

Chaoran Tian¹

DPS-Net: Deep Polarimetric Stereo Depth Estimation Weihong Pan¹ Zimo Wang¹ Mao Mao¹ Guofeng Zhang¹ Hujun Bao¹ Ping Tan² Zhaopeng Cui^{1*} ¹State Key Lab of CAD&CG, Zhejiang University ²Hong Kong University of Science and Technology

Comparison Results on the IPS AvgErr RMSE 1.2135 3.4503 1.6094 3.5475 0.9266 2.6755 0.5790 Average endpoint error. RMS of the endpoint error **bad 2.0**: The bad pixel ratio with the 2-pixel thres **Qualitative Depth Estimation Results** Lac-Gwc[1] LEA-Stereo[2] RAFT-Stereo[3] **Qualitative Comparison with Traditional Polarimetric Method**

Method

Ours

RPS results

Lac-Gwc [1]

LEA-Stereo [2

RAFT-Stereo [3

Experiments

Quantitative Result

lataset.		Comparison Results on the RPS dataset.			
Ξ	bad 2.0	Method	AvgErr	bad 2.0	Runtime(s)
3	8.2061	Lac-Gwc [1]	0.6919	3.6735	0.702
5	11.247	LEA-Stereo [2]	0.7518	5.0487	0.359
5	6.9791	RAFT-Stereo [3]	0.6807	3.8864	0.352
6	3.9705	Lac-Gwc-RBGP	0.6674	3.4693	0.798
		LEA-Stereo-RGBP	0.7517	5.1257	0.577
		RAFT-Stereo-RGBP	0.6244	3.4306	0.958
shold.		Ours	0.6187	3.3541	0.255

Qualitative Normal Estimation Results

DeepSfP[6] DoLP Ours