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Abstract

This paper solves the problem of real-time 6-DoF ob-
ject tracking from an RGB video. Prior optimization-based
methods optimize the object pose by aligning the projected
model to the image based on handcrafted features, which
are prone to suboptimal solutions. Recent learning-based
methods use neural networks to predict the pose, which
suffer from limited generalizability or computational effi-
ciency. We propose a learning-based active contour model
to make the best use of both worlds. Specifically, given an
initial pose, we project the object model to the image plane
to obtain the initial contour and use a lightweight network
to predict how the contour should move to match the true
object boundary, which provides the gradients to optimize
the object pose. We also devise an efficient optimization
algorithm to train our model end-to-end with pose super-
vision. Experimental results on semi-synthetic and real-
world 6-DoF object tracking datasets demonstrate that our
model outperforms state-of-the-art methods by a substantial
margin in pose accuracy, while achieving real-time perfor-
mance on mobile devices. Code is available on our project
page: https://zju3dv.github.io/deep_ac/.

1. Introduction
Video-based 6-DoF object tracking is the task of track-

ing the pose of a rigid object from an RGB image sequence,

given a predefined object CAD model and an initial pose

in the first frame, which has a broad range of applications

from augmented reality and robotic manipulation to human-

computer interaction. These applications require the track-

ing algorithms to be real-time and avoid the need for object-

specific training.

The predominant methods for 6-DoF object tracking op-

timize the object pose based on keypoint, edge, or region-

based features. Keypoint-based methods [34, 42, 18, 17,
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Figure 1. The basic idea of deep active contours. Given the ini-

tial object pose, we project the object model to the image, sample

a set of points on the projected contours, use a network to predict

the distribution of true boundary location along the normal at each

sampled point, and optimize the pose to align the projected con-

tours with the predicted boundary.

43, 27] involve matching keypoints between a 2D image

and a 3D real model. Keypoint features such as SIFT [25],

ORB [30], or BRISK [19] have been widely employed in

such tasks. Nevertheless, the reliance on rich texture nar-

rows down the applicability of these methods. Instead,

edge-based tracking methods [6, 33, 53, 32] rely on edges

(explicit or implicit) to calculate the relative pose between

two consecutive images. Unfortunately, these approaches

face challenges when dealing with background clutter and

motion blur, thus limiting their effectiveness. To solve this

issue, more recent edge-based methods [46, 44, 14, 13, 39]

further incorporate local color information to improve accu-

racy. Recent progress is mainly achieved by region-based

approaches [28, 40, 41, 36]. The underlying premise is

that color statistics of object regions can be distinguished

from the background. With constant advancements in re-

cent years, region-based approaches now possess the capa-

bility to track objects with efficiency and accuracy even in

noisy and cluttered images, only utilizing a texture-less 3D

model. However, a drawback of these optimization-based

methods is the requirement for handcrafted features and

carefully tuned hyper-parameters, which may not be robust

in real-world scenarios.

Recently, end-to-end learning-based approaches have
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been proposed to enhance the robustness of 6-DoF object

detection and tracking. These approaches regress geomet-

ric parameters such as camera poses [54, 16] and object

coordinates [3, 12, 45], or adopt render-and-compare [23,

15, 55, 24, 48] strategies to iteratively refine the pose. De-

spite the demonstrated promising results, pose regression

methods exhibit limited accuracy and poor generalization,

while render-and-compare approaches are computationally

expensive and inapplicable for real-time applications.

In this paper, we present a learning-based active con-

tour model (DeepAC), for real-time 6-DoF object tracking.

By combining the benefits of traditional optimization-based

and learning-based methods, DeepAC achieves both robust-

ness and real-time performance. Inspired by the region-

based approach RBGT [35], DeepAC takes the local re-

gion around the projected contours as input and predicts

the directions to update the contours. Unlike traditional

methods that rely on handcrafted features and statistical hy-

potheses, a network is employed to estimate the directions,

as depicted in Figure1. Specifically, the proposed method

presents a three-phase pipeline. First, DeepAC employs an

FPN-Lite network with MobileNetV2 [31] to extract multi-

level features for the current image and projects the 3D ob-

ject model to acquire the 2D contours from the last frame

pose. Then, a boundary prediction network is designed

which utilizes the features of the local regions around the

contours as input and outputs a probability distribution of

the true boundary locations. Finally, the 6-DoF object pose

is optimized using Newton’s method based on the boundary

probability. The optimization process is differentiable w.r.t.

the network output, allowing the use of ground-truth poses

as supervision to train the feature extraction and boundary

prediction networks, hence eliminating the need for hand-

crafted intermediate supervision.

We validate the effectiveness of our proposed method on

both semi-synthetic and real-world 6-DoF object-tracking

datasets. The results demonstrate that DeepAC surpasses

other optimization-based and learning-based baselines by a

large margin. Moreover, we demonstrate the real-time per-

formance of our algorithm on a mobile device, achieving a

frame rate of 25fps on iPhone 11. Please see the demo video

in the supplementary material.

Our key contributions are summarized below:

• A novel learning-based active contour model for real-

time 6-DoF object tracking.

• A lightweight network to evolve the contours based on

image features, which ensures both robustness and ef-

ficiency.

• An efficient optimization algorithm that allows the

whole pipeline to be trained end-to-end with pose su-

pervision.

2. Related Work
Keypoint-based optimization. Early keypoint-based ap-

proaches [25, 30, 19] involve establishing 2D-3D corre-

spondences by utilizing local feature matching [34, 42, 18,

17] or optical flow [11, 43, 27] techniques. Despite demon-

strating a remarkable performance, this method necessitates

the presence of textured object models.

Edge-based optimization. To alleviate the need for tex-

tured models, researchers have turned to edge-based meth-

ods that commonly rely on the analysis of object edge dis-

placement. For example, RAPiD [6] estimates the relative

pose between consecutive frames by seeking pronounced

gradients in close proximity to the projected edges along

the orthogonal directions. To bolster tracking stability, Si-

mon and Berger [33] implement robust estimation tech-

niques that reduce the impact of outliers on RAPiD opti-

mization. Further improvements include incorporating lo-

cal color information [32], integrating a particle filter for

initialization [44, 39], and adding edge weight for pose op-

timization [44, 14]. Nevertheless, edge-based methods still

encounter difficulties to deal with background clutter and

motion blur.

Region-based optimization. More recently, region-

based methods have demonstrated remarkable success in

tracking texture-less objects in complex environments.

The line of research can be traced back to the work of

PWP3D [28], which effectively combines color segmenta-

tion statistic models and object render boundary distance

fields to optimize object pose. Subsequent work on RBOT-

estimation [40] and RBOT-tracking [41] has expanded on

this approach, incorporating temporally consistent local

color histograms as well as utilizing the Gaussian-Newton

method to optimize the energy function. RBGT [35] has

introduced the precomputed sparse correspondence lines of

multiple viewpoints and built a probabilistic model that con-

forms to a Gaussian distribution. This allows for fast con-

vergence of object pose using the Newton method. The lat-

est advancement in this field, SRT3D [36], has introduced

smoothed step functions that account for both global and

local uncertainties, providing a notable improvement over

existing methods. ICG method [37] has achieved better per-

formance than several learning-based approaches by inte-

grating depth information with region statistics. However,

the performance of region-based object tracking is often

compromised by the need to define multiple handcraft fea-

tures and parameters, which presents a notable limitation in

real applications.

Learning-based approaches. Recent years have wit-

nessed significant progress in deep learning methods in the
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Figure 2. Overview of the proposed method. 1. The method uses an FPN-Lite CNN to extract multi-level features Fk for the current

cropped frame Ik, and represents the local region of the contours by a correspondence line model. (Section 3.2). 2. A contour feature

map Fc
k is built by sampling a cycle of correspondence lines upon the image feature map, followed by a boundary prediction module

that predicts boundary location probability Bk (Section 3.3). 3. A differentiable optimization layer is used to estimate the pose Pk in a

coarse-to-fine manner (Section 3.4).

realm of 6-DoF object pose estimation. One approach in-

volves directly predicting rotation and translation param-

eters, as seen in works such as [54, 16]. Another ap-

proach [3, 12, 45] generates 2D-3D correspondences by

regressing object coordinates corresponding to each pixel,

followed by estimating the 6-DoF pose with PnP solvers.

However, accurately estimating object pose in a single-

shot setting can be challenging. To overcome this, vari-

ous studies [23, 15, 55, 24, 48] have utilized iterative re-

finement techniques that produce more precise results. The

key idea behind this approach involves an iterative “render-

and-compare” scheme. In each iteration, the current object

pose estimate is used to render the 3D model, and the ren-

dered image is compared to the actual image to obtain a

pose update that improves the alignment between the two.

PoseRBPF [4] trains a codebook to estimate the posterior

probability of the particle filter for instance-level object

tracking. Recent object tracking methods [47, 49, 50] have

integrated depth information to remove the need for CAD

models. The primary deficiency of current learning-based

methods is that they require the use of a high-end GPU,

making them unsuitable for deployment in mobile applica-

tions, e.g., augmented reality. Our framework, instead, ad-

dresses this limitation by incorporating a lightweight neural

network into an optimization-based method, allowing for

fast processing on mobile devices while achieving notable

improvements in pose accuracy.

3. Methods

3.1. Overview

Given a 3D CAD model M, an image sequence {Ik}
and an initial pose in the first frame, the proposed method

takes a single RGB image Ik of the current frame and the

pose Pk−1 of the previous frame to iteratively recover the

current pose Pk. First, the 3D model M is projected to the

image plane to obtain the 2D contours using the previous

pose Pk−1 and extract the contour feature map according

to the local region (Section 3.2). Subsequently, the contour

feature map is utilized to estimate a boundary probability

map (Section 3.3). Finally, the current pose Pk is optimized

based on the boundary probability map (Section 3.4). An

overview of the proposed method is provided in Figure 2.

3.2. Contour Feature Map Extraction

We use the pose Pk−1 estimated from the previous frame

to initialize the pose Pk of the current frame. The pose

P is defined as [R, t], where R is 3D rotation and t is

3D translation. Then we project the 3D model M to ac-

quire the 2D contours and calculate its 2D bounding box,

which is used to extract the cropped image Ik. The 3D

model M is represented by a triangle mesh with vertices

Xi = [Xi, Yi, Zi]
� ∈ R

3, where i = 1, . . . , n.

An FPN-Lite network with MobileNetV2 [31] is em-

ployed to extract multi-level features from the cropped im-

age Ik. The resulting feature maps are denoted by Fk ∈
R

Ws×Hs×Ds , which represent a range of coarse-to-fine fea-

tures, where s denotes the level index. The coarse-to-fine

design enables the encoding of a larger spatial context in

the image, which enhances tracking accuracy, particularly

in cases involving large displacements. We visualize the

multi-level feature maps in Figure 3. The architecture of

the proposed network is detailed in the supplementary ma-

terial.

Inspired by RBGT [35], we represent the local region of

contours by the correspondence line model. Specifically,

we sample several 2D points on the contours and build as-

sociated correspondence lines {li}. A correspondence line

can be represented by a center point ci = [cxi
, cyi

]� ∈
R

2 and a unit normal vector ni = [nxi , nyi ]
� ∈ R

2 ,

which are obtained by projecting a 3D contour point Xci

and its associated normal vector Nci onto the 2D image

plane. A 2D point on the correspondence line is repre-

sented by li(r) = ci + rni. We fix the length of each
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Figure 3. Multi-level feature maps. The feature maps of different

levels reflect different receptive fields. PCA is used to reduce the

dimension of the feature maps Fi
k which are then visualized in

RGB color.

correspondence line as a constant and sample a discrete

set of r̄ ∈ {−m, . . . , 0, . . . ,m} to generate a 2D point set

{li(r̄)}, which is used to extract the contour feature map

Fc
k ∈ R

(2m+1)×nc×Ds , where nc is the number of sampled

2D contour points.

3.3. Boundary Map Prediction

We use a lightweight CNN to extract the boundary prob-

ability map Bk ∈ R
(2m−2w+1)×nc×1, where w is utilized

to filter the border range. In this map, the value at location

(r̄+m−w, i) refers to the probability of the 2D point li(r̄)
being the boundary of the ith correspondence line. To en-

hance the generalization capacity of our network, we fuse

the statistical foreground probability map FGc
k and the sta-

tistical boundary probability map B̃k with the contour fea-

ture map Fc
k as the inputs to the network. Figure 4 illus-

trates the detailed procedure of forward propagation of the

lightweight CNN. We compute FGc
k and B̃k using an RGB

histogram statistics approach based on the contour RGB

map Ick, which is extracted in a manner similar to the con-

tour feature map Fc
k. The formulations of these statistical

terms are provided in detail in the supplementary material.

The experiment in Section 4 demonstrates that combining

statistical information and deep features leads to a signifi-

cant improvement in object tracking performance.

3.4. Pose Optimization

Based on the boundary probability map Bk, we aim to

iteratively recover the 6-DoF object pose Pk via an opti-

mization procedure. As the pose Pk is updated after each

iteration, we calculate the projected difference di between

the unmoved center ci and the varied contour point Xci us-

ing the following equation:

di = n�
i (π(RkXci + tk)− ci), (1)

with π the pinhole camera projection function

π(X) =

[
X
Z fx + px
Y
Z fy + py

]
, (2)

where the focal lengths are represented by fx and fy , and

the principal point coordinates for the directions x and y,

given in pixels, are represented by px and py .

Conv

Concat

Conv

Conv

Softmax

Figure 4. Boundary prediction module. We detail the module

used for the generation of the boundary probability map Bk, which

involves the utilization of three distinct input maps, namely the

contour feature map Fc
k, the statistical foreground probability map

FGc
k, and the statistical boundary probability map ˜Bk. We in-

corporate statistical information into the deep features at multiple

stages through a concatenation process.

We define the likelihood of the boundary for a correspon-

dence line:

p(Di|Pk) = Bk(di +m− w, i). (3)

Taking all independent correspondence lines into account,

the full likelihood is computed as:

p(D|Pk) ∝
nc∏
i=1

p(Di|Pk). (4)

To maximize this likelihood, we adopt the iterative New-

ton method with Tikhonov regularization, following the ap-

proach adopted by RBGT [35]. The update rule for the pose

Pk is as follows:

Δθ =
(
−H +

[
λrE3 0
0 λtE3

])−1

g,

Pk = Pk

[
exp ([Δθr]×) Δθt

0 1

]
,

(5)

where H is the Hessian matrix, g is the gradient vector, and

E3 is the 3 × 3 identity matrix. We use regularization pa-

rameters λr and λt for rotation and translation, respectively.

Additionally, the rotation R is represented by the exponen-

tial map of the Lie algebra so(3):

R = exp ([θr]×) =
∞∑

n=0

([θr]×)n, (6)

where [θr]× is the skew-symmetric matrix of θr ∈ R
3 and

[θr]× ∈ so(3). Therefore, we also represent a pose by a
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6-DoF variation θ� = [θr� ,θt� ],θt ∈ R
3. The Hessian

matrix and gradient vector are calculated using the chain

rule:

g� =

nc∑
i=1

∂ ln p(Di|θ)
∂di

∂di
∂Xcam

ci

∂Xcam
ci

∂θ

∣∣∣
θ=0

, (7)

H ≈
nc∑
i=1

∂2 ln p(Di|θ)
∂di

2

( ∂di
∂Xcam

ci

∂Xcam
ci

∂θ

)�

( ∂di
∂Xcam

ci

∂Xcam
ci

∂θ

)∣∣∣
θ=0

,

(8)

where Xcam
ci = RkXci + tk is in the camera frame and

the derivation of ∂di

∂Xcam
ci

∂Xcam
ci

∂θ is provided in detail in the

supplementary material.

To end-to-end train our network, we employ two approx-

imations to estimate the first-order derivative of ln p(Di|θ)
with respect to di. The first approximation directly com-

putes the derivative using the mean μi and variance σ2
i for

each correspondence line, resulting in:

∂ ln p(Di|θ)
∂di

≈ − 1

σ2
i

(di − μi). (9)

μi =

m−w∑
r̄=−(m−w)

r̄Bk(r̄ +m− w, i),

σ2
i =

m−w∑
r̄=−(m−w)

(r̄ − μi)
2Bk(r̄ +m− w, i).

(10)

The second approximation involves computing the first-

order derivative as:

∂ ln p(Di|θ)
∂di

≈ αs

σ2
i

ln
Bk(d

+
i +m− w, i)

Bk(d
−
i +m− w, i)

, (11)

where d+i and d−i are the upper and lower neighboring dis-

crete projected differences of di, and αs is the step size used

in [36]. For the second-order derivative, we use the follow-

ing equation:

∂2 ln p(Di|θ)
∂di

2 ≈ − 1

σ2
i

. (12)

The two approximations alternately optimize the object

pose in two iterations per level and serve different functions.

On the one hand, the first approximation (9) is employed

to learn the boundary location μi of each correspondence

line, allowing for fast convergence. On the other hand,

the second approximation (11) is utilized to learn the local

boundary probabilities for detailed refinement. In addition,

our network learns the uncertainty σ2
i of each correspon-

dence line, which improves robustness during optimization.

In Figure 5, we visualize these uncertainties as boundary

heatmaps over the images.

Figure 5. Visualization of the boundary uncertainties. Warmer

colors indicate higher certainties, showing which parts of the ob-

ject boundary are most helpful for predicting the object pose.

3.5. Supervision

We minimize the reprojection errors between the 3D

points transformed by the pose estimated at each iteration

Pit
k , it = {1, . . . , Nit} and the ground truth pose Pgt

k :

L =
1

Nit

∑
it

∑
i

ρ(‖π(Rit
kXi+titk )−π(Rgt

k Xi+tgtk )‖22),
(13)

where ρ is the Huber robust kernel. To prevent hard exam-

ples from smoothing the fine features, we set a condition

that the loss function is applied only when the previous iter-

ation has succeeded in bringing the estimated pose within a

satisfactory range of the ground truth. In cases where the es-

timated pose has not yet reached this threshold, subsequent

loss terms are ignored, ensuring that only reliable training

examples are used to refine the model.

3.6. Implementation Details

Our model is trained on 4 Tesla V100 GPUs for 3 hours

employing the Adam optimizer with an initial learning rate

of 1 × 10−3 and a batch size of 48. We utilize the FPN-

Lite network with MobileNetV2 [31] as the encoder, which

is initialized with pre-trained weights provided by Mo-

bileNetV2. We extract nlevel=3 feature maps with dimen-

sions D1,2,3=16 and strides of 1, 2, and 4. For boundary

map prediction, we employ a lightweight CNN consisting

of 7 convolutional layers with randomly initialized weights.

We sample nc=200 correspondence lines on the projected

contours and use m=9 to sample discrete r̄. We set w to

4, λr to 5000, λt to 500000, αs to 1.3 and Nit to 6. We

train our model on six datasets from the BOP [10] chal-

lenge, namely IC-BIN [5], T-LESS [8], TUD-L [9], LM [7],

YCB-V [54], and RU-APC [29]. We divide the objects into

two categories: training objects and validation objects, and

use their associated sequences for training and evaluation,

respectively. Since not all of these datasets are sequential,

we generate initial poses by adding random noises to the

ground-truth poses for input images during training.
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4. Experiments
4.1. Evaluation Protocols

Datasets. We evaluate our method on three standard ob-

ject tracking benchmarks, namely, RBOT [41], BCOT [21]

and OPT [52] datasets. The RBOT dataset comprises

18 distinct objects and features 4 sequences per object

with different variations, including regular, dynamic light,

noisy, and occlusion scenes. The BCOT dataset consists

of 20 textureless objects, 22 scenes, and 404 video se-

quences, encompassing a total number of 126K frames cap-

tured in real-world environments with various camera set-

tings, indoor/outdoor locations, and motion modes. The

OPT dataset contains 6 objects and 552 real-world se-

quences with diverse lighting conditions and preset trajec-

tories recorded by a robot arm.

Baselines. We compare the proposed method with the fol-

lowing baselines in two categories: 1) Optimization-based
baselines, which encompasses keypoint-based [51, 26, 1],

edge-based [22, 2, 14, 38, 44, 39] and region-based [28, 41,

56, 57, 13, 20, 35, 36] methods that share similar settings

to our approach. 2) Learning-based baselines [23, 24], that

utilize a render-and-compare framework to estimate the rel-

ative pose between the single image and a predefined tex-

tured model. We include these learning-based baselines

in our analysis to show the superior generalization perfor-

mance of our proposed method on unseen objects. It is

important to note that our method can operate in real-time

on mobile devices and solely relies on textureless objects,

while [23, 24] cannot achieve this due to the extensive time

overhead and the need for textured models.

Metrics. We employ various metrics, including the cm-

degree score, the ADD score, and the area under curve

(AUC) score, to evaluate the tracking performance.

The cm-degree score assesses the performance of the

tracking algorithm by calculating the percentage of frames

where the predicted pose P = [R, t] of the object has an

error of less than a specified number of centimeters in trans-

lation and degrees in rotation compared to the ground-truth

pose Pgt = [Rgt, tgt]. The definitions of the rotation error

er and the translation error et are as follows:

er = arccos
( trace(R�Rgt)− 1

2

)
et = ‖t− tgt‖2

(14)

For example, the 5cm-5◦ score refers to the success rate of

tracking poses with a translation error of less than 5 cen-

timeters and a rotation error of less than 5 degrees.

The ADD score first measures the average distance ev
between the vertices Xi of a 3D model M transformed

Regular
Dynamic

Noisy
Unmodeled Reset

Method Light Occlusion Times

Tjaden et al. [41] 79.9 81.2 56.6 73.3 -

Zhong et al. [57] 82.7 81.3 63.6 78.4 -

Li et al. [22] 85.8 86.7 71.4 80.3 -

Huang et al. [14] 86.9 87.3 65.0 83.6 -

Sun et al. [38] 88.1 88.8 80.5 85.1 -

Huang et al. [13] 89.9 90.7 69.6 88.9 -

RBGT [35] 90.0 90.6 71.5 85.6 -

SRT3D [36] 94.2 94.6 81.7 93.2 6575

LDT3D [39] 95.2 95.4 83.2 94.9 6228

DeepAC 95.6 95.6 88.0 94.0 4826

Table 1. Comparison to optimization-based methods on the
RBOT benchmark. We report the tracking successful rate below

the threshold of 5cm-5◦ and the number of times the pose is reset.

ADD- cm-degree
Reset

Method 0.02d 0.05d 0.1d 5-5 2-2 Times

Wang et al. [44] 5.5 32.7 64.6 54.4 12.4 -

tjaden et al. [41] 11.7 31.6 57.1 77.1 40.8 -

Huang et al. [14] 12.0 31.3 57.5 84.1 45.1 -

Li et al. [20] 9.1 31.5 58.1 95.0 38.5 -

Huang et al. [13] 15.6 39.8 66.1 87.1 51.4 -

Li et al. [22] 14.4 38.1 65.7 87.0 50.2 -

RBGT [35] 10.9 45.5 76.9 89.0 46.0 -

SRT3D [36] 12.5 49.4 82.1 93.1 53.6 8548

LDT3D [39] 15.3 52.1 82.7 93.8 63.2 7789

DeepAC 24.4 66.2 92.3 94.0 65.5 7547

Table 2. Comparison to optimization-based methods on the
BCOT benchmark. The metrics include the cm-degree scores,

the ADD scores with {2%, 5%, 10%} of the object diameter, and

the number of times the pose is reset.

by the predicted pose P=[R, t] and the ground-truth pose

Pgt=[Rgt, tgt], as follows:

ev =
1

N

N∑
i

‖(RXi + t)− (RgtXi + tgt)‖2 (15)

Then, the ADD-kd score counts the proportion of the track-

ing frames whose average vertices distance ev is less than k
times the diameter d of the target object.

The AUC score is another metric used to measure track-

ing performance. It is determined by the area under the

ADD-kd curve, where the horizontal axis represents k and

the vertical axis represents the ADD-kd score. For instance,

the AUC(0,K) score is obtained by integrating the ADD-

kd value within the k ∈ [0,K] interval:

AUC(0,K) =

∫ K

0

ADD-kd · dk (16)

We follow the standard tracking evaluation protocol of

previous works [35, 36, 39], which states that the estimated

pose should be reset to the ground truth if the rotation er-

ror exceeds 5◦ or the translation error exceeds 5cm. This
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criterion is applied to all metrics on the RBOT and BCOT
datasets, but not for the OPT dataset. The first frame of

each sequence is initialized with the ground-truth pose and

the 2D bounding box is computed from the pose of the pre-

vious frame. We additionally report the number of times the

pose is reset and the tracking results without any pose reset

on the RBOT and BCOT datasets.

4.2. Experiment Results.

Comparison to optimization-based methods. On the

RBOT dataset, the accuracy computation follows prior stud-

ies [41] employing the standard 5cm-5◦ score. Table 1

presents a comparison between our proposed method and

various counterparts. The experimental results indicate that

for regular, dynamic light, and occlusion scenes, the ex-

isting optimization-based methods have reached a perfor-

mance plateau, with success rates exceeding 95%. In such

cases, DeepAC exhibits a similar performance. However,

for noisy scenes, our method achieves significantly better

performance, with an average success rate improvement

from 83.2% to 88.0%. This observation demonstrates the

superior robustness to noise of DeepAC.

On the BCOT dataset, we adopt both the ADD score

and the cm-degree score to quantify pose error. As op-

posed to the RBOT benchmark, we assess tracking perfor-

mance using more rigorous criteria, including ADD-0.02d,

ADD-0.05d, and 2cm-2◦ scores, in order to evaluate high-

precision tracking capabilities. The results are presented

in Table 2, which demonstrate that DeepAC exhibits supe-

rior performance compared to all baselines across all ADD

and cm-degree scores. Notably, our method exhibits a re-

markable advantage in terms of very strict ADD criteria,

including a 9.1% improvement at ADD-0.02d, a 14.1%

improvement at ADD-0.05d, and a 9.6% improvement at

ADD-0.1d. These results suggest that our approach is

highly effective in high-precision tracking. Besides, we se-

lect the three best-performing methods, i.e., SRT3D [36],

LDT3D [39] and DeepAC to compare the number of times

of pose reset, and the tracking results without any pose re-

set on RBOT and BCOT datasets, which are presented in

Table 3. DeepAC achieves the best results on all metrics

except 5cm-5◦ on BCOT dataset and outperforms the other

two baseline methods by a large margin.

On the OPT dataset, following [52], we present the

AUC(0, 0.2) score as a metric for evaluating object track-

ing performance. Table 4 demonstrates that our method

outperforms the current state-of-the-art optimization-based

approaches for all six objects. These outcomes emphasize

the efficacy of DeepAC in real-world applications. Fur-

thermore, we observe that LDT3D [39], which ranks sec-

ond in both RBOT and BCOT, exhibits a substantial drop

in performance on the OPT dataset. This result may be

attributed to the relatively small frame difference of the

ADD- cm-degree

Methods 0.02d 0.05d 0.1d 5-5 2-2

RBOT

SRT3D [36] 7.0 12.3 15.9 19.0 15.1

LDT3D [39] 10.3 15.5 18.1 18.8 17.3

DeepAC 16.6 26.5 30.3 30.3 27.8
BCOT

SRT3D [36] 9.2 36.2 60.7 69.6 41.9

LDT3D [39] 10.5 34.5 54.2 61.4 43.7

DeepAC 17.9 46.8 64.7 65.5 48.0

Table 3. Tracking results without any pose reset on RBOT and
BCOT datasets. We report the cm-degree scores and the ADD

scores of the three best-performing methods.

Method Sod
a

C
he

st

Iro
nm

an

H
ou

se

B
ik

e
Je

t Avg.

PWP3D [28] 5.87 5.55 3.92 3.58 5.36 5.81 5.01

ElasticFusion [51] 1.90 1.53 1.69 2.70 1.57 1.86 1.87

UDP [1] 8.49 6.79 5.25 5.97 6.10 2.34 5.82

ORB-SLAM2 [26] 13.44 15.53 11.20 17.28 10.41 9.93 12.97

Bugaev et al. [2] 14.85 14.97 14.71 14.48 12.55 17.17 14.79

Tjaden et al. [41] 8.86 11.76 11.99 10.15 11.90 13.22 11.31

Zhong et al. [56] 9.01 12.24 11.21 13.61 12.83 15.44 12.39

Li et al. [22] 9.00 14.92 13.44 13.60 12.85 10.64 12.41

SRT3D [36] 15.64 16.30 17.41 16.36 13.02 15.64 15.73

LDT3D [39] 4.20 9.20 3.26 4.05 7.63 8.65 6.16

DeepAC 15.71 17.63 17.58 18.01 13.91 17.17 16.67

Table 4. Comparison to optimization-based methods on the
OPT benchmark. We report the AUC scores for the range of 0%

to 20% of the object diameter without any pose reset.

OPT dataset, where the non-local optimization employed

in LDT3D brings a negative impact on its performance.

Comparison to learning-based methods. To demon-

strate the generalization capabilities of DeepAC, we con-

duct a comparative experiment with two learning-based

methods [23, 24] on the RBOT dataset, regardless of their

heavy time cost. Specifically, we train the model of

DeepIM [23] on the YCB-V [54] dataset using the source

code from their official repository1, while we test the pre-

trained model2 provided by [24] that is trained on the YCB-

V [54] dataset. For a fair comparison, we train our DeepAC

model with the same training configuration on the YCB-

V [54] dataset, denoted as DeepAC−. The experimental re-

sults shown in Table 5 indicate that DeepAC− outperforms

the learning-based baselines [23, 24] by a significant mar-

gin, even when ground truth object masks are provided to

[24], demonstrating our capability to generalize across dif-

ferent datasets.

1https://github.com/NVlabs/DeepIM-PyTorch
2https://github.com/princeton-vl/Coupled-Iterative-Refinement
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ADD- cm-degree

Method 0.02d 0.05d 0.1d 5-5 2-2

DeepIM [23] 3.9 19.1 39.2 32.9 11.6

Lipson et al. [24] 2.1 10.5 30.5 65.4 24.9

Lipson et al. [24]+ 10.9 36.6 69.1 91.3 56.7

DeepAC− 39.1 69.2 86.8 89.9 70.0

Table 5. Comparison to learning-based methods on the RBOT
benchmark. We present the cm-degree scores and ADD scores

across all sequences, excluding the clown object sequence as it

contains an incorrect texture map. [24]+ means using ground-truth

masks as input.

ADD- cm-degree

Parameters 0.02d 0.05d 0.1d 5-5 2-2

RBOT

no statistics 42.7 74.9 90.1 90.9 74.9

no multi-level 34.8 65.6 84.9 83.3 64.1

no uncertainty 40.4 72.7 89.4 90.8 74.5

Full 43.9 76.4 91.3 93.3 78.8

BCOT

no statistics 22.4 61.3 87.8 87.6 57.2

no multi-level 20.5 58.0 84.1 83.1 51.7

no uncertainty 23.7 64.9 90.9 92.4 63.3

Full 24.4 66.2 92.3 94.0 65.5

Table 6. Ablation study. Three variants of DeepAC are trained

and evaluated on the RBOT and BCOT datasets.

Ablation studies. We validate the design choices in

DeepAC: 1) statistical information combination, 2) multi-

level features, 3) correspondence line uncertainties, 4) the

number of correspondence lines, and 5) the number of sam-

ples on each correspondence line. We conduct these experi-

ments using the same training and evaluation protocol as 6-

DoF object tracking on the RBOT and BCOT datasets. The

results presented in Table 6 demonstrate that all the design

choices in DeepAC bring significant performance gains. Ta-

ble 7 provides results on the impact of the number of cor-

respondence lines and samples on each line, allowing us to

balance between accuracy and efficiency.

4.3. Implementation on Mobile Devices.

In addition to implementing DeepAC on desktops, we

port it to mobile devices (iPhone 11). Specifically, we uti-

lize coremltools3 to facilitate the network deployment of

DeepAC and implement the supplementary modules using

C++.

Pose initialization. To initialize the pose in the first

frame, we project the 3D model to the phone screen via a

predefined pose and ask the user to manually move the cell-

phone to match the real object and the projected model. The

process is illustrated in the demonstration video in the sup-

3https://github.com/apple/coremltools

ADD- cm-degree

Parameters 0.02d 0.05d 0.1d 5-5 2-2

RBOT

(nc,m) = (50, 9) 32.4 64.6 84.1 85.8 59.1

(nc,m) = (100, 9) 41.7 74.0 89.4 91.8 74.0

(nc,m) = (200, 9) 43.9 76.4 91.3 93.3 78.8

(nc,m) = (300, 9) 44.2 76.6 91.4 93.3 79.4

(nc,m) = (200, 5) 38.9 66.2 83.8 84.1 62.9

(nc,m) = (200, 7) 46.7 77.5 91.2 92.0 77.7

(nc,m) = (200, 9) 43.9 76.4 91.3 93.3 78.8

(nc,m) = (200, 11) 45.4 77.8 92.3 93.3 78.8

BCOT

(nc,m) = (50, 9) 17.3 51.8 79.8 88.1 46.7

(nc,m) = (100, 9) 22.9 63.2 89.3 93.2 60.7

(nc,m) = (200, 9) 24.4 66.2 92.3 94.0 65.5

(nc,m) = (300, 9) 24.2 65.7 92.3 93.6 66.0

(nc,m) = (200, 5) 23.0 61.6 86.1 87.8 57.7

(nc,m) = (200, 7) 25.3 67.1 91.8 92.8 65.5

(nc,m) = (200, 9) 24.4 66.2 92.3 94.0 65.5

(nc,m) = (200, 11) 25.3 67.4 92.5 94.2 65.6

Table 7. Sensitivity analysis on different numbers of correspon-

dence lines and samples on each correspondence line on the RBOT
and BCOT datasets.

plementary material. The initialization is deemed success-

ful in the following way. First, we estimate the boundary

positions μi and uncertainties σ2
i using our neural network.

Then, we compute the average distance between the bound-

ary positions and the midpoints of the correspondence lines,

as well as the average uncertainty. If the computed distance

is below a certain threshold, we use this pose as initializa-

tion and start tracking.

Running time. We analyze the time cost for each indi-

vidual module in DeepAC on iPhone 11. The image pre-

processing and the FPN-Lite network module take 6ms
and 8.1ms, respectively. The modules for extracting cor-

respondence lines, contour features, and boundary maps

require 5.1ms, 3.7ms, and 4.2ms, respectively. The pose

optimization takes 4.2ms and the color histogram updat-

ing takes 0.7ms. Overall, the whole pipeline combining all

these modules achieves a running speed of approximately

25 frames per second on average.

5. Conclusion

This paper presented a learning-based active contour

model, named DeepAC, for real-time 6-DoF object track-

ing from an RGB video. With the initial pose, the proposed

DeepAC uses a three-stage pipeline to track the object: con-

tour feature map extraction, boundary map prediction and

pose optimization. The experiments showed that DeepAC

achieved state-of-the-art results on multiple semi-synthetic

and real-world 6-DoF object tracking datasets, surpassing

both conventional optimization-based and recent learning-

based methods, while being able to run in real-time on a

mobile device.
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Figure 6. Qualitative results. We compare DeepAC to SRT3D [36] and LDT3D [39] on the RBOT and BCOT datasets. DeepAC achieves

superior results in object tracking, particularly in challenging conditions involving background clutter, noise, and illumination changes.

The yellow and green contours correspond to the initial pose and the optimized pose, respectively.
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