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Abstract

Recent developments have led to the emergence of transformer-based approaches
for local feature matching, resulting in enhanced accuracy of matches. However, the
time required for transformer-based feature enhancement is excessively long, which
limits their practical application. In this paper, we propose methods to reduce the
computational load of transformers during both the coarse matching and refinement
stages. During the coarse matching phase, we organize multiple homography
hypotheses to approximate continuous matches. Each hypothesis encompasses
several features to be matched, significantly reducing the number of features
that require enhancement via transformers. In the refinement stage, we reduce
the bidirectional self-attention and cross-attention mechanisms to unidirectional
cross-attention, thereby substantially decreasing the cost of computation. Overall,
our method demonstrates at least 4 times faster compared to other transformer-
based feature matching algorithms. Comprehensive evaluations on other open
datasets such as Megadepth, YFCC100M, ScanNet, and HPatches demonstrate our
method’s efficacy, highlighting its potential to significantly enhance a wide array
of downstream applications.

1 Introduction

Local feature matching [1, 2] is a fundamental problem in the field of computer vision and plays
a significant role in downstream applications, including but not limited to SLAM [3–8], 3D re-
construction [9, 10], visual localization [11–13], and object pose estimation [14, 15]. However,
traditional CNN-based methods [16, 17] often fail under extreme conditions due to the lack of a
global receptive field, thus meeting failure under dramatic changes in scale, illumination, viewpoint,
or weakly-textured scenes.

Recently, some methods [18–20] forgo traditional CNN-based approaches and base on Trans-
former [21] for better modeling the long-range dependencies. However, Transformer is widely
known for its high computational complexity especially when it is applied in vision tasks where the
computational complexity grows quadratically in the number of the input image tokens (i.e., patches).
To reduce the inherent complexity associated with the Transformer, these methods generally adopt
the coarse-to-fine strategy and incorporate more computationally efficient variants of the Transformer,
such as the Linear Transformer [22]. Nevertheless, the computational overhead remains substantial
and severely hinders the application demanding low-latency operations, such as tracking [23–25], or
those requiring the processing of extensive datasets, such as large-scale mapping [26].
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Figure 1: ETO goes beyond the Pareto curve
between accuracy and Efficiency. This figure
shows the performance of different state-of-the-
art methods on YFCC100M. We take into ac-
count the time for the extraction of feature and
their description. LightGlue and LightGlue* are
different settings of LightGlue.
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Figure 2: As demonstrated in the figure, there
exists a correspondence between two red regions
on the sphere. In contrast to uniform hypothe-
ses, homography hypotheses approximate the
correspondence function better, which allows for
more precise matching results with fewer com-
putational resources.

In this paper, we propose to solve the efficiency problem of transformer-based local feature matching.
Our insights are twofold. First, we propose to introduce the homography hypothesis in the pipeline.
The homography hypothesis is a kind of piece-wise smooth prior to the scene that has long been
explored in the vision tasks [27]. It allows us to create larger patches and reduce the tokens number
that need to be processed in the Transformer. However, it is non-trivial since the regular shape
introduced by the homography hypothesis can bring significant errors, especially along the boundary.
Besides, how to supervise the training of multiple homography hypotheses with the absence of ground
truth remains a problem. Second, We empirically find it is redundant that the previous methods
employ multiple self- and cross-attention in their fine-level stage since the coarse-level stage has
conducted sufficient propagation. As a result, the computation complexity can be further reduced.

Specifically, we propose ETO, the Efficient Transformer-based Local Feature Matching by Organizing
Multiple Homography Hypotheses. ETO follows previous methods [20, 19] and employs a two-
stage coarse-to-fine pipeline. It first establishes matches at the patch level and then refines the
matches to the sub-pixel level. In the first stage, ETO learns to predict a set of hypotheses, each
encompassing multiple patches to be matched. We approximately assume that each patch to be
matched within one hypothesis is on the same plane, and thus describe these matches under the
homography transformation, as illustrated in Fig. 2. The homography hypotheses allow us to reduce
the image tokens (patches) that are fed to the Transformer. For a typical image with a resolution of
640 × 480, Previous methods feed 80 × 60 tokens to the transformer with 1/8 resolution, while we
only need to feed 20 × 15 with 1/32 resolution, which brings a significant speed up. To reduce the
possible error due to the regular shape of the homography hypotheses, ETO subdivides the patches
into multiple sub-patches and re-selects the correct hypothesis for each sub-patch. We model the
problem of re-selection as a segmentation problem [28]. After that, ETO refines the matches in
the second stage. Unlike previous methods that employ multiple self- and cross-attention, ETO
only conducts one cross-attention, and the size of query tokens it use is much smaller than previous
methods. We call it uni-directional cross-attention. Empirically we find uni-directional cross attention
converges significantly faster at training while providing much higher efficiency. As shown in Fig. 1,
ETO outpaces existing methods, achieving 4-5 times faster than LoFTR [20] and 2-3 times more
rapid than LightGlue [29] while maintaining a comparable accuracy with them.

Our contributions can be summarized as follows. 1) We introduce multiple homography hypotheses
for the local feature matching problem, which can greatly compress the number of tokens involved
in the transformer. 2) We introduce uni-directional cross-attention in the refinement stage. This
structure provides fast inference efficiency while maintaining accuracy. 3) Our method not only
matches the performance of other transformer-based approaches on diverse open-source datasets
such as Megadepth [30], YFCC100M [31], ScanNet [32], and HPatches [33], but it also operates at a
significantly higher speed, outpacing all compared methods.

2 Related Works

Transformer-based Local Feature Matching. To find sparse correspondence between two images
under diverse viewpoint movement conditions, traditional hand-crafted [34, 1, 2] or early learning-
based approaches methods [17, 35] usually match keypoints [36, 37] with their descriptors after
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detecting them [16]. These kinds of matching pipelines are highly dependent on the description of
unique feature points, and they fail naturally at dramatic viewpoint changes or poorly textured scenes.
Thanks to transformer [21], researchers now have a toolbox to enhance the feature descriptors with
global information. Earlier researches [36] integrate the information that where other key points are
to each descriptors of key points. Then, [38, 39] modeling the mapping relationship as a continuous
2-d function. Sun et al. [20] constructs a global matching pipeline for each unit on the feature map
with Transformer [21, 40–42]. The following works refine this pipeline with optical flow [19] or
more efficient attention structure [43]. There exists other attempts. [44–46] follow another technical
route without transformer. They try to merge the gap between optical flow [47, 41] and local feature
matching with the concept of confidence. Our approach is based on a similar feature extractor
of [20], while we parameterize more information for the units on the feature map, and finally extend
the correspondence relationship to the homography relationship between them. The concept of
parameterized units on the feature map for local feature matching is introduced by Ni et al. [18], but
they parameterize the units only with scale.

Paramerterization in Local Feature Matching. Conventional techniques, as demonstrated in previ-
ous works [34, 48, 35], when confronted with appearance differences due to changes in viewpoint,
try to construct feature descriptors which are invariant to these changes, involving scale, normal and
rotation, etc. For rule-based methods [34], they create hand-crafted descriptors with scale space anal-
ysis [49]. For learning-based methods [16], they input many image pairs with different viewpoints,
letting the neural network learn about the invariance of these changes in appearance. Nevertheless,
to fully mitigate the impact of these appearance changes, it is essential to accurately estimate their
effects. Recent efforts [38, 18, 50] have attempted to directly estimate the scale differences between
images and resize the images to enhance the refinement stage of feature matching. In a similar route,
[51] has focused on directly estimating rotation to calibrate the local features. Unlike the methods
aimed solely at discovering more invariant feature descriptors, we argue that parameterized local
appearance changes not only pose a challenge in finding accurate matches but also provide a direct
avenue to achieve more accurate and more efficient matches over a broader spatial extent. It allows us
to locally parameterize the image to many planes, thus creating multiple homography relationships,
not just point-to-point correspondence.

Accelaration in Local Feature Matching. In the realm of local feature matching based on the
Transformer architecture, three predominant strategies have been mainly employed to enhance
computational efficiency in the past. The first approach involves substituting the Softmax function
for the Optimal Transport algorithm introduced by [36]. The second approach seeks to replace the
full Transformer with a linear Transformer [22]. LoFTR [20] incorporates both of these strategies,
however, it introduces a larger number of matching units compared to SuperGlue [36], resulting in a
considerably slower performance than [36]. The third strategy focuses on reducing the number of
layers and units within the Transformer. LightGlue [29] introduces early termination [52, 53] and
progressive unit selection strategies to accelerate computation, yielding significant improvements
in speed. However, the performance of LightGlue heavily relies on SuperPoint [16], which puts a
ceiling on its acceleration. In contrast, ETO relies on a more precise parameterized model, achieving
higher coarse matching accuracy with a feature map whose resolution is 16 times smaller than
LoFTR [20]. Furthermore, during the fine matching stage, we introduce a uni-directional cross-
attention mechanism, allowing us to achieve higher matching speed while sacrificing only a minimal
amount of fine stage accuracy.

3 Method

Fig. 3 presents our comprehensive feature matching process, organized into three structured modules.
These modules are interconnected through feature extractors inspired by U-Net [54] and local
attributes generated by neural networks. For each unit i on a H/32 × W/32 resolution feature map M1,
we estimate the attributes of homography hypotheses Hi. For each unit j on H/8×W/8 resolution
feature map M2, it re-selects the optimal homography hypotheses Ĥj from nearby 9 hypotheses to
minimize the projection errors. For the chosen unit kj on a H/2×W/2 resolution feature map M3,
we fix its center point P s

j at the source image and refine the coordinates of its projected point P t
j at

target image according to Ĥj , then get the final matches P t∗
j . We introduce the feature extractor in

Sec. 3.1, Sec. 3.2 details the estimation of the hypotheses. In Sec. 3.3 we describe the segmentation
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Figure 3: Given the source image S and target image T , we first use a U-Net like feature extractor
to get images’ feature map at different resolution: M1 (H/32 × W/32), M2 (H/8 × W/8) and
M3 (H/2 × W/2). We use local 3× 3 patches to illustrate our method: (a) We estimate homography
hypotheses Hi for every feature after performing transformer. (b) We segment the map from these
hypotheses to minimize projection errors. With the applied homography matrix Ĥj , we can project
the chosen source point P s

j to target point P t
j . (c) We update the P t

j to P t∗
j after a uni-directional

cross attention. The training process is split into two parts, the coarse and the fine. We train the
coarse part with LH , while training the fine part with Ls and Lr.

of the feature map, Sec. 3.4 delves into refining the matches, while Sec. 3.5 states our supervision
methodology.

3.1 Feature Extraction

Following [20], we use ResNet-18 [55] as the basic feature extractor to get the feature map with the
resolution of N = H/32×W/32, while we assume that the resolution of the source image and target
image is the same. Here we get N = H/32× W/32 features and then perform stacked self-attention
and cross attention layers between these N tokens to compute the feature map M1. Although there
will be N (more than 9) possible patches, our method is mainly performed on locally adjacent patches,
so we will omit N in the future and take the local 3×3 patches to illustrate our method (as shown in
Fig. 3). Then, we follow [18] to upsample the feature map M1 with a U-Net [54] like structure. So,
we can obtain the feature maps M2 and M3 at 1/8 and 1/2 scale, respectively.

3.2 Hypothesis Estimation

Traditional semi-dense feature matching methods [20, 19] often divide an image into thousands of
units. For each unit, they perform bipartite graph matching [56]. Contrarily, we argue that bipartite
graph matching can be extended to the local homography transformation as hypotheses that cover
multiple units to be matched. This approach’s merit lies in two folds: achieving more precise matches
estimated during the first stage and reducing the number of units which are involved in transformer.

For each unit i on M1 of source images, it is equipped with a feature f1
i , a confidence score ci,

and a set of hypothesis homography parameters Hi (including the source positions psi ∈ R2, target
positions pti ∈ R2, rotation ri ∈ R1, scale si ∈ R1 and perspective qi ∈ R4). And the unit on target
images is indicated by a.

Homography Matrix. Initially, we outline the methodology for estimating each unit’s local attributes
(psi , p

t
i, ri, si, qi, ci) and subsequently use these attributes to formulate the local homography matrix.

Among these local attributes, the scale si, rotation ri, and perspective qi are more related to the
feature itself and are regressed directly from features fi on the source image through an MLP network.
In contrast, target coordinates pti, and confidence scores ci are more related with the feature map of
target images. They are acquired by first identifying the unit a∗i with maximal similarity among all
target units, and the similarity is defined as the cosine similarity of initial features f on the source
image and target image. Following this, we construct new features f̂ by executing the group-wise
correlation [57] within the neighborhood of the target units on M1.

f̂i = ⊕
δ∈Neighbor(a∗

i )
(< f1

i , f
1
δ >g). (1)

where < ∗, ∗ >g is the group-wise correlation [57], and the group size in our method is 8, Neighbor
represents the 5×5 neighborhood of unit a∗i , ⊕ indicates the operation of concatenation. With the
new features f̂ , we use an MLP to process it to get the target position pti and confidence ci. With
these attributes, in order to compute the homography matrix, we establish four target points Bt

i that
correspond to four predetermined reference points:

Bt
i = pti + R(P(Bs

i , qi), ri) ∗ si. (2)
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Figure 4: Any unit j on M2 should be classified for a hypotheses in H to minimize projection error.
Each Hi describes a plane.

Here Bs
i are four imaginary points on source image, while Bt

i are the corresponding target points
of Bs

i on the target image. Bt
i is computed from Bs

i by following operation: R is the operation of
rotation with parameter ri, P is the perspective transformation operation with parameter qi. These
operations allow each variable within the homography matrix Hi to be deduced from 8 projection
equations of 4 correspondence Bt

i = HiB
s
i . Details regarding the specific implementation methods

for rotation and perspective transformations will be included in the supplementary materials.

3.3 Segmentation

To propagate the homography hypotheses predicted by M1 to a more detailed resolution. We introduce
a segmentation operation at the feature map M2 with the resolution H/8× W/8. Segmentation is
a per-unit classification task, and we predict a class for each unit j on M2. Here, we only consider
locally adjacent 3 × 3 patches, and all possible classes is defined as H = {Hi|i = 1...9}. This
classification (segmentation) involves that, for each unit j, selecting a hypothesis from H that
minimizes the projection error at the center of unit j. After our proposed segmentation stage, each
sub-unit j can find the hypotheses Ĥj that make its error smallest in all possible hypotheses H. We
illustrate the intuitive process of segmentation at Fig. 4.

Our proposed segmentation differs from traditional semantic segmentation. Instead of aiming for
a specific semantic category, it targets a dynamic geometric relationship. To find the relationship,
we introduce a new cosine similarity matrix Cj between the local feature f2

j on M2 and all features
f1
i on M1, Positional encoding is employed during this phase to enhance local features, which is

indispensable here because the hypothesis in H are not equivalent. To predicting the class Ĥj by
finding the maximum Cj , we generate the computed groundtruth Hj as follows:

Hj = argmin
Hi∈H

||P t
j −HiP

s
j ||. (3)

where Hj is the optimal hypothesis that minimize the projection error. Then, we use focal loss [58]
Ls to minimize the segmentation error between predicted Ĥj and the computed groundtruth Hj . The
probability of focal loss is set to Cj .

3.4 Refinement

Following [20], to enhance efficiency, only one of the points within each unit j is selected for
refinement, which we denote the source and target point as P s

j and P t
j . Given P t

j = ĤjP
s
j , the

refinement stage finds the offset ∆P t
j of each target point P t

j relative to a fixed source point P s
j . With

the feature f3 from M3, conventional techniques unfold features f3
k from local regions in both source

image and target image, followed by self-attention and cross-attention. We claim that this process is
unnecessarily slow. Here we eliminate self-attention and reduce cross-attention from a bi-directional
process to a uni-directional one. Specifically, the feature f̂3

j is computed by querying the features f3
k

within the neighborhood of the original target point P t
j , and become the final feature vectors f̂3

j for
the point Pj on the images. We illustrate this process in supplementary materials. With the proof of
experiments in Sec. 4.4, we find that refining a single feature in the local region of M2 is enough to
get expected results. Our findings indicate that this approach can largely diminish the computational
load of attention mechanisms while still preserving highly accurate matching outcomes.

Finally, following [28], we process one fixed element of the final feature vector f̂3
j via cross-attention

as the confidence score cj for the corresponding set of matches. It is supervised by if the error final
match is larger than a threshold. The coordinates for the matched pairs on the source and target
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images are (P s
j , P

t∗
j ). Therefore we can define the supervision of refinement as:

Lr = |P t∗
j − P

t

j |2 +BCE(cj). (4)

where BCE is binary cross entropy [59], which is a commonly utilized loss function for binary
classification problems. Here we use BCE to recognize reliable matches. Here P

t

j is the ground truth
value of P t∗

j .

3.5 Supervision

Indirect supervision for the homography hypothesis. Instead of supervising the attributes of the
hypothesis directly, our approach employs indirect supervision by monitoring the correspondences of
sampling points that are linked via the homography transformation. This design offers the advantage
of leveraging an excessive number of ground truth matches to efficiently train a network focused on
estimating a set of homography parameters. Using the ground truth camera pose and depth from
datasets, we can get real matched points P

s
in source and P

t
in target images. We sample the

matched points to train our method. For each points p in P
s

, we select only 3×3 adjacent hypotheses
H = {H1, ...,H9} around it on M1. where H5 is in the hypothesis region’s center and represents the
hypothesis of the region containing point p. Similar to the necessity of segmentation stated in Sec. 3.3,
direct supervision which applies H5 to every p could result in avoidable errors, which arise from the
mismatch between the irregular boundaries of planes in the real world and the grid-structured unit i
on the source image. However, given that these sampling points are merely an auxiliary tool for the
loss function, we can directly utilize the ground truth coordinates of the matches to supervise and
eliminate classifying each sampling point at this stage. For each point p, we assume that it satisfies a
certain homography transformation Hp, and Hp satisfies the following defination:

Hp = argmin
Hi∈H

|Hip
s − pt|1. (5)

We denote p in the source image as ps and target image as pt, we use the following error to optimize
our method:

ep = |Hpp
s − pt|1. (6)

where | ∗ |1 is the L1 norm error.

Classification or Correspondence Loss for Hypotheses. Hi is calculated on the base of identifying
the matched unit a∗i for unit i in target image. Therefore, if the estimated a∗i significantly deviates
from the ground truth a∗i , Hi would be entirely incorrect. In such conditions, we use classification
loss to enhance the feature similarity between a∗i and a∗i . In the opposite case, directly supervising
the point correspondences calculated through Hi yields better results. The methodology is detailed
as follows:

q1 = {i|θ1 < |a∗i − â∗i |∞},
q2 = {i|θ1 ≥ |a∗i − â∗i |∞},

LH =




1− CosSim(f1

i , f
1
a∗
i
) , i ∈ q1,∑

p∈Pi

ep , i ∈ q2,

(7)

where | ∗ |∞ denotes the computation of infinity norm, CosSim is the cosine similarity of two
features in the feature map M1. Pi is the set of sampled points p that apply Hi as Hp.

Two-stage Training Process. In the entire feature matching process, we divide the training process
into two stages, the coarse stage and the fine stage. The fine stage will freeze all the parameters of the
coarse stage during training. The coarse stage includes the homography hypotheses estimation, while
the fine stage includes segmentation and refinement. The losses used in these two parts are:

Lcoarse = LH ,

Lfine = Ls + Lr.
(8)
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Methods Average Corner Error Point Accuracy time
1px(%) 3px(%) 5px(%) 1px(%) ms

LoFTR [20] 46 77 86 63 218
SP [16]+LG [29] 44 73 85 51 101
SP [16]+SG [36] 41 72 82 47 79
SP [16]+search 38 68 81 32 81
Ours 42 72 82 52 53

Table 1: Evaluation on HPatches [33] for homography estimation.

3.6 Implementation Details

For feature extracting, we use Resnet-18 [55], then we perform transformer [21] five times at M1.
We implement uni-directional cross-attention once in the process of refinement. We train our outdoor
model and indoor model respectively. The outdoor model is trained on the Megadepth [30] dataset,
while the indoor model is trained on a mixed dataset of Megadepth and ScanNet [32]. The training
process is divided into three stages: the first stage is training on data of 640x480 resolution; in
the second stage, the longer side is scaled to 640, and some images are rotated by 90 degrees for
adaptation training for the coarse; the third stage involves training the fine on 640x480 data. The
learning rate used in the first stage is 1e-4. In the second stage is 5e-5, and in the third stage is
3e-4. Both models are trained using three RTX 3090 for 80 hours, with a batch size of 24 in the first
stage and 16 in both the second and third stages. We perform all inferences using PyTorch, merely
following the implementation of LightGlue to pre-compile the transformer in the coarse stage with
PyTorch.

4 Experiment

We conducted these evaluations on four different datasets for outdoor and indoor relative pose
estimation and homography estimation. These experiments demonstrate superior performance on
various downstream tasks.

4.1 Homography Estimation

As our first experiment, we evaluate our quality of correspondences and the ability to fit the homogra-
phy matrix for planar scenes on the HPatches [33] dataset.

Experimental Setup. We conducted comparative experiments using the image matching toolbox pro-
posed by [60]. Our experiments were configured to replicate the settings outlined for SuperPoint[16],
SuperGlue [36], and LoFTR [20] as shown in this toolbox. For LightGlue [29], we follow their
open-source code settings. To estimate the homography, we employed the RANSAC algorithm
with a threshold of 0.25 pixels, leveraging the OpenCV library. To comprehensively assess the
performance of each method, we considered three key metrics: the proportion of matched points with
an error within a 1-pixel threshold, the average corner distance for estimated homography matrices
measuring less than 1/3/5 pixels, and the average computational time. These metrics were chosen to
simultaneously evaluate the matching accuracy, homography estimation precision, and computational
efficiency of the methods. We perform this experiment on a RTX2070 GPU, and we turn off all
acceleration options for pytorch implementations, such as flash attention and precompilation. In order
to get as close as possible to a real usage scenario, here, we do not use a warm-up operation when
measuring the computing speed.

Dataset. HPatches [33] contains 52 sequences under significant illumination changes and 56 se-
quences that exhibit large variations in viewpoints. All images are resized with longer dimensions
equal to 640.

Results. We compare ETO with SuperPoint [16], SuperGlue [36], LightGlue [29] and LoFTR [20].
According to Table. 1, our experimental results demonstrate that our method excels in homography
estimation accuracy compared to SuperGlue, achieving lower errors within a 1-pixel threshold when
compared to both SuperGlue and LightGlue. Furthermore, our approach is significantly faster,
outpacing all other methods several times in the evaluation.

4.2 Outdoor Pose Estimation

We assess the efficacy of our approach for relative pose estimation in the same setting using two
distinct datasets: YFCC100M [31] and Megadepth [30] for outdoor scenes.
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Methods Megadepth YFCC100M
@5° @10° @20° ms @5° @10° @20° ms

ASpanFormer [19] 58.6 72.2 81.7 158.5 44.5 63.5 78.1 155.5
Quadtree [43] 58.6 72.1 81.5 147.6 44.7 63.9 78.2 159.4
LoFTR [20] 57.5 71.2 80.8 93.2 44.7 63.6 78.3 96.3
SP [16]+LG [29] 51.5 67.7 78.9 64.2 36.1 56.2 73.1 60.8
SP [16]+LG* [29] 47.1 64.0 77.3 26.9 29.2 48.8 67.0 27.2
SP [16]+SG [36] 43.2 60.0 72.8 43.9 29.7 49.6 67.9 48.7
SP [16]+search 28.8 43.4 56.6 23.7 14.0 27.0 42.2 24.6
RoMa [61] 64.8 77.4 86.1 689 * * * *
Tiny-RoMa [61] 36.2 53.6 67.5 29.0 * * * *
Ours 51.7 66.6 77.4 21.0 44.8 64.0 78.8 22.1

Table 2: Evaluation on Megadepth [30] and YFCC100M [31] for outdoor pose estimation.

Experimental setup. We report the pose accuracy in terms of AUC metric at multiple thresholds
(5◦,10◦,20◦) and runtime for every approach, and the RANSAC threshold here is set as 0.25 pixel for
all methods. All of the evaluations here are conducted on a RTX2080ti. We turn on flash-attention for
LightGlue and turn on the pre-compilation to accelerate the transformer for LightGlue and ETO. Here
LightGlue [29] is slower than SuperGlue [36] for the reason that following the default configuration
LightGlue extracts 2048 keypoints and resizes the resolution of images to 1024, while SuperGlue
extracts only 1024 keypoints and keep the resolution of images as the same. LightGlue* apply the
setting of SuperGlue. It is imperative to highlight that our method encompasses 4800 points to be
matched here, which is the same as LoFTR [20], ASpanFormer [19], and Quadtree [43]. To ensure
an accurate representation of the actual computation speed, we initiate a warm-up phase for each
method, consisting of 10 iterations, prior to conducting measurements.

Dataset. YFCC100M [31] encompasses an extensive repository comprising 100 million media
assets. For our evaluation, we following [36] and focus on a subset of YFCC100M, specifically
four handpicked image collections featuring prominent landmarks, in accordance with the criteria
outlined in [36] and [20]. MegaDepth, on the other hand, comprises a dataset containing one
million Internet-sourced images depicting 196 distinct outdoor scenes. To ensure the integrity of our
evaluation protocol, in line with the guidelines presented in [18], we randomly select 1000 image
pairs, guaranteeing that none of these pairs have been used in the training processes of any existing
methods. All images in Megadepth and YFCC100M are resized with a resolution equal to 640*480.

Results. We compare ETO with SuperPoint [16], SuperGlue [36], LightGlue [29], LoFTR [20],
ASpanFormer [19] and Quadtree [43]. According to the results shown in Table 2, on the easier
outdoor cases in MegaDepth, the accuracy of our method for pose estimation is lower than advanced
detector-free method but is higher than any detector-based approaches, while our runtime is at most
23% of the detector-free methods, 81% of the detector-based methods and 90% of the CNN-based
methods. While on the more difficult outdoor cases in YFCC100M, the performance of our model is
much better than detector-based methods and is comparable with detector-free methods. And still,
our superiority on runtime is preserved.

4.3 Indoor Pose Estimation

We evaluate our method for indoor pose estimation with ScanNet-1500 [32] following [36, 20].

Experimental Setup. Just like outdoor cases, we report the pose accuracy in terms of the AUC
metric at multiple thresholds (5◦,10◦,20◦) and runtime for every approach. However, here we set all
of the RANSAC thresholds as 0.5 pixels. All of the images are resized with longer dimensions equal
to 640. This evaluation is conducted on RTX2080ti. We have done a warm-up here in measuring the
efficiency.

Dataset. The ScanNet dataset represents a comprehensive indoor RGB-D collection encompassing
1,613 distinct sequences that cumulatively offer 2.5 million unique views. Each view within this
dataset is meticulously annotated with a corresponding ground truth camera pose and depth map. We
follow the same training and testing split used by [36].

Results. We compare our approach with SuperPoint [16], SuperGlue [36], LoFTR [20], ASpan-
Former [19] and Quadtree [43]. The results are demonstrated in Table 3. We find that our results are
comparable with LoFTR and are superior to SuperPoint+search and SuperPoint+SuperGlue, while
much faster than any other methods.
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Methods Pose estimation AUC average time
@5° @10° @20° ms

ASpanFormer [19] 24.5 45.0 62.8 160.0
Quadtree [43] 23.9 43.0 60.2 145.9
LoFTR [20] 21.4 40.3 57.2 94.2
SuperPoint [16]+SuperGlue [36] 13.7 29.8 47.2 63.1
Superpoint [16]+search 8.0 18.3 29.8 27.1
Ours 20.1 40.4 59.8 24.2
Table 3: Evaluation on Scannet [32] for indoor pose estimation.

Ablation Pose estimation AUC time
@5° @10° @20° ms

Base32 w/o Homography 9.5 21.3 36.3 8.5
Base8 w/o Homography (LoFTR coarse) 25.7 41.8 57.7 58.9
Base32 w/ Homography 28.5 46.2 61.4 8.5
Basic Refinement w/ segmentation 51.0 66.6 77.6 32.8
Uni-directional w/o segmentation 42.1 59.0 72.0 21.2
Full 51.7 66.6 77.4 22.0

Table 4: Ablation study based on Megadepth [30] for outdoor pose estimation.

4.4 Ablation Studies

To evaluate the impact of each design component on the overall structure, we perform an ablation
study using the MegaDepth dataset. We systematically add each design element one at a time. The
quantitative results are presented in Table 4.

Base32 w/o Homography We match the units on M1 at H/32 * W/32 resolution and permit the target
of unit centroid to be continuous, and we can compute it as Section. 3.2, while other parameters for
the unit are still fixed. We output four virtual correspondences as matches. While it offers rapid
processing, it does not achieve a high level of accuracy.

Base8 w/o Homography We set this ablation experiment as the coarse matching of LoFTR [20].
Here we match every possible 8*8 units. We output the center of corresponding units as matches. It
is more accurate but too slow.

Base32 w/ Homography. Following Section. 3.2, we estimate the whole homography matrix and
output four virtual correspondences as matches. It performs better than the coarse matching of
LoFTR [20] while providing higher efficiency at the same time,

Basic Refinement w/ Segmentation. Following [20], we set a layer of transformer between 25
tokens on these two images and try to refine our results while the transformer is trained for 12 hours,
which is the same as the training time of our uni-directional attention for the refinement stage. While
full attention execution speed is considerably slower than that of uni-directional attention, its accuracy
is merely comparable with the latter.

Uni-directional w/o Segmentation. Here we directly choose the homography hypotheses H5 for
each unit j which is in the center. Then, we conduct the refinement as the same. The results show
that the segmentation stage significantly improves the accuracy.

5 Conclusion and Limitations.

In this paper, we propose Efficient Transformer-based Local Feature Matching by Organizing Multiple
Homography hypotheses (ETO). ETO tries to approximate a continuous corresponding function
with multiple homography hypotheses with fewer tokens fed to the transformer. Multiple datasets
demonstrate that ETO delivers nearly comparable performance in relative pose estimation and
homography estimation with other transformer-based methods, while its speed surpasses all of
them by a large margin. However, there remains significant space for improvement in ETO’s
matching accuracy. Next, we could explore an end-to-end training mode, which would allow for
further enhancement of the feature extractor at a fine-grained level. Moreover, we believe that
intermediate-level features can provide not only segmentation information but also data conducive to
more precise matching. Finally, the form of parametric scheme we present here may not be optimal
and complete for homography transformation, so we will continue to explore better parametric
schemes. These strategies are expected to enable our method to compete with approaches like
PATS [18] and DKM [45] in terms of matching precision, without considerably compromising speed.
Acknowledgements. This work was partially supported by NSF of China (No. 61932003).
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In this supplementary document, we describe the parametric scheme of homography matrix in Sec. 1,
provide an additional explanation with graph for our uni-directional cross attention in Sec. 2, discuss
the details on segmentation in Sec. 3, describe more implementation details in Sec. 4, provide a proof
for the use of homography hypotheses in Sec. 5 and show some qualitive results in Sec. 6.

1 Parametric Scheme

Hi can be decomposed into 2d-translation pti − psi ∈ R2, scale si ∈ R1, rotations around the z-axis
ri ∈ R1, and perspective components qi ∈ R4. We use these attributes to calculate four imaginary
points in target images to construct the system of linear equations and solve them for homography
matrix:

B =



−1 −1
−1 1
1 −1
1 1




Bs
i = B + psi
qi = δxx, δxy, δyx, δyy,

Qi =



−δxx − δxy −δyx − δyy
δxx − δxy +δyx − δyy
−δxx + δxy −δyx + δyy
δxx + δxy +δyx + δyy




Bt
i = pti + R(B +Qi, ri) ∗ si.

(1)

Here Qi represents the influence of perspective vectors qi for Bt
i in the 1st-order of Taylor series,

which behaves as the offsets on B. R is the operation of rotate points around their center for ri
degree. Bs

i and Bt
i are four virtual points that assist in calculating the homography matrix Hi. These

operations allow each variable within the homography matrix Hi to be deduced from four projection
equations Bt

i = HiB
s
i .

The reason why we use this parametric scheme to solve the homography matrix instead of directly
estimating the coordinates of the four imaginary points on target images is that the direct parametric
scheme can easily construct singular matrices. For example, if connecting three of the four points in
a line, the optimization process will fail. In the experiment of outdoor pose estimation for Megadepth
dataset [? ], the direct parametric scheme will induce 0.53 for the indicator of AUC@5, while our
parametric scheme induce 28.5.
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Fig. 1. Uni-directional cross attention.

2 Uni-directional Cross Attention.

As shown by Fig. 1, previous methods [? ] apply self-attention and cross-attention to each fea-
ture within a 5×5 feature map, resulting in 2,500 (25×25×4) inner product calculations to gather
feature information within a 4-pixel radius. In contrast, our approach conducts a uni-directional
cross-attention solely at the query position on a 7×7 feature map, requiring just 49 inner product
calculations to capture feature information up to a 6-pixel distance. This makes our method approx-
imately 50 times faster than the previous approach.

3 Details on Segmentation.

Segmentation refers to the classification of each unit, where we determine which homography hy-
pothesis should be adopted for unit j on M2 through classification. The way to obtain the classifica-
tion result is by comparing the classification score matrix Cj of unit j for different hypotheses Hi ,
where the largest one is the result of our classification operation. This classification uses the concept
of multi-label classification, a method widely applied in detection problems. Therefore, we refer to
DETR and use focal loss to optimize segmentation here. We can describe the process of obtaining
the classification score matrix Cj in the form of a formula: Cji = (T (fj) + P (i), fj) , where Cji

refers to the matching score of unit j for hypothesis i. T refers to the function that converts the fea-
ture dimension of i (256 dimensions) to the feature dimension of j (128 dimensions); here, we use
a 2D CNN to perform T . P refers to positional embedding, which directly represents the relative
position of the unit corresponding to the hypotheses i in the local 3*3 units. And ( * , *) indicates
the inner product.

4 Implementation Details

Outdoor model. When training the outdoor model, in order to make our model more generalized, we
introduced a data enhancement after the initial training. Specifically, we customized the collect fn
function to make the matching images in different batches have different resolutions, while the
matching images in the same batch have the same resolution. In addition, we also rotate 10% of the
matched images by 90 degrees to make the model more robust to extreme rotation.

Indoor model. Consider that our model is trained on 3 RTX3090, we differentiated between the
training data on different GPUs when training the indoor model, specifically by using the ScanNet
dataset for training on two RTX3090 and Megadepth on the third RTX3090.



3

Fig. 2. Qualitative Results of Feature Matching. Inlier matches are highlighted in green and outliers in red.
For visual clarity, the displayed matches are reduced to one-tenth of the actual number. As can be seen from the
figure, our method is robust to various extreme scenarios and thus can achieve very superior performance.

5 Proof

According to the theory of multiple view geometry [? ], the correspondence for the same plane in
R3 from two viewpoints can be defined by a homography matrix. Here we provide the process of
proof.

the correspondence function from two view points is:

x2 = K2(RK−1
1 x1 + t) (2)

where R is the rotation matrix, t is the translation vector, K is the intrinsic matrix of camera, x is
the coordinates of points on images, and the plane can be defined as:

1

d
nTK−1

1 x1 = 1 (3)

where d is the distance between points and the plane and n is the normal vector of the plane.Then
we can substitute Eq. 3 into Eq. 2:

x2 = K2(R+
1

d
tnT )K−1

1 x1

H = K2(R+
1

d
tnT )K−1

1

(4)

Here H is the homography matrix. We use the homography hypothesis to represent the correspon-
dence is the same as simplifying real world in R3 to many planes.

6 Qualitative Results.

We show some Qualitative Results in Fig. 2.


