
the pair-wise manner neglects the inter-image correspondence between the source images and could
lead to sub-optimal solutions. Meanwhile, although DispMVS mitigates the influence of depth priors
on constructing the 3D cost volume, its initialization based on depth range can still lead to significant
performance degradation when the depth range error is too large, as shown in Fig. 1.

We argue that these methods need to consider all the source images at the same time. Our ideas are
inspired by the recent methods [21; 22] of optical flow which concurrently estimate optical flows
for multiple frames by sufficiently exploiting temporal cues. However, we find these frameworks
cannot be trivially applied in the task of multi-view stereo. The reasons are twofold. First, a strong
cue in the multi-frame optical flow estimation is that the flow originating from the same pixel belongs
to a continuous trajectory in the temporal dimension. Additionally, the frames are sequentially
aligned along this temporal dimension. Such inductive bias makes it easy to learn. But in the context
of multi-view stereo, the source images may be captured in no particular order, lacking a similar
constraint of continuity. Unlike optical flow, the input images in multi-view stereo are unordered.
These distinctions pose a significant challenge when attempting to adapt the multi-frame optical flow
framework for use in multi-view stereo. Second, the arbitrary positions and viewing angles of the
source images, coupled with potentially large temporal gaps between captures, exacerbate issues such
as varying illumination, significant viewport differences, and occlusions which call for new designs.

Based on the above observations, in this paper, we propose a novel framework that gets rid of the
depth range assumption. Unlike some recent methods [13; 14; 15] that work in a pair-wise manner,
the proposed method estimates the depth maps of a reference image by simultaneously considering all
the source images. To address the first issue, we design careful injection of geometric information into
disparity features using 3D pose embedding, followed by multi-frame information interaction through
an attention module. Subsequently, we encode multi-view relative pose information and geometric
relationships between specific sampled points into 3D pose embedding, which is subsequently
transferred to the Multi-view Disparity Attention (MDA) module. This method efficiently incorporates
the relationship between depth and pixels within the network, facilitating improved information
integration across multiple frames. Second, to mitigate the challenge of fluctuating image quality
stemming from occlusion and other factors, we maintain and update the disparity hidden features to
reflect the depth uncertainty of the current sampling point for each iteration. We design the disparity
feature encoding module to learn disparity features along the epipolar lines of multi-view frames.
This approach enables us to explicitly characterize occlusion scenarios for each pixel across diverse
source images and dynamically adapt them during epipolar disparity flow updates. Consequently, the
auxiliary information is furnished for subsequent information fusion within the module. Furthermore,
we designed a novel initialization method to further eliminate the influence of the depth range
compared to DispMVS [14].

In summary, our contributions can be highlighted as follows: (1) A multi-view disparity transformer
network, which facilitates the fusion of information across multi-view frames, (2) A specially
designed 3D pose embedding which is utilized to implicitly construct relationships of the epipolar
disparity flow among multi-view frames, and (3) An uncertainty estimation module and dynamically
updated hidden states representing the quality of source images during iterations. We evaluate our
method against other MVS methods on the DTU dataset [23] and Tanks&Temple dataset [24], and
demonstrate its generalization in Fig. 1.

2 Related Work

2.1 Traditional MVS

Multi-View Stereo has been developed for many years and has many downstream or related ap-
plications such as simultaneous localization and mapping (SLAM) [25], visual localization [26],
3D reconstruction [27; 28], 3D generation [29] and scene understanding [30]. Traditional methods
for Multi-View Stereo (MVS) can generally be categorized into three classes: volumetric, point
cloud-based, and 2D depth map-based methods. Volumetric methods [31; 32] typically partition the
3D space into voxels and annotate them as either interior or exterior to the object surface. Point
cloud-based methods [33; 34] directly optimize the point cloud coordinates of objects in 3D space.
Depth map-based methods [2; 4; 35; 6] first estimate 2D depth corresponding to images and then
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Figure 1: The robustness testing on the depth range. Under identical training configurations, our
method exhibits superior robustness to variations in depth range compared with two state-of-the-art
methods [13; 14]. The red markings denote the actual depth range used during training.

fuse the 2D depths of the same scene to obtain a 3D point cloud. However, these traditional methods
remain constrained by manually crafted image features and similarity matrices.

2.2 Deep learning based MVS

CNN-based MVS methods generally leverage convolutional neural networks to construct and refine
3D cost volume [36; 37; 11; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47]. For instance, [38] uses isotropic
and anisotropic 3D convolution-based learning networks to estimate the depth map. [40] introduces
a pixel-wise network to obtain visibility. [11] applies a multi-stage CNN framework to enable
reconstruction. [44] and [45] build a kind of pyramid to realize 3D cost volume. Similarly, [46]
proposes a sparse-to-dense CNN framework when constructing the 3D cost volume.

RNN-based methods mainly exploit recurrent network structures [48; 49] to regularize 3D cost
volume [50; 51; 52; 9; 13; 53; 54]. For example, [50] utilizes recurrent encoder-decoder structure and
2D CNN framework to solve large-scale MVS reconstruction. [51] introduces a scalable RNN-based
MVS framework. IterMVS [13] uses a GRU-based estimator to encode the probability distribution of
depth. Compared with 3D CNN, RNN highly reduces the memory requirement, which makes it more
suitable for large-scale MVS reconstruction [55].

Transformer is popular in 3D vision tasks [56; 57; 58; 59], and first introduced into the field of
MVS reconstruction by [10] due to its ability to capture global context information. Transformer
is incorporated into feature encoding [10; 60; 61] to capture features within and between input
images. The succeeding work [62] implements a transformer to assign weights to different pixels
in the aggregating process. [63] employs an Epipolar Transformer to perform non-local feature
augmentation. However, these deep learning-based MVS methods commonly exhibit sensitivity to
the depth range, thereby restricting their broad applicability.

Scale-agnostic MVS methods infer the depth information from the movement along epipolar lines to
reduce the heavy dependence of depth range priors. Several methods [14; 15] perform 2D sampling
between two frames and iteratively update flows to find the matching points. Specifically, DispMVS
[14] is randomly initialized within the depth range and performs depth fusion by utilizing a weighted
sum. RAMDepth [15] selects a random source image in each iteration. However, both methods fail to
fully exploit multi-frame constraints during the flow updates due to the mismatch of 3D information
at sampling points. In this paper, we enhance the epipolar matching process by simultaneously
considering multi-frame information.

3 Method

Given a reference image I0 ∈ RH×W×3 and multi-view source images {Ii}N−1
i=1 ∈ RH×W×3 as

input, the task of MVS is to calculate the depth map of the reference image. We treat MVS as a
matching problem: for a pixel point pr in the reference image, we identify the corresponding point
ps in the source image, then we can get depth by triangulation. Given the initial matching point p0s
obtained by the initial depth, we adopt an iterative update strategy. Since the matching point lies
on the epipolar line of the source image, the one-degree-of-freedom epipolar disparity flow is used
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Figure 2: Overview of our method. We introduce the disparity feature encoding module to encode
viewpoint quality differences, and the Multi-view Disparity Attention (MDA) module to facilitate
information interaction between multi-view images. The MDA module is depicted in Fig. 3. Starting
from an initial depth map D0, the epipolar disparity flows are iteratively updated and fused to the
depth of the next stage.

to represent the network’s iterative updates. The epipolar disparity flow eks ∈ RH×W×1 is 1-d flow
along the epipolar line on the source image during each iteration:

eks =
→
edir ·(pks − p0s), (1)

where
→
edir is the normalized direction vector of the epipolar line, · is the dot product of vectors, and

k is the iteration time. Different from previous methods [14; 13], we fully eliminate the dependence
on depth range during initialization and achieve synchronous updating of the epipolar disparity flow
across multi-view images. This is done by our design of disparity information interaction.

The overall pipeline of our method is illustrated in Fig. 2. The proposed method starts from a feature
extraction module to extract multi-scale features (Sec. 3.1). Then, we discuss how to initialize the
depth map without depth range (Sec. 3.2) and perform feature encoding (Sec. 3.3). To facilitate
information fusion across multi-view source images, we introduce the Multi-view Disparity Attention
(MDA) module (Sec. 3.4), enhanced with Pose Embedding. Finally, the features enhanced by the
MDA module are fed into a GRU module to update the epipolar disparity flow, as described (Sec.
3.5), which is then fused to generate the depth map.

3.1 Feature Extraction

Following previous methods [10; 13; 60; 64], we employ convolutional neural networks (CNNs) for
image feature extraction. Moreover, we adopt a coarse-to-fine strategy to extract multi-scale image
features. Specifically, we utilize two share-weighted feature extraction modules to extract image
features F l

0 ∈ RH×W×C and {F l
i }

N−1

i=1 ∈ RH×W×C and a context feature extraction module to
extract context features.

3.2 Initialization

Differing from DispMVS [14], we design a novel initialization method without depth range to further
mitigate the influence of depth priors. Specifically, we select an initial position along the epipolar
line and then convert it into the depth map. First, we derive the correspondence between depth and
position along the epipolar line. Given a pixel pr of the reference image I0, the geometric constrain
between it and the warped pixel ps of the source image Ii can be written as:

K−1
i psds = R ·

(
K−1

0 prdr
)
+ T, (2)

where dr denotes the depth in reference view, ds denotes the depth in source view. R and t denote the
rotation and translation between the reference and the source view, K−1

0 and K−1
i denote the intrinsic

matrices of the reference and the source view. Let T = (tx, ty, tz)
T , K−1

i ps = (psx, psy, psz)
T and

R ·K−1
0 pr = (prx, pry, prz)

T , we can associate dr and ds with pixel coordinates:
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dr =

{
(txpsz − tzpsx)/(psxprz − pszprx),

∣∣∣−→f xr→xs(pr) ≥
−→
f yr→ys(pr)

∣∣∣
(typsz − tzpsy) / (psyprz − pszpry) , otherwise

(3)

ds =

{
(txprz − tzprx)/(psxprz − pszprx),

∣∣∣−→f xr→xs(pr) ≥
−→
f yr→ys(pr)

∣∣∣
(typrz − tzpry) / (psyprz − pszpry) , otherwise

(4)

where
−→
f is a 2D flow vector along the epipolar line that provides flow in the x dimension

−→
f xr→xs(pr)

and y dimension
−→
f yr→ys(pr). To obtain an appropriate initial position, we first determine the

geometrically valid range along the epipolar line, which has not been considered in other works
[53; 14]. If a point is observable in the current view, it must have physical significance, meaning
it must lie in front of the camera. Therefore, we identify the search range along the epipolar line
on the source image that satisfies the condition dr > 0, ds > 0. We obtain the initial position p0s by
selecting the mid-point in search range along epipolar line.

3.3 Disparity Hidden State Based Feature Encoding

Due to occlusion, moving objects, blurring, or other factors violating the multi-view geometry
assumptions, the quality of sampling points from different source images varies, which limits the
network’s performance in depth estimation. To address this issue, we extract uncertainty information
from the sampling point feature and encode it with cost volume as epipolar disparity feature F d

i . As
shown in Fig. 2, we design the disparity hidden state Hd

i to maintain the sampling information of the
current source image and update it during iterations by incorporating new uncertainty information.

Cost Volume Construction. For each source image, after determining the position pts for the
current iteration, we uniformly sample M points around pts along the epipolar line at each scale with a
distance of one pixel. By constructing a 4-layer pyramid feature using average pooling, uniform pixel
sampling at different levels allows for a larger receptive field. The sampling interval in 2D is fixed.
Given image features F l

0 and {F l
i }

N−1

i=1 , we obtain the features of M sampled points in the source
image through interpolation and calculate the visual similarity. The cost volume V ∈ RH×W×M is
constructed by computing the dot product between pairs of image feature vectors:

Vi(pr) =
∑
r∈R

〈
FI0 (pr) · FIi

(
pks + r

)〉
, (5)

where R represents the set of sampling points uniformly sampled along the epipolar line in the source
image, and M denotes the number of sample points.

Disparity Feature Encoding with Uncertainty. When estimating the epipolar disparity flow
from multi-view frames, it is essential to encode the differences between source images caused by
variations in occlusion situations and image quality. Motivated by this, we conduct disparity hidden
state Hd

i ∈ RH×W×C to explicitly represent the situation of point pr relative to the source image.
Motivated by this, we introduce a disparity hidden state Hd

i ∈ RH×W×C to explicitly represent
the condition of points relative to the multi-view source images. Hd

i is randomly initialized and
consecutively updated throughout the iterative process. We introduce a variance-based uncertainty
estimation module to encode the correlation features, which is formulated as follows:

Ui = 1− σ
(∑(

Vi − Vi

)2)
, (6)

where Vi denotes the cost volume of source image, Vi denotes the average value of Vi, and σ(·) is the
sigmoid function. Then, the uncertainty Ui, the disparity hidden state of the previous iteration, the
correlation features and the epipolar disparity flows are fed into the convolutional layers to generate
epipolar disparity feature F d

i and update the disparity hidden state Hd
i .

3.4 Multi-view Stereo Transformer

DispMVS estimates the epipolar disparity flow from each two-frame image pair {I0, Ii}N−1
i=1 , which

overlooks the abundant multi-view information. Inspired by VideoFlow [21], we estimate the epipolar

5



3D Pose Embedding

Disparity 

Feature 𝑭𝒊
𝒅

concat

𝟐𝐃 𝐍ormalized

𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧𝐚𝐥 𝐞𝐧𝐜𝐨𝐝𝐢𝐧𝐠

𝑭𝒊
𝒅 ∈ ℝ(𝑯×𝑾)×𝑪

C

Disparity 

Feature 𝑭𝒊
𝒅

C

C
ro

ss 
𝐀

𝐭𝐭𝐞
𝐧

𝐭𝐢𝐨
𝐧

C

× 𝟐

𝑃

𝜽𝟎,𝒊

𝑝𝒓
𝑝𝑠

𝐼0𝐼𝑖

𝑻𝟎,𝒊

𝐒
𝐞

𝐥𝐟 
𝐀

𝐭𝐭𝐞
𝐧

𝐭𝐢𝐨
𝐧

𝒓𝒊 𝒓𝟎

𝒅𝒓𝒅s

𝑪0𝑪𝒊

3D Pose Embedding

Figure 3: Illustration of MDA module. After concatenating features with 3D pose embedding and
2D normalized positional encoding, we achieve intra-image and inter-image information interaction
through self-attention and cross-attention. As shown in the right figure, 3D pose embedding encodes
relative pose and pixel geometric information into the features to enhance the learning capability of
the attention mechanism.

flow of multi-view images simultaneously. However, since multiple source images are not sequentially
arranged and points uniformly 2D sampled across source images can not establish robust 3D spatial
correspondences, directly learning the continuity between flows, as [21], does not work.

Therefore, unlike [13; 10], etc., we design some special structures for information aggregation among
multi-view images. Although the depths of sampled points along epipolar lines do not correspond,
we observe that there is a regular pattern in the direction of depths along epipolar lines. As shown in
Fig. 3, we design Multi-view Disparity Attention to learn the global information and utilize pose
embedding to implicitly model the correspondence between pixel coordinates and depth on multiple
source images, enabling the network to learn the direction and scale relationship of corresponding
flows across different source images.

Multi-view Disparity Attention. To effectively capture extensive global information across epipolar
disparity features from different views, we leverage the Multi-view Disparity Attention (MDA)
module to further enhance the disparity features. We utilize an attention module to globally interact
with disparity features of multi-view source images, thereby achieving multi-view feature fusion.

Given epipolar disparity features {F d
i }

N−1

i=1 , we first use self-attention to achieve intra-image infor-
mation interaction. We concatenate epipolar disparity features F d

i ∈ RH×W×C and set H ×W the
as sequence length L, generating F d ∈ R(N−1)×(H×W )×C .

Then we use cross-attention to achieve inter-frame information interaction and learn the relations
among multi-view. We concatenate epipolar disparity features F d

i and set the number of source
images N − 1 the as sequence length L, generating F d ∈ R(H×W )×(N−1)×C .

To reduce computation cost, for the self-attention we use a linear transformer to compute attention,
which replaces the original kernel function with:

Attention (Q,K, V ) = Φ (Q)
(
Φ
(
KT

)
V
)
, (7)

where Φ(·) = relu(·) + 1 and relu(·) represents the activation function of exponential linear units.

3D Pose Embedding. Due to the depths of sampling points varying for different source images, we
utilize pose embedding to construct implicit disparity relationships among multi-view frames. To
effectively convey useful information to the attention module, we categorize the features of pose
embedding into two types: multi-view relative pose information and geometric information between
specific sampled points. Fig. 3 illustrates the variables used to construct the pose embedding.

On one hand, the multi-view relative pose information between cameras contains crucial information
about disparity features. By explicitly injecting relative poses into the attention module, the network
can learn image-level geometric constraints. We represent the angle θ0,i between rays as embedding.
Inspired by [65], we encode the rotation matrix and translation matrix between the reference and the
source view into the relative pose distance P 0,i:

P 0,i =

√
∥t0,i∥+ 2

3
tr (I−R0,i), (8)

On the other hand, we encode the geometric information between specific sampled points. Due to our
incorporation of pixel-level attention in addition to inter-frame attention, it is necessary to encode not
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only image-level camera poses but also the pixel-level information corresponding to sampled points.
It is important to note that for each pixel in the reference image and its corresponding sampled point
in the source image, we can obtain the corresponding 3D point coordinates P through triangulation
based on stereo geometry. Accordingly, we encode the 2D coordinates ps of the source image, the
depth dr from the perspective of the reference image, and the depth ds from the perspective of the
source image, thereby transforming the 3D information into corresponding relationships on the 2D
plane. Moreover, we encode the normalized direction r0, ri to the 3D location of a point.

3.5 Iterative Updates

In the GRU updating process, we iteratively update the epipolar disparity flow ek+1
s = eks + ∆es

obtained from the MDA module for each source image. In each iteration, the input to the update
operator includes 1) the hidden state; 2) the disparity feature output from the MDA module; 3) the
current epipolar flow; and 4) the context feature of the reference image. The output of the update
operator includes 1) a new hidden state; 2) an increment to the disparity flow; and 3) the weight
of disparity flow for multi-view images. We derive the depth from the disparity flow and employ
a weighted sum to integrate the depth across multi-view source images. After fusion, the depth is
converted back to disparity flow to perform the next iteration.

3.6 Loss Function

Similar to [14], we output depth after each iteration and construct the loss function accordingly. We
construct the depth L1 loss. The loss function is represented in Eq. 9:

loss =
∑

j=tc,tf

∑
0<=k<j

γk|norm (gtr)− norm
(
dkr

)
|, (9)

where tc, tf are iterations at the coarse and fine stage, γ is a hyper-parameter which is set to 0.9.

4 Experiments

In this section, we first introduce the datasets (Sec. 4.1), followed by the implementation details of
the experiment (Sec. 4.2). Subsequently, we delineate the experimental performance (Sec. 4.3) and
conduct ablation experiments to validate the efficacy of each proposed module (Sec. 4.4).

4.1 Datasets

DTU dataset [23] is an indoor multi-view stereo dataset captured in well-controlled laboratory
conditions, which contains 128 different scenes with 49 views under 7 different lighting conditions.
Following MVSNet [8], we partitioned the DTU dataset into 79 training sets, 18 validation sets,
and 22 evaluation sets. BlendedMVS dataset [66] is a large-scale outdoor multi-view stereo dataset
that contains a diverse array of objects and scenes, with 106 training scenes and 7 validation scenes.
Tanks and Temples [24] is a public multi-view stereo benchmark captured under outdoor real-world
conditions. It contains an intermediate subset of 8 scenes and an advanced subset of 6 scenes.

4.2 Implementation Details

Implemented by PyTorch [67], two models are trained on the DTU dataset and large-scale Blended-
MVS dataset, respectively. On the DTU dataset, we set the image resolution as 640× 512 and the
number of input images as 5 for the training phase. On the BlendedMVS dataset, we set the image
resolution as 768× 576 and the number of input images as 5 for the training phase. For all models,
we use the AdamW optimizer with an initial learning rate of 0.0002 that halves every four epochs for
16 epochs. The training procedure is finished on two A100 with tc = 8, tf = 2. For depth filtering
and fusion, we process 2D depth maps to generate point clouds and compare them with ground truth.

4.3 Experimental Performance

In this section, we compare our method with other state-of-the-art methods and scale-agnostic
methods. Existing methods are categorized into traditional methods [2; 35], 3D cost-volume
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Figure 4: Some qualitative results of the proposed method on DTU and Tanks and Temples datasets.

Table 1: The Quantitative point cloud evaluation results on DTU evaluation set. The lower the
Accuracy (Acc), Completeness (Comp), Overall, the better. We split methods into four categories
and highlight the best in bold for each.

Method ACC.(mm)↓ Comp.(mm)↓ Overall(mm)↓

Gipuma [2] 0.283 0.873 0.578
COLMAP [35] 0.400 0.664 0.532

MVSNet [8] 0.396 0.527 0.462
AA-RMVSNet [9] 0.376 0.339 0.357
PatchmatchNet [53] 0.427 0.277 0.352
UniMVSNet [41] 0.352 0.278 0.315
TransMVSNet [10] 0.321 0.289 0.305
MVSTER* [68] 0.340 0.266 0.303
GeoMVS [69] 0.331 0.259 0.295
GBiNet [47] 0.315 0.262 0.289
MVSFormer++[71] 0.309 0.252 0.281

IterMVS [13] 0.373 0.354 0.363
CER-MVS [70] 0.359 0.305 0.332

RAMDepth [15] 0.447 0.278 0.362
DispMVS [14] 0.354 0.324 0.339
Ours 0.338 0.331 0.335

methods[8; 53; 9; 68; 47; 10; 69; 61], RNN-based methods [13; 70] and scale-agnostic methods
[15; 14]. Methods that leverage scene depth range have an advantage as they can utilize accurate and
robust information, thereby mitigating outliers, especially in textureless regions.

Evaluation on DTU. We evaluate the proposed method on the evaluation set of DTU dataset. We
set the image resolution as 1600 × 1152 and the number of input images as 5. As shown in Table
1, our method has the best overall performance among depth-range-free methods. CER-MVS [70]
and MVSFormer++ [61] demonstrate superior performance; however, they are heavily dependent on
the accuracy of the depth range. Our approach outperforms when compared with depth range-free
methods like DispMVS [14] and RAMDepth [15], which demonstrates the effectiveness of our
method in exploiting correlations among multi-view frames.

Evaluation on Tanks and Temples. Since the Tanks and Temples dataset does not provide training
samples, we use a model pre-trained on the BlendedMVS dataset for testing. We set the image
resolution as 1920 × 1024 and the number of input images as 7 for the evaluation phase. Table 2
presents the comparison between our method and other state-of-the-art methods. Our method achieves
the best performance among scale-agnostic methods [14]. Since RAMDepth [15] has not provided
results on the Tanks and Temples dataset and source code, we are unable to make a comparison.
Although our method exhibits a certain gap when compared to state-of-the-art methods [70; 61] based
on precise depth priors, it demonstrates superior robustness across a broader depth range.

We visualize point clouds generated on DTU and Tanks and Temples dataset in Fig. 4, which
demonstrates that our method is capable of constructing a comprehensive and precise point cloud.

4.4 Ablation Study

In this subsection, we conduct ablation studies of our model trained on DTU [23] datasets to discuss
the effectiveness of core parts of our method. The implemented baseline is basically based on
DispMVS [14]. All the experiments are performed with the same hyperparameters.
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Table 2: The Quantitative point cloud evaluation results on Tanks and Temples benchmark. The
metric is F-score and ”Mean” refers to the average F-score of all scenes (higher is better). We split
methods into four categories and highlight the best in bold for each.

advanced intermediate

Method Mean Aud. Bal. Cou. Mus. Pal. Tem. Mean Fam. Fra. Hor. Lig. M60 Pan. Pla. Tra.

COLMAP [35] 27.24 16.02 25.23 34.70 41.51 18.05 27.94 42.14 50.41 22.25 26.63 56.43 44.83 46.97 48.53 42.04

MVSNet [8] - - - - - - - 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
PatchmatchNet [53] 32.31 23.69 37.73 30.04 41.80 28.31 32.29 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81
AA-RMVSNet [9] 33.53 20.96 40.15 32.05 46.01 29.28 32.71 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90
MVSTER [68] 37.53 26.68 42.14 35.65 49.37 32.16 39.19 60.92 80.21 63.51 52.30 61.38 61.47 58.16 58.98 51.38
GBi-Net [47] 37.32 29.77 42.12 36.30 47.69 31.11 36.93 61.42 79.77 67.69 51.81 61.25 60.37 55.87 60.67 53.89
TransMVSNet [10] 37.00 24.84 44.59 34.77 46.49 34.69 36.62 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67
GeoMVSNet [69] 41.52 30.23 46.53 39.98 53.05 35.98 43.34 65.89 81.64 67.53 55.78 68.02 65.49 67.19 63.27 58.22
MVSFormer++ [61] 41.70 30.39 45.85 39.35 53.62 35.34 45.66 67.03 82.87 68.90 64.21 68.65 65.00 66.43 60.07 60.12

IterMVS [13] 33.24 22.95 38.74 30.64 43.44 28.39 35.27 56.94 76.12 55.80 50.53 56.05 57.68 52.62 55.70 50.99
CER-MVS [70] 40.19 25.95 45.75 39.65 51.75 35.08 42.97 64.82 81.16 64.21 50.43 70.73 63.85 63.99 65.90 58.25

DispMVS [14] 34.90 26.09 38.01 33.19 44.90 28.49 38.75 59.07 74.73 60.67 54.13 59.58 58.02 53.39 58.63 53.42
Ours 35.95 26.75 40.22 33.87 45.78 29.58 39.50 59.27 75.05 61.63 53.15 60.24 58.44 53.34 58.79 53.54

Table 3: Quantitative evaluation of the effectiveness of each component of the model was conducted
on the DTU dataset. The lower the Accuracy (Acc), Completeness (Comp), Overall, the better.

Pose Embedding Uncertainty Disparity Hidden State Acc.(mm)↓ Comp.(mm)↓ Overall(mm)↓

✓ 0.363 0.382 0.372
✓ ✓ 0.356 0.384 0.370

✓ ✓ 0.370 0.354 0.362
✓ ✓ 0.336 0.378 0.357
✓ ✓ ✓ 0.338 0.331 0.335

Pose Embedding. We conducted ablation experiments to validate the effectiveness of the pose
embedding. Specifically, within the multi-view attention module, we remove 3D pose embedding
and retain only the original 2D position encoding of attention. As shown in Table 3, after applying
pose embedding, the overall performance improves by 9.46%. The result indicates that the current
task heavily relies on the relative pose and geometric information contained in the pose embedding.
Without incorporating geometric constraints across multi-view source images, typically achieved
through pose embedding, the performance of Transformer in this task may degrade significantly.

Disparity Feature Encoding coupling with Uncertainty. Following [14], we further attempt to
remove uncertainty estimation and disparity hidden state and directly perform feature encoding on
disparity flow and cost volume. As shown in Table 3, with the disparity feature encoding coupling
with uncertainty, the overall performance improves by 9.95%. The result validates the effectiveness
of the module, demonstrating that explicitly estimating the quality of sampled points on the epipolar
line of source images and updating the disparity hidden state in the network is effective. Additionally,
we designed two separate ablation experiments, removing the uncertainty and disparity feature hidden
states, to further evaluate the impact of these two modules on the network. The uncertainty and
disparity feature hidden states improved the overall performance by 6.16% and 7.46%, respectively.
Compared to the performance without disparity feature encoding coupling with uncertainty, this
demonstrates the effectiveness of the uncertainty and disparity feature hidden state updating modules.

4.5 Depth Range

In this section, we compare the generalization of different networks to depth range. We don’t compare
with RAMDepth [15] in the ablation studies due to the lack of its source code. We select several
state-of-the-art methods (GeoMVS [69], MVSFormer++ [61]), RNN-based methods (IterMVS [13],
CER-MVS [70]) and depth-range-free method (DispMVS [14]) to conduct experiments to evaluate
the generalization of depth range. Our main comparison is with depth-range-free methods [14], which
reduce dependence on depth priors through network design. All methods are trained on DTU dataset
with the same depth range and subsequently inference under different depth ranges.
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Table 4: Quantitative evaluation of the sensitivity
of methods to depth range. The results for Accu-
racy (Acc), Completeness (Comp), and Overall
are presented in millimeters (mm).

Depth Range Method Acc.↓ Comp.↓ Overall↓

IterMVS[13] 0.373 0.354 0.363
DispMVS[14] 0.354 0.324 0.339

(425mm, CER-MVS[70] 0.359 0.305 0.332
935mm) GeoMVS[69] 0.331 0.259 0.295

MVSFormer++[71] 0.309 0.252 0.281
Ours 0.338 0.331 0.335

IterMVS[13] 0.532 1.471 1.002
DispMVS[14] 0.348 0.404 0.376

(212.5mm, CER-MVS[70] 1.805 1.161 1.483
1870mm) GeoMVS[69] 0.435 0.619 0.527

MVSFormer++[71] 0.478 0.359 0.418
Ours 0.338 0.331 0.335

IterMVS[13] 0.935 6.985 3.960
DispMVS[14] 0.314 0.671 0.493

(141.6mm, CER-MVS[70] 11.464 12.683 12.073
2805mm) GeoMVS[69] 0.602 1.663 1.133

MVSFormer++[71] 0.739 0.820 0.780
Ours 0.338 0.331 0.335

Table 5: The influence of the depth range ob-
tained from COLMAP of methods. The results
for Accuracy (Acc), Completeness (Comp), and
Overall are presented in millimeters (mm).

Depth Range Method Acc.↓ Comp.↓ Overall↓

IterMVS[13] 0.373 0.354 0.363
DispMVS[14] 0.354 0.324 0.339

GT CER-MVS[70] 0.359 0.305 0.332
GeoMVS[69] 0.331 0.259 0.295
MVSFormer++[71] 0.309 0.252 0.281
Ours 0.338 0.331 0.335

IterMVS[13] 0.454 1.486 0.970
DispMVS[14] 0.339 0.372 0.356

COLMAP CER-MVS[70] 0.816 0.326 0.571
GeoMVS[69] 0.374 0.415 0.394
MVSFormer++[71] 0.361 0.319 0.340
Ours 0.338 0.331 0.335

For methods [13; 70; 69; 61] that rely on depth range prior for depth sampling, whether based on
RNN or Transformer, they may exhibit better performance with accurate depth priors. However, as
shown in Table 4, there is a marked decline in performance for these methods with larger depth range.
Although DispMVS [14] shows insensitivity to depth range, its performance still exhibits a certain
degree of decline with larger depth ranges. In contrast, our method, which is independent of depth
range, maintains consistent performance regardless of changes in depth range.

It is crucial to emphasize that the depth range provided by the dataset is exceptionally accurate.
For instance, the ground truth for the Tanks-and-Temples dataset is captured using an industrial
laser scanner. However, in practical applications, while Structure-from-Motion (SfM) can derive
depth ranges from sparse feature points, the resulting depth estimates are often prone to inaccuracies.
These inaccuracies arise from the inherent sparsity of feature points, as well as challenges such
as occlusion and suboptimal viewpoint selection. To verify the robustness of the MVS models in
practical applications, we use the depth range obtained from COLMAP to replace the depth range
ground truth (GT). As shown in Table 5, there is a significant decline in performance for GeoMVS
[69], MVSFormer++ [61], IterMVS [13] and CER-MVS [70] when we use the depth range obtained
from COLMAP. DispMVS [14] also exhibits a certain degree of decline. In contrast, our method
maintained consistent performance. This result further demonstrates the necessity of eliminating the
depth range.

5 Conclusion

We propose a prior-free multi-view stereo framework that simultaneously considers all the source
images. To fully fuse the information from disordered and arbitrarily posed source images, we
propose a 3D-pose-embedding-aided and uncertainty-driven transformer-based network. Extensive
experiments show that our methods achieve state-of-the-art performances among the prior-free
methods and exhibit greater robustness to the depth range prior. Limitations: The proposed method
cannot run in real-time (i.e., 30 FPS), which could limit its application in mobile devices or other
time-sensitive scenarios. Besides, our method shows a performance gap compared to SOTA cost-
volume-based methods on the mainstream benchmark, despite these methods relying on highly
precise depth range priors. In the future work, we hope to close the gap.
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