
Digital Object Identifier no. 10.1109/TVCG.2022.3203119

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 11, November 2022 3727

Manuscript received 11 March 2022; revised 11 June 2022; accepted 2 July 2022.
Date of publication 01 September 2022; date of current version 03 October 2022.

1077-2626 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

CoLi-BA: Compact Linearization based Solver
for Bundle Adjustment

Zhichao Ye, Guanglin Li, Haomin Liu, Zhaopeng Cui, Member, IEEE,
Hujun Bao, Member, IEEE, and Guofeng Zhang, Member, IEEE

Trajectory

Sparse model

CoLi-BA based
SLAM/SfM Systems

Scene images

Object images

Input

AR Application

Fig. 1. We propose CoLi-BA, an efficient BA solver to accelerate the optimization process in SLAM and SfM. Employing CoLi-BA in
a single thread, SLAM takes only 20ms in local BA, and reconstructing an object by 100 frames only consumes 6s. Based on the
recovered camera trajectory, we show an AR demo by placing a reconstructed object on a user-selected position of the desk. The
virtual object is highlighted with red boxes.

Abstract— Bundle adjustment (BA) is widely used in SLAM and SfM, which are key technologies in Augmented Reality. For real-time
SLAM and large-scale SfM, the efficiency of BA is of great importance. This paper proposes CoLi-BA, a novel and efficient BA solver
that significantly improves the optimization speed by compact linearization and reordering. Specifically, for each reprojection function,
the redundant matrix representation of Jacobian is replaced with a tiny 3D vector, by which the computational complexity, memory
storage, and cache missing for Hessian matrix construction and Schur complement are significantly reduced. Besides, we also propose
a novel reordering strategy to improve the cache efficiency for Schur complement. Experiments on diverse datasets show that the
speed of the proposed CoLi-BA is five times that of Ceres and two times that of g2o without sacrificing accuracy. We further verify the
effectiveness by porting CoLi-BA to the open-source SLAM and SfM systems. Even when running the proposed solver in a single
thread, the local BA of SLAM only takes about 20ms on a desktop PC, and the reconstruction of SfM with seven thousand photos only
takes half an hour. The source code is available on the webpage: https://github.com/zju3dv/CoLi-BA.

Index Terms—Bundle adjustment, Compact linearization, Schur complement, SLAM, Structure-from-Motion

1 INTRODUCTION

Augmented Reality (AR) requires real-time motion tracking of mobile
devices for rendering 3D objects at the correct position, and also mas-
sive virtual resources to enrich user experiences in various applications.
The former is typically realized by Simultaneous Localization and Map-
ping (SLAM) [7, 21, 26, 33]. The latter can be generated at a low cost

• Z. Ye, G. Li, Z. Cui, H. Bao and G. Zhang are with the State Key Lab of
CAD&CG, Zhejiang University. E-mail: {yezhichao cad, liguanglin,
zhpcui, baohujun, zhangguofeng}@zju.edu.cn.

• H. Liu is with SenseTime Research. E-mail: liuhaomin@sensetime.com.
• Corresponding Author: Guofeng Zhang.

by capturing objects or scenes from photos with Structure-from-Motion
(SfM) [1, 35, 43]. The key technique behind SLAM and SfM is Bundle
Adjustment (BA) [39], which jointly optimizes the 3D structure and
camera poses such that the rays from 3D points to cameras can be
coincident with observations on images. Due to the massive dimension
of parameter space, the efficiency of BA is the main bottleneck for both
real-time SLAM and large-scale SfM. Therefore, how accelerating BA
is a crucial issue for AR applications.

Essentially, BA can be regarded as a nonlinear least square problem,
which is solved iteratively by linearizing the cost function. In each
iteration, a linear system related to the Hessian matrix is constructed and
solved, which takes up most of the calculations. Thanks to the sparsity
of problem that each reprojection function only relates to one camera
and one point, the Hessian matrix has a particular sparsity pattern
and can be constructed efficiently. Besides, the special linear system
can be solved efficiently with the Schur complement trick [46]. In the
direction of utilizing the sparsity pattern, [14,22,39] have done in-depth

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 11, November 20223728

research. To further improve the efficiency, [18, 21, 34] leverage the
incremental nature of SLAM and propose to update Schur complement
incrementally. Other researchers tend to solve BA in parallel by multi-
core CPU/GPU [30, 44], or in distributed manners [12, 47], typically
for the large-scale SfM.

However, the past works do not make full use of the geometric mean-
ing of BA that the Euclidean distance between the observation of 2D
feature points and the projection of 3D map points in the image. Differ-
ent from previous methods, we provide a new perspective to accelerate
BA. The observation is that the 2× 9 matrix representation for the
Jacobian of reprojection error is redundant and can be expressed by 6
degrees of freedom (DoF). Geometrically, in the 6DoF representation of
Jacobian, 3 degrees of freedom correspond to rotation, and 3 degrees of
freedom relate to the ray from the camera to the point. Inspired by this,
we propose a 3D compact representation for linearization by slightly
modifying the reprojection error to fully exploit the geometry properties
of bundle adjustment. For each reprojection function, there are simple
formulas that the relevant Hessian blocks can be represented by the 3D
compact vectors completely. Therefore, the amount of calculation and
storage space is significantly reduced.

The other observation is that for large-scale problems, there are
severe cache misses caused by large sparse matrix multiplication, which
significantly affect the efficiency of BA. Although the memory storage
and cache misses have been reduced by the compact representation,
we further find that the ordering of parameters also greatly impacts
the cache efficiency during the construction of Schur complement.
We describe the calculation process of Schur complement in detail,
and quantify the impact of parameter permutation on the calculation
efficiency, then formulate and solve the optimal problem to further
improve the efficiency.

Based on the proposed compact linearization and reordering strategy,
we propose an efficient BA solver, called CoLi-BA. The proposed
solver can be easily integrated into the framework of SLAM and SfM.
Using the SLAM system and SfM system with CoLi-BA, the scene
camera trajectory and the sparse model of objects can be obtained
quickly. We show an AR demo that places a toy model on the desk of
another scene in Fig. 1.

To sum up, our major contributions are as follows:

• We propose a novel 3D compact representation of Jacobian matrix
and Hessian matrix for each reprojection error, by which the
computational complexity, memory storage, and cache misses for
linear system construction are greatly reduced.

• We propose a novel reordering strategy that can find a better
parameter permutation to accelerate the memory access speed in
Schur complement. The proposed method improves the Schur
complement speed by 25% without sacrificing accuracy.

• Based on compact linearization and reordering strategy, we pro-
pose an efficient BA solver, CoLi-BA. Experiments on the sequen-
tial images and Internet photo collection verify the effectiveness
of the proposed solver, whose speed is five times that of Ceres
and two times that of g2o without sacrificing accuracy.

• We replace the optimizers on open-source systems (e.g., ORB-
SLAM2, COLMAP) with CoLi-BA. Extensive experiments show
that the proposed method is efficient and robust, which can be
directly applied to SLAM and SfM.

2 RELATED WORK

Bundle adjustment is critical and widely used in many systems, espe-
cially in SLAM [7, 8, 11, 21, 26, 33, 40, 41] and SfM [1, 20, 24, 35, 43].
In SLAM systems, local and global BA are often used to reduce accu-
mulated drifts. [26] performs frequent local BA to optimize keyframes
and keypoints, thus improving the accuracy of SLAM. Meanwhile,
the efficiency of BA has become the bottleneck of this kind of SLAM
system. Large-scale reconstructions methods [35] often take BA as
the last step to refine camera poses and points. Recent proposed SfM
methods based on deep features [20] still use BA to refine cameras

and points and improve the accuracy of reconstruction. The process of
large-scale reconstructions often takes hours, and BA accounts for a
large part of the time.

Bundle adjustment can be solved as a nonlinear least-squares prob-
lem by iteratively computing and updating the linear approximation at
the current state. Thanks to the sparsity of the problem, Schur comple-
ment can construct a reduced linear system, reducing linear solution
time, which is a standard step in many BA solver [22, 39, 48]. Besides,
the sparse structures also contribute to matrix operations, g2o [14] use
graph structure to represent the sparse relation between residuals and
parameters that use graph optimization to solve problems efficiently.
Some large-scale matrix solving algorithms with pure numerical op-
timization, such as PCG, is introduced to accelerate further the speed
of BA solver [3, 5]. The speed of optimization is highly related to the
number of parameters. Facing large scenes, the convergence becomes
extremely slow, resulting in many offline reconstruction systems time-
costing [3, 35, 45]. For real-time applications, it is unrealistic to carry
out global optimization frequently, so only the cameras and 3D points
related to the current frame will be added to a local optimization, which
ensures accuracy. Even for the optimization in such a small window,
the existing methods are difficult to achieve real-time operation on the
lightweight computing platform.

To meet the real-time challenge of application, the incremental strat-
egy [19] is proposed, which updates the square root factor directly, so
that avoid unnecessary calculations. To further enhance incremental
update, specially designed data structures are proposed, such as Bayes
tree [18]. [34] presents an incremental implementation of the Powell’s
Dog-Leg [32] numerical optimization method, which is robust to objec-
tive function nonlinearity and numerical ill-conditioning. [17] solves
the fast covariance recovery with an incremental framework. [21] lever-
ages the sparseness and banded matrix structure for the optimization
of sliding window and global optimization and proposes an efficient
VIO system. Due to fixing the linearization of some parameters, there
is often a slight sacrifice in accuracy for incremental strategy. Another
method [6] uses multiple camera poses to represent points, so as to
build a pose-only problem to improve the speed. In essence, it is an
approximation of the original cost function, and the accuracy will also
be reduced.

With the development of hardware such as multi-core CPU and
GPU, many works realized distributed or parallel implementations to
accelerate BA. [27] speed up the BA consider solving in a distributed
manner and [44] restructured and parallelized the matrix production
used in the PCG iterations. Considering the characteristics of block
matrices, [31] takes advantage of the block matrix manipulation and the
efficiency of the cache. [30] accelerated the sparse matrix multiplication
on a GPU. Besides, deep learning methods based on differentiable and
end-to-end training [37, 38] provide another approach for improving
the robustness and efficiency of BA.

Unlike the previous methods, this paper reviews the linearization
from the perspective of geometry, and proposes a compact linearization
method. Besides, the reordering strategy is proposed to alleviate the
memory access efficiency problem in large sparse matrix multiplication.

3 METHOD

3.1 Framework of Bundle Adjustment
Before going into details of the proposed method, we introduce the
general implementation of BA. As shown in Fig. 2, the general frame-
work of BA solver is mainly composed of four parts. In the Jacobian
evaluation module, the solver computes the residuals and Jacobians at
the current state of parameters for each reprojection function. Then, the
solver constructs a linear system which is a linear approximation of the
nonlinear cost function. Schur complement is used here to reduce the
linear system size, also called point marginalization. After the linear
system is constructed, there are many methods for solving the linear
system, such as Cholesky factorization [9], QR factorization [15] and
PCG [10]. The linear solution consists in potential parameter incre-
ments.Before parameters are actually updated by the increments, it
is also necessary to check whether the linear solution is reliable and
the total cost is decreased. The linear solving and parameter update is

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

3729ye ET AL.: CoLi-BA: Compact Linearization based Solver for Bundle Adjustment

Fig. 2. The framework of a general BA solver.

Jacobian Evaluation Linear System Construction
Linear Solver Parameter Update Other

Fig. 3. Time proportion of each part of BA in Ceres Solver. The problem
has 4,541 cameras and 646,971 points, and linear system construction
dominates the overall calculation time.

performed iteratively, until the problem convergence or the maximum
number of iterations. In the process described above, some details vary
depending on the minimization strategy being used, such as Gauss-
Newton (GN) [4], Levenberg–Marquardt(LM) [23], and Dogleg [28].
The famous open-source frameworks Ceres and g2o follow this frame-
work. According to our test, the calculation time is mainly spent on
the process of constructing and solving the linear system, as shown
in Fig. 3. The proposed method mainly focuses on accelerating the
construction, which occupies the most time.

3.2 Compact Linearization

Bundle adjustment aims to optimize camera poses and 3D points by
minimizing the reprojection error between the 2D observation of a 3D
point and its projection onto the image plane by the camera pose. Since
each reprojection function relates only to one camera and one point,
the problem has a special sparse structure. Previous methods mainly
focused on the sparse structure, while few researchers considered its ge-
ometric properties. In fact, from the perspective of geometry, problems
often have more concise expressions and great acceleration potentials.
For example, the rotation matrix has nine elements but only 3 degrees
of freedom. For the interpolation or multiplication operation of two
rotations, using quaternion expression instead of rotation matrix can
simplify the computation. The 3D Lie algebra captures the essence of
rotation multiplication, and can effectively deal with the infinitesimal
transformation and iterative optimization problems of rotation.

In previous works, the linearization of reprojection function means
to compute a 2×9 Jacobian matrix, where 2 and 9 are the dimensions
of the error and parameter, respectively. The observation is that the
Jacobian only depends on the rotation and the ray from the camera
center to the point, corresponding to 6 degrees of freedom. Therefore,
the matrix representation is redundant. In this section, we propose a
compact representation for linearization to speed up.

Fig. 4. Visualization of the reprojection error. The point p j is transformed
from the world coordinate system to the camera coordinate system qi j,
then projected to the normalized plane by function h(qi j). We enlarged
the part in the blue dotted box and marked red on the geometric vectors
l1 and l2 corresponding to the reprojection errors in the normalized plane
and the unit sphere. The ray in the world coordinate system is denoted
by ai j which represents the vector from ti to p j.

3.2.1 Modified reprojection error

Given camera pose set C = {ci|i = 1...nc} and point set P = {pi|i =
1...np}, the cost function of BA problem can be formulated as

f (C,P) =
1
2 ∑

k
||ek(ci, p j)||2, (1)

where ek(ci, p j) is the reprojection error function which projects p j
onto the image normalized plane of ci and computes the distance be-
tween the projection zi j and the 2D observation z̃i j. The reprojection
error can be defined as

ek(ci, p j) =zi j − z̃i j = h(qi j)− z̃i j,

qi j = Riai j,

ai j = p j − ti,

h([x,y,z]T) = [x/z,y/z]T ,

(2)

where (Ri, ti) is the rotation and translation of camera ci, ai j is the ray
from camera center ti to the point p j. The reprojection function first
rotates the ray ai j from world to camera coordinate to obtain qi j, then
projects qi j to the normalized plane by the homogeneous normalization
function h(·). The process is illustrated in Fig. 4.

The Jacobian of Eq. (2) is composed of three components Ji j =

[Jϕ
i j ,J

t
i j,J

p
i j] with respect to rotation, translation and point respectively,

which can be calculated with the chain rule:

Jϕ
i j =

∂ek

∂ϕi
=

∂ek

∂qi j

∂qi j

∂ϕi
,

Jt
i j =

∂ek

∂ ti
=

∂ek

∂qi j

∂qi j

∂ ti
,

Jp
i j =

∂ek

∂ pi
=

∂ek

∂qi j

∂qi j

∂ p j
,

(3)

where ϕi is the right perturbations of rotation. The first parts in Eq. (3)
correspond to the homogeneous normalization which are common for
the three components, and are computed as:

∂ek

∂qi j
=

[
1
z 0 − x

z2

0 1
z − y

z2

]
, (4)

where (x,y,z) are three elements of qi j. The second parts correspond

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 11, November 20223730

to rigid transformation, calculated as

∂qi j

∂ϕi
=−Ri[ai j]×,

∂qi j

∂ ti
=−Ri,

∂qi j

∂ p j
= Ri.

(5)

The rigid transformation part has 6 degrees of freedom, 3 for rotation
Ri and 3 for the ray ai j. The normalization part also depends on this
6DoF, since qi j = Riai j . The Jacobian will be used to compute Hessian
by multiplication among the three components. Although the Jacobian
has only 6 degrees of freedom, due to the troublesome calculation of
normalization part ∂ek

∂qi j
, it is more efficient to use the redundant matrix

representation for the later multiplication operations.
In order to improve the efficiency, we use spherical reprojection

error, which is applied in VINS-Mono [33] and SfM for fisheye cam-
eras [16, 29]. Previous work [29] has shown that using the modified
reprojection is adequate and leads to better results than a reprojection
on the normalized plane when using panoramic cameras. However,
the potential improvements on efficiency are not exploited in previous
works. Compared with the traditional reprojection error, the spherical
reprojection error modify the normalization part by projecting qi j onto
a unit sphere instead of the normalized plane:

ek =
qi j

||qi j||
−

x̃i j

||x̃i j||
= Ri

ai j

||ai j||
−

x̃i j

||x̃i j||
, (6)

where x̃i j = [z̃i j,1]T is the homogeneous coordinate of z̃i j . As shown in
Fig. 4, both errors measure the distance between ray ai j and observation
x̃i j , but in different domains.

After modification, the Jacobian becomes

Jϕ
i j =−Ri[āi j]×,

Jt
i j =−si jRi(I − āi j āT

i j),

Jp
i j = si jRi(I − āi j āT

i j),

(7)

where si j =
1

||ai j || and āi j =
ai j

||ai j || . Compared with the original cost
function, the modified Jacobian has the same 6DoF, but consists of
three matrices having strong geometric properties:

• rotation matrix Ri: can be transposed to get its inverse, as an
orthogonal matrix.

• antisymmetric matrix [āi j]×: can be represented by cross-
production.

• projection matrix (I − āi j āT
i j): can project vectors to the vertical

plane of āi j.

Leveraging these geometric properties will significantly accelerate the
construction of the Hessian matrix and Schur complement.

3.2.2 3D compact representation

As shown in Fig. 5 ,the Hessian matrix of BA is a square matrix of
dimension (Nc +Np), that Nc = 6nc,Np = 3np. Note, the top-left part
is a diagonal block matrix A = diag(Hcc

1 ...Hcc
nc
) with i-th block Hcc

i
corresponding to the i-th camera. Similarly the bottom-right part is
also a diagonal block matrix B = diag(H pp

1 ...H pp
np) with j-th block

H pp
j corresponding to the j-th point. The top-right block matrix D is

also a sparse matrix, with non-zero block (i, j) corresponding to the
reprojection function of i-th camera observing j-th point, denoted as

Fig. 5. An example of the Hessian matrix of BA. Small colorful squares
represent the blocks of the Hessian matrix that red square is 6×6 matrix,
the blue square is 3×3 matrix, and the green square of the upper right
corner is 6×3 matrix.

Fig. 6. The cyclic group of cross production in the vertical plane of
vectors. Suppose n is a unit vector, m is an arbitrary vector, and i is a
positive integer. Vector [n]i×m is always in the vertical plane of n, vectors
[n]i×m and [n]i+1

× m are always orthogonal. Besides, the projection of m is
equivalent to the four consecutive cross production.

Hcp
i j . The blocks of the Hessian matrix can be computed by

Hcc
i = ∑

j
Jc

i j
T Jc

i j,

H pp
j = ∑

i
Jp

i j
T Jp

i j,

Hcp
i j = Jc

i j
T Jp

i j,

(8)

where Jc
i j = [JR

i j,J
t
i j].

Because the rotations of Jacobians are on the left side of the formula
in the Eq. (7), it will be eliminated in the Hessian matrix. Take H pp

j as
an example:

H pp
j = ∑

i
(si jRi(I − āi j āT

i j))
T (si jRi(I − āi j āT

i j))

= ∑
i

s2
i j(I − āi j āT

i j)
T RT

i Ri(I − āi j āT
i j)

= ∑
i

s2
i j(I − āi j āT

i j)
T (I − āi j āT

i j).

(9)

By constructing e′k = Riek, the rotation of Jc
i j

T e and Jp
i j

T e can also be
eliminated. Then we can compute the Hessian matrix merely with
antisymmetric matrix and projection matrix. Since the antisymmetric
matrix and projection matrix can be represented by ai j, it means that
we can replace the 2×9 Jacobian matrix in linearization by merely a
3D vector which we call compact representation.

3.2.3 Cyclic group

There are a lot of multiplications about antisymmetric matrix and
projection matrix if we substitute the Eq. (7) into the Eq. (8). Since the
direct calculation is very time-consuming, we introduce the geometric
properties of cross-production and projection to simplify the form
and reduce the amount of calculation. Given a 3D unit vectors n =

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

3731ye ET AL.: CoLi-BA: Compact Linearization based Solver for Bundle Adjustment

(n1,n2,n3), the matrix [n]× satisfies

[n]2× =



−n2

2 −n2
3 n1n2 n1n3

n2n1 −n2
1 −n2

3 n2n3
n3n1 n3n2 −n2

1 −n2
2


= nnT − I

[n]3× = [n]×(nnT − I) = [n]×nnT − [n]× =−[n]×

[n]4× = [n]×[n]3× = [n]×(−[n]×) = I −nnT

(10)

and thus the multiplications about [n]× and I −nnT can be expressed
in terms of [n]i×. In fact, for arbitrarily positive integer i, we have

k = i (mod 4), t = (i− k)/4,

[n]i× = [n]4t
× [n]

k
× = (I −nnT)t [n]k× = [n]k×.

(11)

Thus there is a cyclic group G = {[n]k×| k = 0,1, ...,3} with [n]0× =

I −nnT . To understand the cyclic group better, we also illustrate it in
Fig. 6. All vectors [n]k×m are located on the vertical plane of n and the
vector [n]k+1

× m can be obtained by rotating vector [n]k×m by 90 degrees
in the plane.

With âi j = si jāi j , Eq. (8) can be simplified as:

Hcc
i = ∑

j


−[āi j]

2
× −[âi j]×

[âi j]× −[âi j]
2
×



H pp
j = ∑

i
−[âi j]

2
×

Hcp
i j =


[âi j]×
[âi j]

2
×


(12)

Compared with direct matrix multiplication, 3D compact represen-
tation requires less computation, but does not sacrifice accuracy. In
addition, the block Hcp

i j can also be represented by the tiny 3D vector
âi j , and does not need to be explicitly calculated or stored.

3.2.4 Schur complement

Schur complement is a classic method for constructing a reduced linear
system, which has become a standard step in the BA problem. The re-
duced system decreases the time of solving but adds the computational
overhead for the construction. For large problems, the computing time
of Schur complement is dominated by the construction of the linear
system.

Consider Schur complement in the Hessian matrix:


A D
DT B


δa
δb


=


εa
εb


, (13)

Sδa = εa −D′εb,

S = A−D′DT ,

D′ = DB−1.

(14)

The above formula presents a reduced matrix equation which can
greatly decrease the time of solving. However, the calculation process
of A−D′DT is quite time-consuming. Since A and B−1 is diagonal
block matrix, the calculation of A−X and XB−1 is relatively fast, and
the main time-consuming part is the multiplication of two large sparse
matrices in D′DT . Denoting the blocks of D′DT by di j,

di1i2 =

j∈Ti1 i2

∑
j

Hcp
i1 jH

pp
j

−1Hcp
i2 j

T
, (15)

where Ti1i2 is the set of common points between camera (i1, i2). In each
item of Eq. (15), the number of floating-point multiplication is 162
that 54 of the first matrix multiplication Hcp

i1 j ×H pp
j

−1 and 108 of the

Fig. 7. The block structure of matrices D corresponds to the visibility
between cameras and points, which a bipartite graph on the left can
represent. Red/blue nodes are cameras/points, and the edge represents
the point is detected in the camera. The graph on the right represents
the structure of S. Nodes are cameras, and an edge represents the two
cameras that have common points.

Fig. 8. We can use four binary codes to represent the row structure of
matrix D. The optimal permutation problem can be transformed into a
graph, and the weights of edges are the similarity of different rows. In
this example, 3214 is one of the best permutations of rows.

second matrix multiplication (Hcp
i1 jH

pp
j

−1
)×Hcp

i2 j
T . With our compact

representation, multiplication can be simplified. Given a 3D vector x,

Hcp
i j x =


âi j × x

âi j × (âi j × x)


(16)

so the calculation of Hcp
i j x in the compact representation only needs

two cross productions. Compared with the original 3×6 matrix, the
amount of floating-point multiplication of Hcp

i j x is reduced from 18 to
12. The amount of floating-point multiplication in Eq. (15) is reduced
by one-third, from 162 to 108 for each point.

3.3 Reordering Strategy
In Schur complement, memory access is one of the bottlenecks to
improving computing speed. Even if adopting sparse matrix storage,
there still be severe cache misses for large-scale problems. In order
to solve this problem, we propose a reordering strategy to make the
data arrangement more suitable for efficient memory access. Different
from previous works of reordering parameters [39] aiming to reduce
the calculation of solving the linear system, our goal is to speed up
the construction by improving the memory access efficiency. In this
section, we first explain why the matrix permutation can speed up
memory access, then formulate the optimal permutation problem, give
a heuristic solution based on graph theory, and finally discuss some
details of implementation.

Matrix permutation. Eq. (15) involves Hcp
i1 j and Hcp

i2 j that are in
the i1-th row and the i2-th row of block matrix D. Denote Ti as the set

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 11, November 20223732

Fig. 9. The structure of D before and after reordering in real data Alamo.
The matrix which has 792× 50,000 blocks, is represented by a image
with resolution of 792×500, and each pixel corresponds to 100 blocks.
The pixel color indicates the number of non-zero blocks. The white pixel
means there is no non-zero block. The darker the blue color, the more
non-zero blocks it contains. After reordering, the structure becomes
more compact.

including column indexes of non-zero blocks of i-th row of D. There is

Ti1i2 = Ti1 ∩Ti2 . (17)

Even if Ti1 and Ti2 have thousands of elements, most Ti1i2 have no or
few elements. To compute the few elements in Ti1i2 , we have to read
data from thousands of elements in Ti1 and Ti2 . If the involved blocks
are stored compactly, we only need to access a small area to read them.
Unfortunately, these elements are generally scattered throughout the
row, resulting in inefficient memory access. By changing the column
permutation of block matrix D, we can make the non-zero elements of
indexes in Ti1i2 close to each other to alleviate this problem. The row
permutation is similar. Since each element Hcp

i j of D corresponds to a
constraint between cameras and points, reordering the rows or columns
of D is equivalent to changing the index of cameras or points. Fig. 7
shows the structure of D corresponds to a bipartite graph that consists
of cameras and points.

Problem definition. How to reorder to accelerate D′D is a fasci-
nating topic. Due to the inconsistent memory access rules on different
hardware, it is not easy to use one model to quantitatively estimate the
time under different permutations to select a valid optimal permutation.
Therefore, we propose a qualitative optimization of the data permuta-
tions. The plain idea is that two rows/columns with similar structures
should be adjacent. We define the problem as minimizing the structure
difference between adjacent rows/columns according to this idea. We
can use a string of binary br

i to represent the data structure of i-th row in
the block matrix D that 1 indicates a non-zero element and 0 indicates
an empty block. A simple example of the binary representation is given
in Fig. 8. With the binary strings, the problem is formulated as

min
O ∑br

oi
∧br

oi+1
, (18)

where O = o1 · · ·on, which is a permutations of 1 · · ·n.
Graph representation. It is not easy to solve the original problem

directly, so we convert it to a weighted graph. Graph G is defined
that each node is the structure of a row, and the weight of the edge
between the two nodes br

i ,b
r
j is set to br

i ∧ br
j. An example of this

graph representation is also illustrated in Fig. 8. The problem is
to find a path P that passes through all nodes and has the highest
weight, that is, the maximum Hamiltonian path on graph G. Finding
the maximum Hamiltonian path is a variant of the symmetric traveling
salesman problem (TSP), which is an NP-hard problem. Finding the
exact solution to the problem is unrealistic, leading to the reordering
time greater than the multiplication of the sparse matrix. Although

Fig. 10. Time comparison under different problem sizes (Left). We
intercept 100 ∼ 4,500 frames on Seq.00 to construct BA problems of
different sizes. As the problem size increases, our calculation time
increases more smoothly than other methods. Linear construction time
comparison under different problem sizes (Right). It can be found that
the trend of linear construction time and total time is similar. The time
difference between different methods is mainly caused by the linear
construction time.

Fig. 11. The statistics of cache misses for different datasets. We count
the number of cache misses, and use the result of Ceres for normalization
such that Ceres is always 100%.

there are many solutions for TSP, we finally choose the nearest neighbor
heuristic algorithm that treats the nearest neighbor as the next node to
avoid the excessive time of calculating the optimal permutation. Denote
i-th row of D by Di. We select an arbitrary row as the first node Do1 .
Then we recursively set the node in the remaining rows that has the
most similar structure with Doi as the next node Doi+1 .

Implementation details. For camera reordering, directly comput-
ing the hamming distance between binary strings is time-consuming
because the size of the string equals the total number of points in the
whole scene. In the implementation, we evaluate the similarity by
counting the number of common points between two cameras. For
point reordering, finding the most similar next point for each point
is also time-consuming because there are too many candidates. We
propose to use the bucket sorting algorithm to reorder points directly
according to the minimal index of the camera connecting to the point.
In order to better show the effect of reordering on data arrangement,
we illustrated a real example in Fig. 9, visualizing the change of D
matrix before and after reordering. After sorting, the original messy
data becomes more compact and regular.

4 EXPERIMENT

We evaluate the proposed CoLi-BA on real datasets, including se-
quential images (KITTI dataset [13]) and unordered images (1DSfM
dataset [42]). Firstly, the performance is compared to the open-source
optimizer Ceres [2] and g2o [14]. Then, the ablation experiments of
the compact linearization and the reordering strategy are carried out re-
spectively. Finally, we test the performance of the proposed method in
the SLAM/SfM systems. The experiments are conducted on a desktop
PC with an Intel i7-9700K 3.6GHz CPU, 64GB of memory.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

3733ye ET AL.: CoLi-BA: Compact Linearization based Solver for Bundle Adjustment

Table 1. Performance comparison of BA solvers.

#cameras #points #constraints #Memory[MB] #Time[s] #Avg. Reproj. Error [px]
ceres g2o CoLi ceres g2o CoLi ceres g2o CoLi

Seq.00 4541 646971 5149157 3288 4145 1380 81.43 32.44 12.61 0.54 0.52 0.52
Seq.01 1101 204186 1083097 854 948 354 19.14 6.07 3.91 2.71 7.23 1.46
Seq.02 4661 1319942 7328965 4636 6169 1458 77.80 32.23 13.53 0.77 0.78 0.41
Seq.03 801 145589 1361058 815 1059 412 22.94 6.87 3.28 0.45 8.08 0.76
Seq.04 271 61210 390669 238 315 90 4.41 1.68 0.83 0.40 0.41 0.40
Seq.05 2761 347937 3086266 2038 2469 918 56.74 17.50 11.42 0.50 0.49 0.48
Seq.06 1101 310668 1913646 1267 1577 449 26.80 9.71 4.60 0.67 0.50 0.53
Seq.07 1101 242300 1566925 893 1247 324 20.32 6.89 2.61 0.88 4.45 0.53
Seq.08 4071 1095471 6237268 3942 5240 1264 60.94 27.17 10.42 1.66 7.63 0.47
Seq.09 1591 466468 2306450 1469 1984 473 19.74 9.61 3.50 0.92 0.72 0.46
Seq.10 1201 274900 2052222 1142 1546 383 25.24 9.70 3.97 1.01 2.08 0.44
Alamo 797 50030 559346 460 449 308 38.42 8.78 4.27 1.02 1.01 1.02
Ellis Island 394 39350 254437 159 191 76 6.79 1.70 0.75 1.16 1.16 1.63
Gendarmenmarkt 949 76820 499985 313 366 145 12.96 3.42 1.81 1.28 1.37 1.18
Madrid Metropolis 405 28236 170431 108 121 47 3.22 1.01 0.48 1.36 1.78 1.33
Montreal Notre Dame 556 56591 502472 325 385 198 21.93 4.90 2.26 1.19 1.19 1.18
NYC Library 509 37859 275573 157 185 67 6.43 2.17 0.87 1.30 1.91 1.02
Piazza del Popolo 895 47980 379416 231 256 132 14.82 3.35 2.64 1.05 1.06 1.04
Piccadilly 2874 141532 1248286 2213 1419 1097 139.97 30.85 17.02 1.14 1.21 1.10
Roman Forum 1407 104613 800409 559 617 254 23.92 9.69 3.04 2.09 1.27 1.14
Tower of London 584 47106 371717 225 277 98 7.67 2.66 1.31 1.03 1.02 1.00
Trafalgar 7082 264540 2667791 6129 3408 3005 436.34 102.82 49.80 1.19 1.19 1.22
Union Square 750 25050 213156 98 105 31 4.56 1.38 0.84 1.64 1.76 0.94
Vienna Cathedral 1049 96549 887375 612 691 387 52.06 11.95 5.20 1.08 1.08 1.07
Yorkminster 967 93883 648636 376 463 146 14.06 4.92 2.24 1.07 1.07 1.06

Fig. 12. The different convergence speed of reprojection function and
modified reprojection function on KITTI Seq.02.

4.1 Performance Comparison
We compare the performance of the proposed CoLi-BA with two state-
of-the-art methods (i.e., g2o and Ceres) on various datasets. All optimiz-
ers iterate five times with the convergence condition off. The adopted
strategy is LM, and the linear solution method is PCG. The input to
different solvers is the reconstruction result generated by COLMAP
containing camera poses, 3D points, and 2D observations. Furthermore,
we add Gaussian noise to the initial camera poses and 3D points to
make the average reprojection error about 10 pixels. Ceres and g2o use
the classic reprojection error, while we use the modified reprojection
error defined on the sphere. As shown in Table 1, we record the prob-
lem size, the memory size for optimization, the overall optimization
time, and the final reprojection error (the classic reprojection for a fair
comparison) to analyze the differences in efficiency and accuracy. The
memory size is computed by the total program memory subtracting
the size of the input map. Thanks to compact linearization, our mem-
ory consumption is significantly reduced. Meanwhile, the speed of
the proposed method is improved about two times than g2o and five
times than Ceres. The impact of the problem size on speed is further
discussed in Fig. 10. In all scale problems, the proposed method has a
significant speed improvement, and this improvement mainly comes
from the high efficiency of linear system construction. In terms of ac-
curacy, CoLi-BA achieves the best performance on most of the datasets
when considering limited iteration numbers of optimization, which is
mainly due to the different convergence speeds of reprojection function

Fig. 13. Accuracy comparison for different cost functions. The modified
cost function has comparable accuracy to the original reprojection func-
tion.

and modified reprojection function. The error-iteration curves under
different formulations of reprojection error are reported in Fig. 12. The
loss of the spherical error decreases faster and tends to converge after 4
iterations while the baseline formulation spends 12 iterations achieving
competitive accuracy.

In addition to time and accuracy, we quantitatively measure the
number of caching misses of different methods in optimization using
the performance analysis tool Perf. As shown in Fig. 11, the proposed
method has a good memory access efficiency which is significantly
superior to state-of-the-arts. The number of cache misses is reduced by
four times compared to Ceres and twice compared to g2o.

4.2 Ablation Study
We perform the ablation study to investigate the effect of the proposed
compact linearization and reordering strategy on accuracy and effi-
ciency. We select 8 representative data according to problem size.
Sequential data contains two long sequences (Seq.00, Seq.02) and two
short sequences (Seq.03, Seq.04). Similarly, unordered data contains
two small scenes (Alamo, Ellis Island) and two large-scale scenes
(Piccadilly, Trafalgar).

4.2.1 Compact Representation

The proposed compact representation requires to slightly modify the
reprojection function. To investigate the effect on reconstruction accu-
racy, we use the original reprojection error as the indicator of accuracy,

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 11, November 20223734

Table 2. Time Comparison for Compact Linearization.

#Evaluation[s] #Construction[s] #Total Time[s]
baseline compact baseline compact baseline compact

Seq.00 0.79 0.54 9.27 5.63 25.22 19.63
Seq.02 1.13 0.76 8.69 5.85 22.94 18.66
Seq.03 0.21 0.14 2.98 1.67 6.38 4.72
Seq.04 0.06 0.04 0.51 0.34 1.13 0.90
Alamo 0.87 0.06 4.73 1.72 7.74 4.71
Ellis Island 0.04 0.03 0.80 0.34 1.29 0.86
Piccadilly 0.21 0.15 14.16 5.99 47.71 40.40
Trafalgar 0.69 0.32 40.32 18.49 85.64 62.85

Table 3. Time Comparison for Different Reordering Strategies.

#Linear System Construction Time[s]
baseline RC RP RC+RP

Seq.00 9.27 9.07 7.72 7.59
Seq.02 8.69 8.27 7.35 7.45
Seq.03 2.98 2.94 2.36 2.30
Seq.04 0.51 0.49 0.43 0.42
Alamo 4.73 3.80 3.89 3.11
Ellis Island 0.80 0.63 0.67 0.56
Piccadilly 14.16 11.89 11.09 9.28
Trafalgar 40.32 33.47 33.08 26.70

Table 4. Performance comparison with the incremental method.

#Time[s] #Error[px]
inc. [17] ours inc. [17] ours

Cathedral 66.88 26.49 7.05 2.12
Venice 3078.52 3250.59 10.07 2.47

and compare the accuracy with and without modification. To ensure
convergence, we set the number of iterations to 50. As shown in Fig. 13,
slightly modifying the cost function does not affect the final results.

To investigate the effect on efficiency, we compare the runtime with
and without compact representation in Table 2. Both methods use the
modified reprojection function. baseline denotes traditional matrix rep-
resentation and compact denotes the proposed compact representation.
Here the reordering is disabled to emphasize the effect of compact repre-
sentation. Table 2 compares the Jacobian evaluation time (Evaluation),
linear system construction time (Construction), and total optimization
time (Total Time) between the two methods. The Jacobian evalua-
tion occupies a small fraction of computation. The efficiency gain is
mainly reflected in the linear system construction. We also find that the
compact linearization on the unordered images has a more significant
improvement compared to the sequential sequences. This is because
the D matrix of Hessian for unordered data is relatively dispersed in
memory. Using 3D vectors to represent the blocks of D brings more
significant benefits.

4.2.2 Reordering Strategy
To analyze the efficiency of the reordering strategy, we disable the com-
pact linearization, and compare the time of linear system construction
under different strategies. As shown in Table 3, we compare four cases:
no reordering baseline, only camera reordering CR (also called row
reodering), only point reordering PR (also called column reodering),
and both reordering CR+PR. It can be found that point reordering is
very effective for all data sets. However, for camera reordering, the
performance in unordered images is undeniable, but the linear system
construction time of sequential sequence has little change. In sequence
images, due to the large overlapping between adjacent frames, the orig-

Fig. 14. The camera reordering results in unordered images and se-
quential images. The left two pictures represent the structure of matrix D
before and after reordering rows in Alamo. The right two picture is the
results in Seq.03. Compared with unordered images, camera reordering
has a minor impact on sequential images.

0

5

10

15

20

Seq.00 Seq.02 Seq.03 Seq.04 Alamo Eillis
island

Piccadilly Trafalgar

CoLi CoLi (8 thread)

Fig. 15. Time comparison for multithreaded version. We recorded the
linear construction time for the original CoLi-BA and 8 threads version.

inal camera order is good enough, which makes camera reordering not
significant. To better illustrate this point, we demonstrate the reordering
difference of sequential images and unordered images in Fig. 14.

4.3 Comparison of acceleration approaches

In addition to the comparison with the standard solver, we also ana-
lyze the advantages of the proposed method with other acceleration
approaches.

Incremental methods. We compare with the incremental method
[17] in two datasets Cathedral (92 frames) and Vince (871 frames),
since these are the only datasets with the incremental version provided
by its open-source warehouse. We run implementation of [17] with
the incremental strategy and Schur complement activated. Note that
without an incremental strategy, CoLi-BA always construct the linear
equation from scratch when each frame is added to the problem. For a
fair comparison, the maximum iteration number for each optimization
of both solvers is set to 5. As shown in Table 4, the accuracy of the in-
cremental method is inevitably affected by its approximation strategies,
while our method consistently achieves better accuracy. Meanwhile,
thanks to the proposed compact linearization, our method also achieves
a decent speed even without an incremental strategy, and both our
accuracy and speed exceed the results reported in [17]’s paper (i.e.,
Cathedral: 705.738s, 2.644px).

Parallelization methods. The parallelization methods accelerate
BA with multithreading techniques (e.g., CPU based approaches such
as MKL, OpenMP, and GPU based approaches such as CUDA and
OpenCL), which can be easily applied to our method. Here we imple-
ment a multi-threaded CPU version CoLi-BA based on OpenMP. As
shown in Fig. 15, our method gains significant performance improve-
ment (with 467 % on average), which demonstrates the great potential
of CoLi-BA when deploying on a parallelized framework.

Distributed methods. The distributed method divides the original
BA problem into several subproblems to solve. For example, [47] build
the subproblems with the ADMM approximation algorithm and use
Ceres optimization to solve each subproblem. Nevertheless, minimizing
the reprojection error is still a must for each subproblem. Therefore,
the performance of these distributed methods can still benefit from our
compact linearization without sacrificing accuracy.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

3735ye ET AL.: CoLi-BA: Compact Linearization based Solver for Bundle Adjustment

4.4 Application for SLAM/SfM

Table 5. Evaluation Reconstruction Results for SfM Systems.
#Size #Registered #Time[minutes] #Avg. Reproj. Error [px]

COLMAP SfM* COLMAP SfM* COLMAP SfM*
Alamo 2,915 803 841 41.55 4.30 1.01 1.04
Ellis Island 2,587 385 401 10.89 1.61 1.13 1.18
Gendarmenmarkt 1,463 956 961 17.70 2.76 1.07 1.07
Madrid Metropolis 1,344 405 404 9.17 1.00 1.25 1.25
Montreal Notre Dame 2,298 558 559 25.59 2.42 1.16 1.21
NYC Library 2,550 527 527 17.08 1.36 1.01 1.01
Piazza del Popolo 2,251 883 907 12.48 1.95 1.04 1.22
Piccadilly 7,351 2956 2893 64.00 11.77 1.09 1.17
Roman Forum 2,364 1416 1436 38.12 3.66 1.06 1.14
Tower of London 1,576 586 611 16.14 1.52 0.97 1.01
Trafalgar 15,685 6968 7392 179.46 30.47 1.07 1.18
Union Square 5,961 767 768 13.31 1.36 0.99 1.12
Vienna Cathedral 6,288 1115 1119 53.17 5.93 1.10 1.08
Yorkminster 3,368 984 981 38.94 2.46 1.05 1.09

Table 6. Translation RMSE and Time Comparison on KITTI Dataset.

#RMSE[m] #LBA Time[ms] #GBA Time[s]
ORB-SLAM2 SLAM* ORB-SLAM2 SLAM* ORB-SLAM2 SLAM*

Seq.00 6.63 6.27 45 22 22.77 12.49
Seq.02 23.02 24.58 32 17 19.97 9.62
Seq.03 1.64 1.38 79 37 0.0 0.0
Seq.04 0.98 0.78 42 23 0.0 0.0
Seq.05 6.51 4.63 51 25 15.19 6.75
Seq.06 15.72 12.92 39 18 3.66 1.85
Seq.07 2.21 1.50 37 23 3.09 1.22
Seq.08 17.46 24.9 34 17 0.0 0.0
Seq.9 7.15 7.23 27 16 4.12 1.78
Seq.10 7.38 8.01 29 16 0.0 0.0

In order to further prove the robustness and efficiency of the proposed
solver, we also carry out experiments in real SLAM and SfM systems.
We replace the optimizers of ORB-SLAM2 and COLMAP with the
proposed solver. The systems with the proposed optimizer are called
SLAM* and SfM*. Except for the replacement of the optimizer, other
modules and parameters are completely consistent. For the SLAM
systems, we test ten sequences of the well-known KITTI dataset. Due
to the tracking failure of ORB-SLAM2, the sequence Seq.01 is skipped.
As shown in Table 6, we evaluate the RMSE of trajectory, the average
local BA time (LBA Time), and the sum of global optimal time (GBA
Time). The global optimization in ORB-SLAM2 is used in the loop
closing stage, so the timing may be zero in sequences without loops.
SLAM∗ has comparable accuracy performance and takes only half the
optimization time. The optimization time of local bundle adjustment
is about 20ms, which can be carried out at 50 Hz theoretically. Since
most SLAM systems only perform local BA on keyframes, this speed
can fully meet the requirements of real-time applications.

For the SfM systems, we evaluate the 1DSfM dataset which has 14
diverse Internet photo collections. The intrinsic parameters of cameras
are provided by optimized maps and fixed in this experiment. COLMAP
uses Ceres in local and global BA, and we replace Ceres solver with
CoLi-BA to achieve SfM*. In order to avoid the optimization time too
long, PCG will be used for global optimization when the number of
cameras is greater than 100 in both COLMAP and SfM*. As shown
in Table 5, Size is the number of total images, Registered is the num-
ber of registered frames, Time denotes the total reconstruction time,
Avg. Reproj Error is the average reprojection error. Compared with
COLMAP, SfM* requires only 10 ∼ 20% reconstruction time to obtain
comparable number of registered frames and reconstruction accuracy.

Using the optimized SLAM and SfM, we demonstrate an AR ex-
ample, as shown in Fig. 16. The scene images come from the RGBD
dataset TUM [36], and the object pictures are taken by ourselves with a
mobile phone. Specifically, we obtain the trajectory of the scene images
through SLAM* and reconstruct the sparse point cloud model of the
object and the camera poses through SfM*. With this information,
we superimpose the virtual object rendered on the scene image by a
real-time NeRF implementation [25]. More AR results are shown in
Fig. 17.

5 DISCUSSION

With very fast solution speed, CoLi-BA also maintains good accuracy.
To improve the speed losslessly, our method has some requirements for

Fig. 16. The AR demo putting the toy on the desk. The top-left is the
original scene image, and the top-right is a picture of the object. The
NeRF model of the object is rendered in the scene by the camera poses,
and shown in the lower left. We highlighted the virtual object on the desk
with a red box, and zoom-in it on the lower right.

Fig. 17. More AR results. Virtual objects are highlighted with red boxes.

the problem, but it is still applicable to most scenarios. First, when a
complex covariance matrix is used to weight the reprojection error, the
rotation cannot be eliminated, and the compact representation becomes
invalid. However, in most cases, the covariance matrix is a simple
scalar matrix, so it would not affect the generalization of our method.
Second, current implementation does not support the optimization of
camera intrinsic, as it cannot be incorporated with the compact repre-
sentation. However, in most real-time localization and reconstruction
tasks , camera intrinsic parameters is readily available with a pre-stage
calibration. To the best of our knowledge, the proposed method is
widely applicable to camera trajectory recovery in AR applications.

6 CONCLUSIONS

In this paper, we propose a compact linearization method to accelerate
BA. By fully exploiting the geometry property, the proposed compact
representation significantly reduces calculation, memory storage, and
cache misses. Moreover, we also propose a rearrangement strategy
to further improve the cache efficiency. Experiments show that the
proposed method has a substantial speed advantage compared with the
state-of-the-arts, and can be directly applied to the existing SLAM/SfM
systems to improve efficiency. By superimposing incremental strategies,
it is promising to further accelerate the optimization speed to meet low
power consumption requirements and real-time requirements of the
framework in future work.

ACKNOWLEDGMENTS

This work was partially supported by the National Key Research and
Development Program of China under Grant 2020YFF0304300, the
National Natural Science Foundation of China (No. 61932003), and
ZJU-SenseTime Joint Lab of 3D Vision.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 11, November 20223736

REFERENCES

[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz,
and R. Szeliski. Building Rome in a Day. Communications of the ACM,
54(10):105–112, 2011.

[2] S. Agarwal, K. Mierle, and Others. Ceres solver. http://ceres-solver.
org.

[3] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle Adjustment
in the Large. In European Conference on Computer Vision, pp. 29–42.
Springer, 2010.

[4] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.
[5] M. Byröd and K. Åström. Conjugate Gradient Bundle Adjustment. In

European Conference on Computer Vision, pp. 114–127. Springer, 2010.
[6] Q. Cai, L. Zhang, Y. Wu, W. Yu, and D. Hu. A Pose-only Solution to Visual

Reconstruction and Navigation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021. doi: 10.1109/TPAMI.2021.3139681

[7] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual-Inertial and Multi-Map SLAM. IEEE Transactions on Robotics,
37(6):1874–1890, 2021.

[8] C. Campos, J. M. Montiel, and J. D. Tardós. Inertial-Only Optimization
for Visual-Inertial Initialization. In IEEE International Conference on
Robotics and Automation, pp. 51–57. IEEE, 2020.

[9] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm
887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Up-
date/Downdate. ACM Transactions on Mathematical Software, 35(3):1–14,
2008.

[10] S. C. Eisenstat. Efficient Implementation of a Class of Preconditioned
Conjugate Gradient Methods. SIAM Journal on Scientific and Statistical
Computing, 2(1):1–4, 1981.

[11] R. Elvira, J. D. Tardós, and J. M. Montiel. ORBSLAM-Atlas: A Robust
and Accurate Multi-Map System. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 6253–6259. IEEE, 2019.

[12] A. Eriksson, J. Bastian, T.-J. Chin, and M. Isaksson. A Consensus-Based
Framework for Distributed Bundle Adjustment. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1754–1762, 2016.

[13] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision Meets Robotics:
The KITTI dataset. The International Journal of Robotics Research,
32(11):1231–1237, 2013.

[14] G. Grisetti, R. Kümmerle, H. Strasdat, and K. Konolige. g2o: A General
Framework for Graph Optimization. In IEEE International Conference on
Robotics and Automation, pp. 9–13, 2011.

[15] M. Gu and S. C. Eisenstat. Efficient Algorithms for Computing a Strong
Rank-Revealing QR Factorization. SIAM Journal on Scientific Computing,
17(4):848–869, 1996.

[16] H. Guan and W. A. Smith. Structure-from-Motion in Spherical Video
Using the Von Mises-fisher Distribution. IEEE Transactions on Image
Processing, 26(2):711–723, 2016.

[17] V. Ila, L. Polok, M. Solony, and K. Istenic. Fast Incremental Bundle
Adjustment with Covariance Recovery. In International Conference on
3D Vision, pp. 175–184. IEEE, 2017.

[18] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert.
iSAM2: Incremental Smoothing and Mapping using the Bayes Tree. The
International Journal of Robotics Research, 31(2):216–235, 2012.

[19] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental Smoothing
and Mapping. IEEE Transactions on Robotics, 24(6):1365–1378, 2008.

[20] P. Lindenberger, P.-E. Sarlin, V. Larsson, and M. Pollefeys. Pixel-Perfect
Structure-from-Motion with Featuremetric Refinement. In IEEE Interna-
tional Conference on Computer Vision, 2021.

[21] H. Liu, M. Chen, G. Zhang, H. Bao, and Y. Bao. ICE-BA: Incremental,
Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM.
In IEEE Conference on Computer Vision and Pattern Recognition, pp.
1974–1982, 2018.

[22] M. I. Lourakis and A. A. Argyros. SBA: A Software Package for Generic
Sparse Bundle Adjustment. ACM Transactions on Mathematical Software,
36(1):1–30, 2009.

[23] J. J. Moré. The Levenberg-Marquardt Algorithm: Implementation and
Theory. In Numerical analysis, pp. 105–116. Springer, 1978.

[24] P. Moulon, P. Monasse, R. Perrot, and R. Marlet. OpenMVG: Open
Multiple View Geometry. In International Workshop on Reproducible
Research in Pattern Recognition, pp. 60–74. Springer, 2016.

[25] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Transactions on

Graphics, 41(4):102:1–102:15, July 2022. doi: 10.1145/3528223.3530127
[26] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An Open-Source SLAM

System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions
on Robotics, 33(5):1255–1262, 2017.

[27] K. Ni, D. Steedly, and F. Dellaert. Out-of-Core Bundle Adjustment for
Large-Scale 3D Reconstruction. In IEEE 11th International Conference
on Computer Vision, pp. 1–8. IEEE, 2007.

[28] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.
[29] A. Pagani and D. Stricker. Structure from Motion Using Full Spherical

Panoramic Cameras. In IEEE International Conference on Computer
Vision Workshops, pp. 375–382. IEEE, 2011.

[30] L. Polok, V. Ila, and P. Smrz. Fast Sparse Matrix Multiplication on GPU.
In SpringSim (HPS), pp. 33–40, 2015.

[31] L. Polok, M. Solony, V. Ila, P. Smrz, and P. Zemcik. Efficient Implementa-
tion for Block Matrix Operations for Nonlinear Least Squares Problems
in Robotic Applications. In IEEE International Conference on Robotics
and Automation, pp. 2263–2269. IEEE, 2013.

[32] M. J. Powell. A Hybrid Method for Nonlinear Equations. Numerical
Methods for Nonlinear Algebraic Equations, 1970.

[33] T. Qin, P. Li, and S. Shen. VINS-Mono: A Robust and Versatile Monoc-
ular Visual-Inertial State Estimator. IEEE Transactions on Robotics,
34(4):1004–1020, 2018.

[34] D. M. Rosen, M. Kaess, and J. J. Leonard. An Incremental Trust-region
Method for Robust Online Sparse Least-Squares Estimation. In IEEE
International Conference on Robotics and Automation, pp. 1262–1269.
IEEE, 2012.

[35] J. L. Schonberger and J.-M. Frahm. Structure-from-Motion Revisited.
In IEEE Conference on Computer Vision and Pattern Recognition, pp.
4104–4113, 2016.

[36] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
Benchmark for the Evaluation of RGB-D SLAM Systems. In IEEE/RSJ
International Conference on Intelligent Robot Systems (IROS), Oct. 2012.

[37] T. Tanaka, Y. Sasagawa, and T. Okatani. Learning To Bundle-Adjust: A
Graph Network Approach to Faster Optimization of Bundle Adjustment
for Vehicular SLAM. In IEEE/CVF International Conference on Computer
Vision, pp. 6250–6259, 2021.

[38] C. Tang and P. Tan. BA-Net: Dense Bundle Adjustment Network. In 7th
International Conference on Learning Representations, 2019.

[39] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle
Adjustment—A Modern Synthesis. In International Workshop on Vision
Algorithms, pp. 298–372. Springer, 1999.

[40] A. Tyagi, Y. Liang, S. Wang, and D. Bai. DVIO: Depth-Aided Visual
Inertial Odometry for RGBD Sensors. In IEEE International Symposium
on Mixed and Augmented Reality, pp. 193–201. IEEE, 2021.

[41] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg. Global Localiza-
tion from Monocular SLAM on a Mobile Phone. IEEE Transactions on
Visualization and Computer Graphics, 20(4):531–539, 2014.

[42] K. Wilson and N. Snavely. Robust Global Translations with 1DSfM. In
European Conference on Computer Vision, pp. 61–75, 2014.

[43] C. Wu. Towards Linear-Time Incremental Structure from Motion. In
International Conference on 3D Vision, pp. 127–134. IEEE, 2013.

[44] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore Bundle Ad-
justment. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 3057–3064. IEEE, 2011.

[45] X. Yang, L. Zhou, H. Jiang, Z. Tang, Y. Wang, H. Bao, and G. Zhang.
Mobile3DRecon: Real-time Monocular 3D Reconstruction on a Mobile
Phone. IEEE Transactions on Visualization and Computer Graphics,
26(12):3446–3456, 2020.

[46] F. Zhang. The Schur Complement and Its Applications, vol. 4. Springer
Science & Business Media, 2006.

[47] R. Zhang, S. Zhu, T. Fang, and L. Quan. Distributed Very Large Scale
Bundle Adjustment by Global Camera Consensus. In IEEE International
Conference on Computer Vision, pp. 29–38, 2017.

[48] L. Zhou, D. Koppel, H. Ju, F. Steinbruecker, and M. Kaess. An Efficient
Planar Bundle Adjustment Algorithm. In IEEE International Symposium
on Mixed and Augmented Reality, pp. 136–145. IEEE, 2020.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 22,2022 at 15:26:29 UTC from IEEE Xplore. Restrictions apply.

