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Abstract: This paper presents an accurate and robust dense 3D reconstruction system for detail
preserving surface modeling of large-scale scenes from multi-view images, which we named DP-MVS.
Our system performs high-quality large-scale dense reconstruction, which preserves geometric details
for thin structures, especially for linear objects. Our framework begins with a sparse reconstruction
carried out by an incremental Structure-from-Motion. Based on the reconstructed sparse map,
a novel detail preserving PatchMatch approach is applied for depth estimation of each image
view. The estimated depth maps of multiple views are then fused to a dense point cloud in a
memory-efficient way, followed by a detail-aware surface meshing method to extract the final
surface mesh of the captured scene. Experiments on ETH3D benchmark show that the proposed
method outperforms other state-of-the-art methods on F1-score, with the running time more than
4 times faster. More experiments on large-scale photo collections demonstrate the effectiveness of the
proposed framework for large-scale scene reconstruction in terms of accuracy, completeness, memory
saving, and time efficiency.

Keywords: multi-view reconstruction; detail preserving; depth estimation; surface meshing

1. Introduction

Multi-view stereo (MVS) reconstruction of large-scale scenes is a research topic of vital
importance in computer vision and photogrammetry. With the popularization of digital
cameras and unmanned aerial vehicles (UAV), it is becoming more and more convenient
to capture large numbers of high resolution photos of the real scenes, which makes it
more feasible to reconstruct 3D digitalized models of the scenes from the captured high-
quality images. With the development of smart cities and digital twin, 3D reconstruction
of large-scale scenes has attracted more attentions due to its usefulness in providing
digitalized content for various applications such as urban visualization, 3D navigation,
geographic mapping, and model vectorization. However, these applications usually require
reconstruction of high-quality dense surface models. Specifically, 3D visualization and
navigation demand realistically textured 3D surface models with complete structures
and few artifacts, while geographic mapping and model vectorization depends on highly
accurate dense point clouds or models with geometric details as reliable 3D priors, which
are great challenges to multi-view reconstruction.

Over the past few years, significant progresses have been made in MVS, especially in
the reconstruction of aerial scenes. However, most existing state-of-the-art (SOTA) methods
lack sufficient details in their reconstruction results, or take huge time to achieve high
reconstruction accuracy. Besides, it consumes a lot of memory to fuse high resolution
depth maps to dense point cloud. Learning-based multi-view depth estimation schemes
do not perform so well as traditional methods in generalization and scene detail recovery,
and usually have difficulties in handling high-resolution images. In this paper, we propose
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a novel MVS framework for detail preserving reconstruction of dense surface model from
multiple images captured by a digital camera or UAV, which we named DP-MVS. Our
DP-MVS framework is designed for large-scale scene reconstruction which takes accuracy,
robustness and efficiency into account, to ensure that the reconstruction is carried out in a
time-and-memory-efficient way to recover accurate geometric structures with fine details.
The key contributions of our system can be summarized as:

• We propose a detail preserving PatchMatch approach to ensure an accurate dense
depth map estimation with geometric details for each image view.

• Considering that high resolution depth map fusion is usually memory consuming,
we propose a memory-efficient depth map fusion approach for handling extremely
high resolution depth map fusion, to ensure accurate point cloud reconstruction of
large-scale scenes without out-of-memory issues.

• We propose a novel detail-aware Delaunay meshing to preserve fine surface details
for complicated scene structures.

Experiments with quantitative and qualitative evaluations demonstrate the effective-
ness and efficiency of our DP-MVS method by achieving SOTA performance on large-scale
image collections captured by digital cameras or UAVs.

2. Related Work

According to the taxonomy given in [1], existing multi-view reconstruction approaches
can be generally divided into four categories: voxel based methods, surface evolution based
methods, feature point growing based methods, and depth-map merging based methods.

2.1. Voxel Based Methods

The voxel based methods compute a cost function on a 3D volume within a bounding
box of the object. Seitz et al. [2] proposed a voxel coloring framework that identifies
the voxels with high photo-consistency across multiple image views in the 3D volume
space of the scene. Vogiatzis et al. [3] use graph-cut optimization to compute a photo-
consistent surface that encloses the largest possible volume. These methods are limited in
reconstruction accuracy and space by the voxel grid resolution. Sinha et al. [4] proposed to
use photo-consistency to guide the adaptive subdivision of the 3D volume to generate a
multi-resolution volumetric mesh that is densely tesselated around the possible surface,
which breaks through the voxel resolution limitation to some extent. However, large-
scale scenes are difficult for this method due to its high computational and memory
costs. Besides, these methods are only suitable for compact objects with a tight enclosing
bounding box.

2.2. Surface Evolution Based Methods

The surface evolution based methods iteratively evolve from an initial surface guess
to minimize the photo-consistency measurement. Faugeras and Keriven [5] deduce a
set of PDEs from a variational principle to deform an initial set of surfaces toward the
objects to be detected. Hernández et al. [6] proposed a deformable model framework which
fuses texture and silhouette driven forces for the final object surface evolution, based on
an initial surface that should be close enough to the objective one. Hiep et al. [7] use a
minimum s-t cut based global optimization to generate a initial visibility consistent mesh
from dense point cloud, and then capture small geometric details with a variational mesh
refinement approach. Li et al. [8] use an adaptive resolution control to classify the initial
mesh into significant and insignificant regions, and accelerate the stereo refinement by
culling out and simplifying most insignificant regions, while still refining and subdividing
the significant regions to a SOTA level of geometry details. Romanoni and Matteucci [9]
proposed a model-based camera selection method to increase the quality of pairwise camera
selection, and an occlusion-aware masking to improve the model refinement robustness
by avoiding the influence of occlusions on photometric error computation. A common
drawback of these methods is the requirement of a reliable initial surface which is usually
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difficult for outdoor scenes. Cremers et al. [10] formulate multi-view reconstruction as a
convex functional minimization problem that does not rely on initialization, with the exact
silhouette consistency imposed as convex constraints which restrict the domain of feasible
functions. However, this method uses voxel representation for reconstruction space, and is
therefore unsuitable for large-scale scenes.

2.3. Feature Growing Based Methods

The feature point growing based methods first reconstruct 3D feature points from
regions with textures, and then expand these feature points to textureless areas. Lhuil-
lier et al. [11] proposed a quasi-dense approach to acquire 3D surface model, which expands
the sparse feature points by resampling quasi-dense points from the quasi-dense disparity
maps generated by match propagation. Goesele et al. [12] proposed a method to handle
challenging Internet photo collections using per-view and per-pixel image selection for
stereo matching, with a region growing process to expand the reconstructed SIFT fea-
tures [13]. Based on these methods, Furukawa et al. [14] presented the SOTA MVS method
called Patch-based MVS (PMVS) that first reconstructs a set of sparse matched keypoints,
and then iteratively expands these keypoints till visibility constraints are invoked to filter
away noisy matches. Based on PMVS, Wu et al. [15] proposed Tensor-based MVS (TMVS)
for quasi-dense 3D reconstruction which combines the complementary advantages of
photo-consistency, visibility and geometric consistency enforcement in MVS under a 3D
tensor framework. These feature point growing methods attempt reconstructing a global
3D model using all the input images, and therefore will suffer from the scalability problem
with a large number of images. Although this problem can be alleviated by dividing the
input images into clusters with small overlaps like [16], its computational complexity still
remains to be a problem for large-scale scenes.

2.4. Depth-Map Merging Based Methods

The depth-map merging based methods first estimate a depth map for each view
and then merge all the depth maps together into a single model by taking visibility into
account. Strecha et al. [17] jointly model depth and visibility as a hidden Markov Random
Field (MRF), and use an EM-algorithm to alternate between estimation of visibility/depth
and optimization of model parameters, without merging the depth maps to a final model.
Goesele et al. [18] compute depth maps using a window-based voting approach with good
matches and then merge them with volumetric integration. Merrell et al. [19] proposed a
real-time 3D reconstruction pipeline, which utilizes visibility-based and confidence-based
fusion for multi-view depth map fusion to online large-scale 3D model. Zach et al. [20]
presented a method for range image integration by globally minimizing an energy func-
tional consisting of a total variation (TV) regularization force and an L1 data fidelity term.
Kuhn et al. [21] use a learning-based TV prior to estimate uncertainties for depth map
fusion. Liu et al. [22] produced high quality MVS reconstruction using continuous depth
maps generated by variational optical flow, which requires visual hull as an initialization.
However, these methods use volumetric representation for depth map fusion or rely on
an initial model, and are therefore limited in scalability. Some other methods fuse the
estimated depth map to point cloud, and focus on estimating confidence or uncertainty
constraint to guide the depth map fusion process, which turns out to be more suitable
for large-scale scenes. For example, a confidence-based MVS method in [23] developed a
self-supervised deep learning method to predict the spatial confidence for multiple depth
maps. Bradley et al. [24] proposed to use a robust binocular scaled-window stereo match-
ing technique, followed by adaptive filtering of the merged point clouds, and efficient
high-quality mesh generation. Campbell et al. [25] use multiple depth hypotheses with
a spatial consistency constraint to extract the true depth for each pixel in a discrete MRF
framework, while Schönberger et al. [26] perform MVS with pixelwise view selection for
depth and normal estimation and fusion. Shen [27] computes the depth map for each
image using PatchMatch, and fuses multiple depth maps by enforcing depth consistency at
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neighboring views, which is similar to [28], with the difference that Tola et al. used DAISY
features [29] to produce depth maps. Li et al. [30] also generate depth maps using DAISY,
and applied two stages of bundle adjustment to optimize the positions and normals of 3D
points. However, these methods usually require complex computation for high-quality
depth map estimation. To expand the reconstruction scale to a larger extent at a lower
computational cost, Xue et al. [31] proposed a novel multi-view 3D dense matching method
for large-scale aerial images using a divide-and-conquer scheme, and Mostegel et al. [32]
innovatively proposed to prioritize the depth map computation of MVS by confidence pre-
diction to efficiently obtain compact 3D point clouds with high quality and completeness.
Wei et al. [33] proposed a novel selective joint bilateral upsampling and depth propagation
strategy for high-resolution unstructured MVS. Wang et al. [34] proposed a mesh-guided
MVS method with pyramid architecture, which uses the surface mesh obtained from coarse-
scale images to guide the reconstruction process. However, these methods do not consider
too much about how to preserve the true geometric details in depth map estimation and
fusion stages. Some learning-based multi-view stereo reconstruction approaches such
as [35–40] have achieved significant improvements on various benchmarks, but the robust-
ness and generalization of these methods are still limited for natural scenes compared to
the traditional methods. To better tackle practical problems such as dense reconstruction of
textureless regions, some recent works try to combine learning methods with traditional
MVS methods to improve generalization. For example, Yang et al. [41] use a light-weight
depth refinement network to improve the noisy depths of textureless regions produced
by multi-view semi-global matching (SGM). Yang and Jiang [42] combine deep learning
algorithms with traditional methods to extract and match feature points from light pattern
augmented images to improve a practical 3D reconstruction method for weakly textured
scenes. Stathopoulou et al. [43] tackle the textureless problem by leveraging semantic priors
into a PatchMatch-based MVS in order to increase confidence and better support depth and
normal map estimation on weakly textured areas. However, even with these combination
of traditional and learning algorithms, visual reconstruction of large textureless areas
commonly present in urban scenarios of building facades or indoor scenes still remains to
be a challenge. Some recent works such as [44,45] focus on novel path planning methods
for the high-quality aerial 3D reconstruction of urban areas. Pepe et al. [46] apply SfM-MVS
approach to airborne images captured by nadir and oblique cameras to build 2.5D map and
3D models for urban scenes. These works make efforts to improve the global reconstruction
completeness and scalability for large-scale urban scenes, but pay less attention to the local
reconstruction geometric details or textureless challenge.

Depth map estimation is vitally important for a high-quality MVS reconstruction.
Recently, PatchMatch stereo methods [26,47–50] have shown great power in depth map
estimation with their fast global search for the best matches in other images, with different
kinds of propagation schemes developed or improved. For example, Schönberger et al. [26],
Zheng et al. [48] both use sequential propagation scheme, while [49,51] both utilize
checkerboard-based propagation to further reduce runtime. ACMM [50] extends the work
of [51] by introducing a coarse-to-fine scheme for better handling textureless areas. Assum-
ing the textureless areas are piecewise planar, ACMP [52] extends ACMM by contributing a
novel multi-view matching cost aggregation which takes both photometric consistency and
planar compatibility into consideration, and TAPA-MVS [53] proposed novel PatchMatch
hypotheses to expand reliable depth estimates to neighboring textureless regions. Further-
more, Schönberger et al. [26], Xu and Tao [50] both use a forward/backward reprojection
error as an additional error term for PatchMatch. MARMVS [54] additionally select the
optimal patch scale for each pixel to reduce matching ambiguities. However, these methods
focus on speeding up computation and handling textureless regions, but seldom have any
strategy for geometric detail preserving, which is exactly the main focus of our method.



Remote Sens. 2021, 13, 4569 5 of 20

3. Materials and Methods
3.1. System Overview

Suppose a large-scale scene is captured by multiple RGB images with digital cameras
mounted on terrestrial or UAV platforms, denoted as {Ii|i = 1, 2, · · · , N}, where N is the
number of input images. Our dense 3D reconstruction system is applied for the inputed
multi-view images to robustly reconstruct an accurate surface model of the captured scene.
We now outline the steps of the proposed multi-view reconstruction framework, as shown
in Figure 1.

Figure 1. System framework of DP-MVS, which consists of six modules including SfM, image view clustering, detail preserv-
ing depth map estimation, cluster-based depth map fusion, detail-aware surface meshing, and multi-view texture mapping.

Our DP-MVS framework first reconstructs a sparse map for the input multi-view im-
ages using an incremental Structure-from-Motion (SfM) framework similar to Schönberger
and Frahm [55]. Then, the image views are divided into a number of clusters according to
covisibility relationship based on the reconstructed sparse map. For each cluster, a novel
detail preserving PatchMatch approach is applied to estimate a dense depth map Di for
each image view i. Then, the depth maps in each cluster are fused to a noise-free dense
point cloud. After that, point clouds of all the clusters are merged into a final point cloud
denoted by P. Finally, a detail-aware Delaunay triangulation is used to extract the final
surface mesh of the captured scene from the merged point cloud, which is represented as S.
The main steps of our framework will be described in detail in the following subsections.

3.2. Detail Preserving Depth Map Estimation

Our method adopts a novel PatchMatch based stereo method for accurate depth
map estimation with detail preservation. A well-known PatchMatch scheme is sequential
propagation, which alternatively performs upward/downward propagation during odd
iterations and reverse propagation during even iterations. Because only neighborhood
pixels are referred during one propagation, this scheme is more sensitive to textureless
regions. Furthermore, sequential propagation can only be parallelized at the row or
column level, which cannot fully utilize the strength of modern multi-core GPU. Another
PatchMatch scheme is checkerboard-based propagation, in which the reference image is
partitioned into a checkerboard pattern of “red” and “black” pixels. Propagation and
optimization is performed for all “red” pixels in odd iterations and all “black” pixels in
even iterations, and is therefore more suitable for parallelized handling of high-resolution
images. The standard checkerboard propagation scheme was firstly introduced by [49],
which consumes a lot of time to calculate normalized cross correlation (NCC) of multiple
sample points from multiple views at each single propagation. ACMM [50] improves the
scheme by introducing a multi-hypothesis joint view selection strategy. The strategy is more
suitable for depth estimation of planar structures, where the samples with high confidence
could be propagated readily along smooth surface. However, if there is a foreground object
with structure thinner than the sampling window size, the hypotheses are very likely to
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be sampled to the background regions, which might force the foreground depth to shift
to the background position. Inspired by [26], we propose a detail preserving PatchMatch
method based on the diffusion-like propagation scheme, which ensures both high accuracy
and completeness of the estimated depth map, especially for accurate reconstruction of
detailed structures.

Figure 2 shows the comparison results of depth estimation by ACMM and our pro-
posed method for the experimental case “B5 Tower”, with both sampling strategies illus-
trated to show the difference. Take the pixel highlighted in Figure 2a as an example. Most
sample points of ACMM lie in the background regions, which mistakenly wipes its depth
to background level, as illustrated in Figure 2b. To better solve this problem, we change
4 V-shaped areas of ACMM to oblique long strip areas to obtain more even distribution
of hypotheses. This improved sampling strategy is more favorable to the recovery of thin
objects than ACMM, considering it increases the probability of sampling foreground thin
object regions. In addition, we observe that the sequential-based propagation strategy
is helpful to detail recovery. An important reason is that it only propagates neighboring
depths and a reliable hypothesis could be spread further along horizontal and vertical
directions. Inspired by this observation, we further add the four-neighboring hypotheses.
Thus, there are 12 hypotheses totally, which increases the time complexity of a single
propagation by half. In order to improve computational efficiency, the four-neighboring
hypotheses are sorted in descending according to their NCC cost and the top-K ones are
selected as the final hypotheses, with K = 2 in our experiments. We exhibit the generated
depth maps and normal maps of case “B5 Tower” estimated by ACMM and our strategy
in Figure 2c,d. Here, we use the same multi-scale framework as ACMM for our strategy
as a fair comparison. As can be seen in the red rectangles, the depth map estimated by
our proposed method contains richer geometric details, with more accurate normal map,
especially for thin structures. Actually, our dense matching method can reconstruct thin
structures with at least 2 pixels width, the corresponding Ground Sample Distance (GSD)
is 2.4 cm at flying altitude of 30 m.

Figure 2. Illustration of our PatchMatch sampling strategy: (a) A source image view of case “B5
Tower”. (b) The ACMM [50] sampling strategy of a pixel in the red rectangle of (a), and our improved
sampling strategy. (c) The estimated depth map and normal map by ACMM. (d) Our estimated depth
map and normal map, which contain better details highlighted in the red and yellow rectangles.
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In the refinement step, for each pixel p of the current image view, we generate a
perturbed depth and normal hypothesis (dpert

p , npert
p ) by perturbing the current depth and

normal estimation (dp, np). A random depth and normal hypothesis is also generated
denoted as (drand

p , nrand
p ). These newly generated depths and normals are combined with the

current one to yield 6 additional candidate depth and normal pairs (dp, np), (d
pert
p , npert

p ),

(dpert
p , np), (dp, npert

p ), (drand
p , np), (dp, nrand

p ). During each iteration, for each pixel, we
choose the depth and normal estimation with the best NCC cost from the set of candidate
depths and normals, to further refine its current depth and normal estimation. Usually,
3∼5 iterations are sufficient for the depth maps and normal maps to converge.

We compare our proposed scheme with SOTA methods including ACMM, Open-
MVS [56] and COLMAP [26,55] in four cases “ZJU Fan”, “B5 Tower”, “B5 West” and “B5
Wire” captured by UAV with resolution 4864× 3648. For fair comparisons, we use our SfM
results as the input to these methods. Thus for COLMAP, we actually only use its MVS
module [26]. We perform depth estimation by choosing 8 reference images for the current
image, except OpenMVS, for which we use the default setting. The depth map results
are given together with their corresponding point clouds by projecting the depth values
forward to 3D space to more directly show the 3D geometry of the depth maps. As shown
in the highlighted rectangle regions of the depth maps and the point clouds in Figure 3,
with the proposed sampling strategy, our depth estimation method performs better than
the checkerboard propagation scheme of ACMM and the sequential propagation scheme
of OpenMVS and COLMAP in thin structure depth recovery. Additionally, as can be seen
in Figure 3, the produced depth maps are more complete and less noisy compared with
OpenMVS and COLMAP, which validates the proposed method.

Figure 3. Cont.
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Figure 3. (a) A source image view for each case of “ZJU Fan”, “B5 Tower”, “B5 West” and “B5 Wire”. (b) The depth map
results of ACMM [50] and their corresponding point clouds by projecting the depths forward to 3D space. (c) The depth
maps and point clouds of OpenMVS [56]. (d) The depth maps and point clouds of COLMAP [26]. (e) Our results of depth
maps and point clouds, which turn out to be the best in both details and noisylessness.

3.3. Memory-Efficient Depth Map Fusion

We adopt the the graph-based framework proposed by [26] for depth map fusion,
in which the consistent pixels are connected according to the geometry and depth con-
sistency from multi-view images recursively. This method requires loading all the depth
maps and normal maps into memory in advance. Therefore, for large-scale scenes of high-
resolution images, out-of-memory problem will be the bottleneck. To solve this problem,
we divide the scene into multiple clusters and fuse the depth maps of each cluster to an
individual point cloud separately. Finally, all the clusters are merged into a complete
point cloud.

Theoretically, the memory complexity of N image views with resolution W × H is
O(N×W×H), since the main memory bottleneck is to load all the depth maps and normal
maps in advance. Therefore, to avoid out-of-memory, the image views should be evenly
divided into a few clusters, so that all the depth maps inside one cluster could be loaded
into a single computer at once without out-of-memory risk. We adopt K-means algorithm
to perform the partition. Specifically, we first estimate a cluster number K, based on the
total image view number N divided by the maximum number of image views supported
by each cluster denoted as n, that is:

K = dN/ne. (1)

We set n = 120 for image resolution 4864 × 3648 in our experiments. Then, we
initialize K seed image views and iteratively classify all the other image views based on
their distances to the cluster centers and covisibility scores. Therefore, for each image view
Ii, we define the distance criterion to the kth cluster for K-means as:

Dk
i = (Ci − Ĉk)(1− Ŝ)

Ŝ =
maxj∈C(k)Mij

maxj=1,··· ,NMij
,

(2)

where k = 1, · · · , K. Here Dk
i is a newly defined distance between Ii and the kth cluster,

which measures both the Euclidian distance and the covisibility between them. Ci is the
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camera center of Ii. Ĉk is the barycenter of the camera centers of all the image views
contained in the kth cluster. Ŝ is the normalized covisibility score. Mij is the number of
SIFT feature correspondences between image views i and j, and C(k) is the set of image
views in the kth cluster. Intuitively, an image view with closer distance and stronger
connectivity to a cluster will be prioritized into the cluster. In order to ensure the time
efficiency of fusion, the number of images contained in each cluster should be almost the
same. We first choose the cluster k′ with farthest distance to all the other clusters. If it
has less than n number of views, we push image views from other clusters into it in the
ascending order of Dk′

i until the number of views reaches n, otherwise the redundant
images are popped out in the descending order of Dk′

i , and pushed into the cluster k with
the minimal Dk

i until the number of views reaches n. Meanwhile, the fused point clouds of
neighboring clusters might be inconsistent at the boundary. The reason is that the partition
makes the connected pixels broken into different parts, which results in a slight boundary
difference from the original fused point cloud. Thus, we add additional connected images
to ensure there are sufficient overlapping regions between neighboring clusters, which
increases the point cloud redundancy to a certain extent. To eliminate redundancy, we
merge those points from adjacent clusters if their projections on the overlapping images
are the same, and the projection depth error and normal error are below certain thresholds,
which are set to 1% and 10◦ respectively in the experiments. In this way, we ensure that the
final point cloud is almost the same as the result without image view clustering.

We show the image view clustering result of case “B5 West” with totally 513 images of
resolution 4864× 3648 and n = 120 in Figure 4a,b, which runs on our server platform with
500 GB memory. We set K = 5 according to Equation (1). The fused point clouds with and
without image view clustering are also given in Figure 4c,d to show the effectiveness of
our memory-efficient depth map fusion, which saves the memory cost from 87 GB without
clustering, to 28 GB with 5 clusters for the case “B5 West”, but brings almost no difference
to the quality of the final fused point cloud, with the point cloud redundancy increased
only by 10% of the total fused point cloud size.

Figure 4. (a) Camera views of case “B5 West” divided into 5 clusters. (b) The final fused point cloud
with points from different clusters visualized in different colors. (c) The fused point cloud without
clustering. (d) The clustering-based point cloud fusion, with magnified rectangle regions to show
almost no difference from (c).
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3.4. Detail-Aware Surface Meshing

After obtaining a dense point cloud fused with multiple depth maps, we can recon-
struct a surface mesh from this point cloud using Delaunay triangulation. Conventional
Delaunay triangulation usually has difficulty in reconstructing geometric details such as
thin structures or rough surfaces, due to its sensitivity to the noisy points that easily drones
out surface details. One straightforward idea to handle thin structures is to extract 3D
curves from multi-view image edges, and generate mesh from the tetrahedra topologized
by both points and curves, which is used in [57]. However, since detailed structures like
rough surfaces cannot be represented by curves, these methods are designed to better han-
dle line structures specially. In this subsection, we propose a more general visibility-based
Delaunay triangulation method for meshing dense point cloud, which pays more attention
to the reconstruction of thin structures and rough surfaces by improving the visibility
constraint to further eliminate the impact of noisy points, and using point density as a new
density constraint to better preserve detailed geometry.

Each point P in the dense point cloud P contains the set of image views from which it
has been triangulated and visible. 3D Delaunay triangulation is applied to these points
to build tetrahedra T. Then, the tetrahedra are labeled inside or outside the surface
through an energy minimization framework, with the labeling denoted by L. We follow
the previous methods [58,59] by using MRF approach to solve the tetrahedron binary
labeling problem. Here, we use a graph-cuts framework similar to [58] to set up the
graph of tetrahedra. Denote the directed graph as G = (T, F), where each node τ ∈ T
is a tetrahedron, and each edge f ∈ F is the triangular facet shared by two neighboring
tetrahedra. For each tetrahedron τ ∈ T, L(τ) ∈ {inner, outer}. The energy function for
tetrahedron labeling problem is defined as:

E(T, F, L) = ∑
τ∈T

Edata(τ, L(τ)) + ∑
f∈F

Esmooth( f , L(τ), L(τ′)), (3)

where Edata is the data term for tetrahedron τ, and Esmooth is the smooth term for facet
f which is shared by two neighboring tetrahedra (τ, τ′). All the data terms and smooth
terms are initialized to 0. As shown in Figure 5a, for each point P ∈ P and one of its visible
image view Ii, a line of sight shoots from the camera center Ci of Ii to P, and intersects with
a number of facets in F. For the tetrahedron τv that Ci lies in, we consider it more likely to
be outside the surface, and penalize its data term for inner case. For the tetrahedron τp that
contains P and intersects with the extended line of sight, we consider it inside the surface,
and penalize its data term for outer case. For each facet fi intersected with the line of sight,
we consider it less likely to be shared by two tetrahedra with different labels, and penalize
its smooth term for the case of different labels. Therefore, for each shooting of line of sight,
we follow the strategies discussed above to accumulate the data terms and smooth terms
as follows:

Edata(τv, inner)+ = αv
Edata(τp, outer)+ = αv
Esmooth( fi, inner, outer)+ = ωd( fi)ωv( fi)ωq( fi)αv
Esmooth( fi, outer, inner)+ = ωd( fi)ωv( fi)ωq( fi)αv,

(4)

where αv is a constant parameter, which we set to 1 in our experiments. ωd, ωv and ωq are
the density weight, visibility weight and quality weight respectively. Labatut et al. [58]
only use visibility weight and quality weight, which has limitation in preserving geometric
details. In comparison, we propose this novel density weight to enforce the accuracy of
rough surface geometry, considering the output surface should be closer to where the point
cloud has denser spacing, while the sparse points are more likely to be outliers. The density
weight is computed for each facet f ∈ F by:

ωd( f ) = 1− λd exp

(
−V( f )2

σd
2

)
, (5)
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where V( f ) is the total edge length of f divided by the total number visible image views
for vertices of f , which encourage the facet to be denser in spacing and have more suf-
ficient visible images to be reliable. The value of σd is set according to the distribution
of {V( f )| f ∈ F}, which we set to be 1/4-order minimum of {V( f )}. λd controls the the
influence of density weight, which is set to 0.8 in our experiments. Affected by this weight,
the surface will tend to appear in denser point regions with more visible image view
supports, which is helpful to preserving rough surface details.

Figure 5. Illustration of our visibility weight strategy: (a) A line of sight from the camera center of an
image view traverses a sequence of tetrahedra to a 3D point to accumulate the visibility weighted
smooth terms. (b) The visibility weights proposed by [58]. (c) The visibility weights by our strategy,
which are stopped by the end facet.

As in [58], visibility weight is used to penalize the visibility conflicts of dense points.
Labatut et al. define the visibility weight as:

ωv( f ) = 1− exp

(
−D( f )2

σv2

)
, (6)

where D( f ) is the distance between the intersection of f with the line of sight and the point
P, which penalizes the facet far from P to appear in the final surface. However, considering
that noisy points may introduce the incorrect accumulations of visibility weights along the
line of sight, which might lead to the loss of thin structures. To better handle the influence
of noisy points, we propose an intersection stop mechanism for smooth term accumulation.
Denoting the distance between Ci and P as D̂, when a facet f j intersected with the line
of sight satisfies the two conditions which are V( f j) > σd and D( f ) > (1− S(P))D̂, this
facet will be the end of the intersection process, and the facets left to be intersected will be
ignored. Here S(P) is the score of uncertainty of P computed in Section 3.3. In this way,
the incorrect accumulation caused by noisy points will be relieved by reliable facets with
sufficient visible image views and dense vertex spacing, to better reconstruct details with
thin structure.

As defined in [58], the quality weight ωq( f ) = (1−min(cos φ, cos ϕ)), where φ and ϕ
are the angles between f j and the circumspheres of the two neighboring tetrahedra τ and
τ′ respectively, which ensures the global surface quality by giving stronger smoothness
connection between tetrahedra of better shape.

The defined energy function is finally solved by applying s-t cut on the graph to
determine the binary labels, and the surface S is extracted from the labeled tetrahedra by
collecting the triangular facets between two neighboring tetrahedra with different labels as
the final mesh surface. Experiments of cases “B5 Tower” and “ZJU Fan” in Figure 6 show
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that our detail-aware surface meshing approach can reconstruct more accurate surface
mesh than the approach of [58], with more complete details preserved, such as the thin
structures of tower antennas and fan railings, and the rough surface details of the fans,
by using our improved visibility-based Delaunay triangulation.

After surface mesh of the scene being reconstructed, we can use the input multi-view
images with poses to perform texture mapping for the reconstructed surface mesh. We follow
the approach in [60] to perform a multi-view texture mapping to get a final textured 3D model.

Figure 6. (a) Three representative image views for each case of “B5 Tower” and “ZJU Fan”. (b) The
reconstructed surface models of the two cases by [58]. (c) The surface models generated by our
meshing approach. (d) Comparisons of the details in the rectangles of (b,c), which shows the
effectiveness of our detail-aware surface meshing.

4. Results

In this section, we exhibit quantitative and qualitative comparisons of our DP-MVS
framework with other SOTA methods on several experimental cases. We also report the
time consumption on the stages of depth estimation, fusion and meshing of different
methods to show the runtime efficiency of our method. All the cases were captured by DJI
PHANTOM 4 RTK UAV, except for the case “Qiaoxi Street” that was recorded by a Huawei
Mate 30 mobile phone. The image resolution is 4864× 3648 for DJI PHANTOM 4 RTK and
2736× 3648 for Huawei Mate 30.

4.1. Qualitative Evaluation

We first give the qualitative comparisons of our surface reconstruction method with
other SOTA methods implemented by third party source libraries including OpenMVS [56]
and COLMAP [26]. For fair comparisons of surface reconstruction, we run OpenMVS and
COLMAP based on our SfM input. Figure 7 shows the reconstruction results of all the
methods on 5 cases “B5 West”, “B5 Tower”, “B5 Wire”, “Qiaoxi Street”, “ZJU Fan”, each of
which contains some thin objects or detailed structures. For fairness to other methods, we
turned off the mesh optimization process when experimenting with OpenMVS. From the
experimental results we can see that our DP-MVS approach performs better than the other
methods in the finally generated 3D models, especially in those regions which contain
rough surface structures and thin structures, which validates the effectiveness of our DP-
MVS method. As shown in the rectangle regions of Figure 7, the geometric details of the
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rough surface structures of the buildings, and the thin structures of the tower antennas and
fan railings are better reconstructed by our detail preserving depth map estimation and
detail-aware surface meshing, compared to other SOTA methods.

Figure 7. Comparison of our DP-MVS pipeline with other SOTA methods on 5 cases: “B5 Tower”,
“B5 West”, “Qiaoxi Street”, “ZJU Fan” and “B5 Wire”. (a) Some representative source images of
each case. (b) The reconstructed surface models of OpenMVS [56]. (c) The reconstruction results
of COLMAP [26]. (d) The reconstructed 3D models by our DP-MVS. Some detailed structures are
highlighted in the rectangles to show the effectiveness of our reconstruction pipeline.
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We also qualitatively compare our surface reconstruction method with the third party
software RealityCapture v1.2 by Capturing Reality (www.capturingreality.com accessed on
3 September 2021) on the cases “ZJU Fan” and “B5 West”, as shown in Figure 8. From the
reconstructed models, we can see that RealityCapture loses geometric details especially
in thin structures. In comparison, our DP-MVS performs better in both reconstruction
completeness and geometric details, as can be seen in the highlighted rectangle regions.

Figure 8. Comparison of our method with the third party software RealityCapture, on the cases
“ZJU Fan” and “B5 West”. (a) Some representative source images of each case. (b) The reconstructed
3D models using RealityCapture. (c) The reconstructed 3D models by our DP-MVS. Some detailed
structures are highlighted in the rectangles to show the effectiveness of our proposed method.

4.2. Quantitative Evaluation

Table 1 provides the quantitative comparison of our DP-MVS system with other
SOTA methods on the case “ZJU CCE” which captures an academic building and a clock
tower occupying an area of almost 3000 m2. The ground truth (GT) 3D model of “ZJU
CCE” was captured by laser scanning for accuracy evaluation on both Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE). For model accuracy evaluation, we use
CloudCompare (http://cloudcompare.org accessed on 3 September 2021) to compare the
reconstructed meshes with GT: we align the mesh with GT using manual rough registration
followed by ICP fine registration, then evaluate the mesh-point-to-GT-plane distances. This
routine is achieved with CloudCompare’s built-in functions. We can see from the model
accuracy evaluation in Table 1 that compared to OpenMVS and COLMAP, our DP-MVS
system reconstructs the surface model of the scene with a centimeter-level accuracy, which
turns out to be the best in both RMSE and MAE. Also, from the comparison of the finally
reconstructed 3D models with other methods on “ZJU CCE” in Figure 9, we can see that

www.capturingreality.com
http://cloudcompare.org


Remote Sens. 2021, 13, 4569 15 of 20

our approach preserves better geometric details than other methods, especially for thin
structures as highlighted in the rectangles.

Table 1. The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) of the reconstruction
results by our system, OpenMVS [56] and COLMAP [26] on the case “ZJU CCE”, whose GT model is
used as reference for error computation. We use bold format to highlight the smallest errors among
all the methods.

Case Measures [cm] OpenMVS COLMAP DP-MVS

ZJU CCE RMSE/MAE 4.337/2.084 4.476/2.275 3.698/1.859

Figure 9. Comparison of our method with other SOTA methods on the case “ZJU CCE”, whose
true 3D model is captured by a 3D laser scanner as GT. (a) Some representative source images.
(b) The GT model captured by the 3D laser scanner. (c) The reconstructed surface model of Open-
MVS [56]. (d) The reconstruction result of COLMAP [26]. (e) The reconstructed 3D model by our
DP-MVS. Some detailed structures are highlighted in the rectangles to show the effectiveness of our
reconstruction method.

We further evaluate our fused point clouds on the high resolution multi-view datasets
of ETH3D benchmark [61]. Table 2 lists the F1-score, accuracy and completeness of the
point clouds estimated by ACMM [50], OpenMVS, COLMAP and DP-MVS. ACMM obtains
higher accuracy than our DP-MVS, because it performs depth map estimation with geo-
metric consistency guidance twice and final median filter with multiple scales to suppress
depth noises, but its detailed structures are also lost. OpenMVS generates point clouds with
more noise and higher redundancy, resulting in lower F1-score and accuracy. COLMAP
achieves higher accuracy at the cost of lower completeness by filtering the points with low
confidence and large reprojection error. In comparison, our proposed system outperforms
other methods in terms of F1-score and completeness because of our detail preserving
depth estimation with even distribution of four-neighboring hypotheses.
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Table 2. Evaluation on high resolution multi-view datasets of ETH3D benchmark. It shows F1-score,
accuracy and completeness at different error levels (2 cm and 10 cm), with bold format highlighting
the best evaluation among all the methods including ACMM [50], OpenMVS [56], COLMAP [26]
and DP-MVS.

Dataset Error Measure ACMM OpenMVS COLMAP DP-MVS

F1-score 78.86 76.15 67.66 80.11
2 cm accuracy 90.67 78.44 91.85 83.56

Training dataset completeness 70.42 74.92 55.13 77.56

F1-score 91.70 92.51 87.61 94.77
10 cm accuracy 98.12 95.75 98.75 95.95

completeness 86.40 89.84 79.47 93.72

F1-score 80.78 79.77 73.01 83.11
2 cm accuracy 90.65 81.98 91.97 84.05

Test dataset completeness 74.34 78.54 62.98 82.73

F1-score 92.96 92.86 90.40 95.68
10 cm accuracy 98.05 95.48 98.25 95.55

completeness 88.77 90.75 84.54 95.85

4.3. Time Statistics

Table 3 gives the time consumption of the depth map estimation, fusion and meshing
of our DP-MVS and other SOTA methods. The experiments are conducted on a server
platform with a 14-Core Intel Xeon E5-2680 CPU, 8 GeForce 1080Ti GPUs, and 500 GB mem-
ory. It can be seen that our pipeline is the most efficient on high-resolution images, which
is more than twice faster than OpenMVS and COLMAP. Note that the time consumption
of our depth map fusion step is extremely more efficient because of our memory-efficient
fusion strategy as mentioned in Section 3.3, which also verifies the practical usefulness of our
cluster-based depth map fusion strategy for large-scale scenes with multiple high-resolution
images as input, for which other SOTA works might have both time and memory limitations.

Table 3. We report detailed time consumptions of our DP-MVS system and other SOTA methods
including OpenMVS [56] and COLMAP [26] in all the steps of cases “B5 Tower”, “B5 West”, “Qiaoxi
Street” and “B5 Wire”. All the time consumptions are calculated by minutes, with bold format
highlighting the fastest time of all the methods.

Case #Images Stages OpenMVS COLMAP DP-MVS

B5 Tower 1163

Depth Estimation 757.57 135.795 54.207
Fusion 99.55 1810.244 48.139

Meshing 132.65 125.49 158.803
Total 989.77 2071.529 261.149

B5 West 513

Depth Estimation 312.56 148.484 26.833
Fusion 47.53 214.713 8.413

Meshing 163.62 64.92 63.191
Total 523.71 428.117 98.437

Qiaoxi Street 305

Depth Estimation 168.87 69.313 11.318
Fusion 18.33 42.538 3.862

Meshing 156 54.1 56.227
Total 343.2 165.951 71.407

B5 Wire 1251

Depth Estimation 728.58 224.183 40.826
Fusion 99.57 1168.048 56.312

Meshing 220.62 165.4 130.764
Total 1048.77 1557.631 227.902



Remote Sens. 2021, 13, 4569 17 of 20

5. Discussion

Our method reconstructs 3D models with too dense faces even in the planar regions,
which results in oversampled mesh topology that gives pressure to both storage and
rendering. How to further optimize and simplify the reconstructed 3D models with more
optimal and more compact topology is a problem worth studying in future. Besides, our
DP-MVS method focuses on how to preserve detailed structures, but does not consider
too much about how to preserve good surface structures for textureless regions or non-
lambertian surfaces, which are as usual as detailed structures in the natural scenes. How
to jointly consider and handle these problems to develop a more powerful multi-view
reconstruction strategy remains to be our future work.

6. Conclusions

In this work, we propose a detail preserving large-scale scene reconstruction pipeline
called DP-MVS. We first present a detail preserving multi-view stereo method to gen-
erate rich detailed structures such as thin objects in the estimated depth maps. Then,
a cluster-based depth map fusion method is proposed to handle large-scale high-resolution
images with limited memory. Moreover, we alter the conventional Delaunay triangulation
method by imposing new visibility constraint and density constraint to extract complete
detailed geometry. The effectiveness of the proposed DP-MVS method for large-scale scene
reconstruction is validated in our experiments.
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