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Abstract

This paper addresses the challenge of capturing perfor-
mance for the clothed humans from sparse-view or monoc-
ular videos. Previous methods capture the performance of
full humans with a personalized template or recover the
garments from a single frame with static human poses.
However, it is inconvenient to extract cloth semantics and
capture clothing motion with one-piece template, while sin-
gle frame-based methods may suffer from instable tracking
across videos. To address these problems, we propose a
novel method for human performance capture by tracking
clothing and human body motion separately with a double-
layer neural radiance fields (NeRFs). Specifically, we pro-
pose a double-layer NeRFs for the body and garments, and
track the densely deforming template of the clothing and
body by jointly optimizing the deformation fields and the
canonical double-layer NeRFs. In the optimization, we in-
troduce a physics-aware cloth simulation network which
can help generate physically plausible cloth dynamics and
body-cloth interactions. Compared with existing method-
s, our method is fully differentiable and can capture both
the body and clothing motion robustly from dynamic videos.
Also, our method represents the clothing with an indepen-
dent NeRFs, allowing us to model implicit fields of general
clothes feasibly. The experimental evaluations validate its
effectiveness on real multi-view or monocular videos.

1. Introduction

Performance capture for clothed humans is one of the

essential problems in the metaverse, and it not only cap-

tures the inner human body motion but also recovers the

outer clothing motion which has many promising applica-

tions such as virtual try-on, video editing, and telepresence.

From sparse-view or monocular videos of a moving human
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in general clothes, its goal is to recover the dynamic 3D

shape sequence of the human body and clothing simultane-

ously that are consistent with the observed frames in both

human shape and motion. This is a very challenging prob-

lem since the dynamic human could be with arbitrary mo-

tions and with complex non-rigid cloth deformations, and

the clothing in motion is difficult to maintain physically

plausible interactions with the body.

Previous systems [4, 21, 38, 39] reconstruct 3D clothed

humans by using depth sensors or fitting a personalized

template [9, 10, 37] to the image observations (e.g., body

joints and silhouettes). Only recovering one-piece geome-

try which unifies the human body and clothes, these systems

fail to track the motion of the clothing and achieve clothing

editing on 3D humans, which are the prerequisites in many

VR/AR applications like virtual dressing. On the contrary,

cloth can be extracted and tracked from depth scans [26,40]

accurately by fitting pre-built cloth templates to the scans

which have limited applications when 3D data are unavail-

able. Existing garment estimation methods [3, 12, 43, 44]

from color images require the person facing the camera and

in static poses. When the human is moving and the cloth-

ing is deforming, these methods may recover the 3D gar-

ments unreliably. Recent methods [16, 31] track body and

clothing motion simultaneously from videos, but they need

to re-build cloth template for a new performer and the run-

ning efficiency is very low due to online cloth simulation or

computationally-exhaustive optimization, which prohibits

them from being widely deployed for daily applications.

Recent works [20, 34, 41] adopt dynamic human NeRF-

s to capture human motion and obtain impressive tracking

results. By capturing the temporally-varying appearance in

the videos, dynamic NeRFs [34] can provide dense photo-

metric constraints to track the deforming geometry of the

performer. However, they represent the human with a sin-

gle NeRFs without modeling cloth, and the clothing motion

cannot be extracted. In this paper, we aim to track the cloth-
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ing and body motion simultaneously with dynamic NeRFs.

However, this problem is rather challenging due to two ma-

jor questions we need to solve: how to represent dynamic

clothing and human body with NeRFs, and how to capture

clothing and human body motion with plausible body-cloth

interactions based on the implicit representation.

In this paper, we propose a novel method for clothed

human performance capture with a double-layer NeRFs.

Specifically, a double-layer NeRFs is modeled for both the

body and clothing in the template space, and transformed

to the observation space with the corresponding deforma-

tion fields, and the rendered images are then synthesized

by composing the two dynamic NeRFs. We first estimate

the template shape in canonical frame and learn the geom-

etry network supervised by the template geometry. In the

rendering, we compose the double-layer NeRFs with the

guidance of deformed body and clothing meshes. Then, by

minimizing the difference between the rendered color and

observed color, the deformation fields and the canonical N-

eRFs are optimized jointly. The deformation field is rep-

resented as the inverse deformation of the template mesh,

thus the densely deforming geometry of the template can be

recovered simultaneously. In addition, we adopt a physics-

aware network learnt from simulation data between various

cloth types and humans to constrain the dynamic clothing

and preserve physically plausible body-cloth interactions,

resulting in realistic cloth geometry tracking. Compared to

previous methods, our method is fully differentiable and can

recover the realistic motion of both the clothing and body

from dynamic videos with arbitrary human poses and com-

plex cloth deformations. The experimental qualitative and

quantitative results on datasets of DynaCap [8] and Deep-

Cap [10] prove that the proposed approach can robustly and

accurately capture the motion for clothed humans. In sum-

mary, the primary contributions of our work include:

• We propose a double-layer NeRFs for dynamic hu-

mans in general clothing, allowing us to model implicit

humans with a variety of clothes (e.g., loose dresses).

• To the best of our knowledge, we propose the first

framework to capture clothing motion separately from

the human body using the double-layer NeRFs, which

provides dense appearance constraints on the geometry

tracking and improves the robustness and accuracy.

• A differentiable physics-aware network is learnt for d-

ifferent common garments and used to preserve physi-

cally plausible cloth deformations in motion capture.

2. Related Work
Clothed human reconstruction. Depth-based method-

s [4, 21, 38, 39] reconstruct 3D humans in realtime by fus-

ing the depth maps in a volumetric way. However, depth-

based methods cannot synthesize photo-realistic videos and

have constrained applications in daily life due to data cap-

ture limitations, e.g., high power consumption and sensi-

tive to sunlight. Based on deep learning techniques, some

approaches predict 3D humans from color images through

implicit function [27, 28], coarse-to-fine mesh deforma-

tion [45], surface normal optimization [36,42], or UV map-

ping [2]. Although these methods can reconstruct human

details, the recovered shapes do not contain human seman-

tics like human pose, shape and clothing. To recover the

clothing, some methods [3, 19] add displacements on ver-

tices of SMPL model [18] which only support tight clothing

and recover coarse-level geometry. Template-based meth-

ods [9, 10, 37] recover 3D human motions by non-rigidly

fitting a person-specific template mesh to 2D observed fea-

tures (e.g., human joints or silhouettes). With a person-

alized template, these methods obtain impressive perfor-

mance capture. However, the recovered meshes integrate

the body and clothing in one piece, which hinders their ap-

plications like garment retargeting and virtual trying-on.

Clothing motion capture. Traditional methods [26, 40]

capture the cloth motion by precisely fitting a cloth template

to 3D data from depth sensors, which cannot generalize to

the video-based setting and are limited to applications in in-

door scenes. Deep learning-based approaches [3,12,43,44]

estimate the 3D garment shape from color images. Howev-

er, these methods require the human facing the camera with

a static pose and do not try temporally tracking of dynam-

ic garments. Some works [23, 29] predict the cloth shape

conditioned on the human pose and shape but the shapes

are not consistent with the observed data. Recent work-

s [16, 31] capture both human body and clothing motion

from dynamic videos. MulayCap [31] optimizes a simulat-

ed garment on SMPL model with semantic cloth segmen-

tation, but their traditional simulation and optimization are

both computationally expensive. DeepCloth [16] incorpo-

rates a physics-based simulator to supervise the cloth defor-

mations estimated with multi-view joints and silhouettes as

DeepCap [10]. However, their simulation layer is not differ-

entiable and needs to adjust the cloth material types online,

which is a tedious and time consuming step. Moreover, with

the same limitation as DeepCap, they cannot recover the de-

tailed cloth deformation based on the sparse features.

Implicit Human Reconstruction. Clothed humans can be

reconstructed through implicit representation-based meth-

ods such as voxel representation [33, 42], implicit func-

tion [27, 28], or neural radiance fields (NeRFs) [20, 24, 25].

Recent works combine explicit and implicit representation-

s to produce high-quality avatar [11] or reconstruct high-

fidelity garment mesh [44], which show the advantage

of implicit representation on recovering geometry details.

However, these methods are limited to self-rotating human

motion or a single color image. Neuralbody [25] and AniN-

eRF [24] extend NeRFs for a dynamic human with defor-
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Figure 1. Overview of the proposed approach. Our approach can capture both the clothing and human body motion, and achieve novel-view

synthesis from sparse-view or monocular videos. We learn a double-layer neural radiance fields (NeRFs) for the clothing and human body

in canonical frame, and jointly optimize the canonical double-layer NeRFs and the human deformation constrained with a physics-aware

simulation network. Please refer to Sec. 3 for details of our method.

mation fields based on the linear blend skinning (LBS) [15].

Some human NeRFs methods [17, 41] model nonrigid hu-

man deformations with a point displacement on top of LB-

S. However, without using any clothing motion prior, these

methods cannot effectively recover the motion of humans

in loose clothes, and the geometry of clothes is not recon-

structed reliably under nonrigid cloth deformations. The re-

cent work, NerfCap [34] incorporates the embedded graph

prior into the human NeRFs and represents nonlinear sur-

face deformations for loose clothes successfully. Howev-

er, their method does not model the clothing separately and

thus fails to track the clothing motion.

3. Proposed Approach

Given sparse-view or monocular videos of a clothed hu-

man, we track the motion of both the human body and cloth-

ing and synthesize novel-view videos of the human with

a novel performance capture method based on a double-

layer neural radiance fields (NeRFs). Figure 1 shows an

overview of the proposed method. The double-layer NeRFs

is learnt for the human body and clothing in canonical frame

(Sec. 3.2). Then, the canonical NeRFs is dynamically trans-

formed into the observed frame with inverse deformation

fields of the deformed template for clothing and body re-

spectively. From the dynamic double-layer NeRFs, we ren-

der the images using a composite rendering. By matching

the synthesized images with the video frames and constrain-

ing the cloth deformations with a physics-aware simulation

network, we estimate the double-layer NeRFs and the hu-

man deformation jointly (Sec. 3.3).

3.1. Canonical Human Shape

We decompose the clothed human into undressed body

and garments (like T-shirt and pants), and represent them

with SMPL model [18] and a parametric PCA model re-

spectively. To include the human details (e.g., the head and

hand), we obtain the canonical body model M by deform-

ing the SMPL model to a personalized template with non-

rigid deformation [32]. We design different styles (size and

sleeve length, et al.) for each garment category, and sim-

ulate these garments on the template SMPL model using

Marvelous Designer [1]. Then, we obtain a linear model

through PCA on the simulated meshes,

G(α) = Ḡ+Bgα, (1)

where Ḡ is the mean garment shape, Bg denotes the linear

basis matrix, and α are parameters of the cloth shape G(α).

3.2. Double-layer NeRFs for Dynamic Humans

Unlike a single NeRFs for clothed humans [17,24,25,34,

41], we represent the clothing with an independent NeRFs

on the body, which forms a double-layer NeRFs. The im-

plicit representation can be extended to multiple garments.

Canonical NeRF. We use an occupancy network [22] to

represent canonical geometry since the occupancy can mod-
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el geometry more precisely than density [20] as,

o(x) = Fo(γx(x)), (2)

where γx is the positional encoding [20]. The color network

Fc in canonical frame is formulated as,

ci(x) = Fc(γx(x),ϕi), (3)

where ϕi is an appearance latent code [24, 25] for frame i.
We define occupancy network {F b

o ,F
g
o }, and color network

{F b
c ,ϕ

b,F g
c ,ϕ

g} for the body and clothing, respectively.

To facilitate the learning of occupancy network, we in-

corporate a signed distance fields (SDFs) network S,

S : p ∈ R
3 → s ∈ R. (4)

which predicts the SDF value s for point p. We use the

losses proposed in [30] to learn the SDFs of the shape,

Lsdf =
∑

p∈Φ

| S(p) | +
∑

p∈Φ

(1− 〈∇S(p), n̄)〉 (5)

+
∑

p∈Ω

| ‖ ∇S(p) ‖2 −1|+
∑

p∈Ω\Φ
exp(−δ · |S(p)|),

where n̄ is the surface normal, ∇S(p) indicates the gradi-

ent of the SDFs, Ω and Φ denotes the 3D space and shape

surface respectively. The first and second terms are used to

estimate valid SDFs and normals on the surfaces, respec-

tively. The third term constrains the norm of SDF gradi-

ents to be 1, and the last term penalizes SDF values of non-

surface points near 0 with δ � 1. We define SDF network

{Sb,Sg} for both the body and clothing.

Supervised by the predictions of SDF network, the occu-

pancy network is learnt with the following loss,

Locc =
∑

x∈Ω

LC(Fo(γx(x)),o), (6)

where o is the occupancy indicated by SDFs (if S(x) <=
0, o = 1; otherwise, o = 0), and LC denotes the cross-

entropy loss. We adopt the compositional design of SDF

and occupancy because it is better for volumetric learning

with continuous occupancy fields [22] compared to discrete

labels extracted from SDFs. The template is varying during

learning geometry model, and the loss is formulated as,

Lgeo = μ1Lsdf + μ2Locc. (7)

where μ1 and μ2 are the weight for each term. Through

the optimization, the NeRF geometry is consistent with the

estimated template so that densely deforming geometry of

the template can be tracked by utilizing dense photometric

constraints from NeRF color model.

Deformation Model. Following [34], we transform sam-

pled points in observed space to canonical space with the

inverse deformation of the nearest vertex on the deformed

template. In this way, the human deformation is integrated

into the NeRF optimization. The human deformation model

is disentangled into the non-rigid surface deformation (i.e.,

embedded graph deformation as in [34]) and the articulated

skeletal motion. For the clothing and body, we define the

deformation network F g
d with latent codes ωg and F b

d with

latent codes ωb, respectively. Through nonrigid deforma-

tion, we obtain the clothing mesh Ĝ and body mesh M̂ .

Then, the linear blend skinning [15] is applied to obtain the

final cloth mesh G̃ and body mesh M̃ in the observation s-

pace. We recover the SMPL model with [13] for input video

frames and also estimate a canonical body shape.

Composite Rendering. In [6], a blending weight is pre-

dicted for each sampled point to blend the static background

and dynamic target in a scene. This blending method cannot

separate the clothing and human body in the NeRFs effec-

tively. We propose an efficient composite rendering strategy

for the dynamic double-layer NeRF. Specifically, for a cast-

ed ray r, we find the intersecting triangle with the deformed

meshes. If the intersected triangle is from the body mesh,

we set the mask mb
r of all sampled points on r to 1; other-

wise, mb
r is set to 0. Similarly, if the intersected triangle is

from the cloth mesh, we set the mask mg
r to 1; otherwise,

mg
r is set to 0. The complete human is rendered as,

T i
r =

i−1∏

j=1

(1− oj
g(1−mb

r))(1− oj
bm

b
r), (8)

Ĉr =
n∑

i=1

T i
r (o

i
g(1−mb

r)c
i
g + oi

bm
b
rc

i
b),

where {og,ob} and {cg, cb} denote the point occupancy

and color respectively, which are defined for both clothing

and body. T i
r is the accumulated transparency along the ray.

We also render the clothing color Ĉg
r and body color Ĉb

r .

3.3. Clothed Human Performance Capture with
Double-layer NeRFs

We estimate the double-layer NeRFs and template defor-

mation of the body and clothing by minimizing the follow-

ing loss between the synthesized color and observed color:

Lrgb =
∑

r∈R

‖Ĉ(r)−C(r)‖22 (9)

+
∑

r∈R

‖(Ĉ(r)b −C(r))(1−mg
r)‖22

+
∑

r∈R

‖(Ĉ(r)g −C(r))(1−mb
r)‖22,

where R is the set of casted rays. While using the dense

photometric constraint defined in Eq. 9, the model training
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remains ill-posed and body-cloth collisions are prone to oc-

cur. To solve these problems, we design several regulariza-

tion losses to constrain the joint optimization.

Physics-aware constraint. Cloth simulation is adopted in

previous works [16,40] to obtain realistic performance cap-

ture. Different from their traditional simulation method,

we introduce a differential network that learns a mapping

from human and cloth parameters to physics-aware cloth

shapes. We simulate the data in Marvelous Designer using

the method of [23]. For each garment category, we use 25
garment styles γ ∈ R

4 as [23]. To account for the effect-

s of different materials, we simulate 8 different materials

in Marvelous Designer, and represent the material type τ
using one-hot labels. We train the simulation network Dφ

using a MLP to minimize the L1-loss between the simulated

cloth meshes and the predicted ones Gs = Dφ(θ,β,γ, τ )
with the input of human pose and shape, and garment and

material styles. The physical simulation loss enforces the

deformed cloth mesh G̃ to be close to Gs,

Lsim =
∑

t∈G

ρ(‖G̃t −Gt
s‖22), (10)

where t denotes vertex index of G, and ρ is the Geman-

McClure robust function [5]. The simulation loss can penal-

ize body-cloth collisions and preserve physically plausible

deformations.

As-rigid-as-possible Loss. To make sure the template de-

forms smoothly, we utilize an as-rigid-as-possible loss [32]

on the embedded graph deformation of the human body and

clothing, Larap = Larap(M̂) + Larap(Ĝ).

Mask Loss. We render the mask image R(U) of the com-

bined mesh U = (M ,G) by using a differentiable render-

er [35] based on point cloud, and compute the mask loss

with the input human mask image R̄:

Lmask(U) = ‖R(U)− R̄‖22. (11)

We utilize the mask loss on both the deformed mesh

and the simulated mesh as, Lmask = Lmask(M̃ , G̃) +
Lmask(M̃ ,Gs).

Attachment Loss. During human motion, some cloth parts

are always attached to the body (e.g., the dress strap is fixed

on the shoulder). To ensure this constraint, we define an

attachment loss:

Lattach =
∑

i,j∈A

ρ(‖G̃i − M̃ j‖22), (12)

where A is a set of selected vertices on the clothing mesh

attached to corresponding points of the body mesh.

Interpenetration Loss. Interpenetrations may occur be-

tween the predicted garments and the body. We use the

interpenetration term [7] to alleviate this problem:

Linterp(M1,M2) =
1

|C|
∑

i,j∈C

ReLU((M i
1 −M j

2 ) ·N i
1),

(13)

where C is the set of corresponding points between the mesh

M1 and mesh M2, |C| denotes the number of correspond-

ing points, and N1 is the normal of mesh M1. We use

interpenetration loss in both canonical and posed space,

Linterp = Linterp(M̂ , Ĝ) + Linterp(M̃ , G̃). (14)

3.3.1 Total Loss Function

We first learn the geometry network of both the clothing and

human body in canonical frame. We use the first frame of

multiple views or a video in self-rotating motion to estimate

the canonical geometry by optimizing all the losses. Then,

by fixing the clothing shape and the geometry network, we

track the motion of each video frame and estimate the ap-

pearance of NeRFs using the following total loss:

L = λ1Lrgb + λ2Larap + λ3Lsim (15)

+ λ4Lmask + λ5Lattach + λ6Linterp,

where {λ1...λ6} are the balancing weights. For a video with

N frames, the estimated parameter set X is:

X = {F b
c ,F

g
c ,F

b
d ,F

g
d } ∪ {ϕb

i ,ϕ
g
i ,ω

b
i ,ω

g
i | i ∈ 1, ..., N},

(16)

which includes the weights of the appearance and deforma-

tion networks and the corresponding conditional variables

for each frame in the video.

4. Experiments
4.1. Implementation details

Datasets and metrics. We design common garments (e.g.,

dress, T-shirt, skirt, pants, et al.) and simulate the data in

the Marvelous Designer [1] under various human shapes

and poses and cloth materials. We test our method on pub-

licly datasets, DynaCap [8], and DeepCap [10]. We use four

cameras around the human for training and the remaining

cameras for test. Figure 2 shows some recovered results us-

ing our approach on different clothed humans. Our method

is also tested on a monocular video in outdoor scene. Please

refer to the supplementary video for more experimental re-

sults. The geometry accuracy is evaluated with the inter-

section over union (IoU) between the ground truth human

masks and 2D projections of the recovered human shapes.

Following [10, 34], the IoU (%) is computed on all views

(AMVIoU), all views except the input view (RVIoU), and

the input view (SVIoU). The novel-view synthesis quality is

evaluated with two metrics, i.e., peak signal-to-noise ratio

(PSNR) and structural similarity index (SSIM) as [24, 34].
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Figure 2. The results of our approach on different humans in various garments. In each example, we show the ground truth image in a

novel view, the reconstructed geometry (overlayed on the image), and the novel-view synthesis image. From left to right: the S4 from

DeepCap dataset [10], “FranziRed” from DynaCap dataset [8], and the S1 from DeepCap dataset [10].

Architecture and experimental settings. We adopt the S-

DF network from [30], and the same occupancy and col-

or network as [34]. In the non-rigid deformation network,

there are 8 layers with a skip connection at the fourth layer

and the hidden size is 1024. The deformation and appear-

ance latent codes both have dimensions of 128. We set both

weight μ1 and μ2 to 1. We set the loss weight {λ1, ..., λ6} to

{1.0, 0.1, 0.02, 50, 0.1, 100.0} empirically. The Adam opti-

mizer [14] is used in the optimization, and the learning rate

is 5e−4 at the start of training and exponentially decays to

5e−5 during the training. With a GPU of RTX 2080 Ti, our

network training costs about 12 hours tested on a four-view

video with 300 frames.

4.2. Comparison to state-of-the-art methods

We compare our method with two state-of-the-art ap-

proaches for human performance capture, DeepCap [10]

and NerfCap [34]. We also compare with BCNet [12], Tai-

lorNet [23], and ICON [36]. For DeepCap and NerfCap,

the experimental results are from [34]. For other compared

methods, we implement them using their released codes.

We do not compare with DeepCloth [16] since their codes

are not released and DeepCap [10] outperforms them in ge-

Method AMVIoU RVIoU SVIoU

DeepCap [10] 86.17 85.75 86.90

NerfCap [34] 88.96 88.32 90.09

ICON [36] - - 93.56
BCNet [12] 82.33 81.67 82.94

TailorNet [23] 83.87 83.50 84.51

Our method 89.58 88.75 91.03

Evaluated on the subject S4 from DeepCap dataset [10].

Method AMVIoU RVIoU SVIoU

DeepCap [10] 85.38 85.37 85.41

NerfCap [34] 88.08 88.07 88.12

ICON [36] - - 95.21
BCNet [12] 78.91 78.77 80.83

TailorNet [23] 78.15 78.00 78.21

Our method 88.74 88.40 89.68

Evaluated on the ‘FranziRed” from DynaCap dataset [8].

Table 1. Comparison to the state-of-the-arts in surface reconstruc-

tion accuracy. Note that, the accuracy of ICON [36] is high since

they use the human mask in estimating the geometry, and their

dress shapes are not recovered accurately as shown in Fig. 3.

ometry tracking as reported in [16]. We conduct the quali-

tative and quantitative experiments on S4 of DeepCap and
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“FranziRed” from DynaCap. The test dataset are the same

as [34] which include 300− 400 frames randomly sampled

from the original dataset.

(a) (c)(b) (d) (e) (f) (g)
Figure 3. Qualitative comparison with the state-of-the-arts. (a)

Ground truth image. (b) DeepCap [10]. (c) NerfCap [34]. (d)

ICON [36]. (e) BCNet [12]. (f) TailorNet [23]. (g) Our method.

We show the qualitative comparisons in Figure 3 and list

the quantitative results in Table 1. We only compute the

error of the input view for ICON since they use their own

camera system. Our method performs significantly better

than the compared methods [12,23,36] without a cloth tem-

plate. BCNet [12] also separates the modeling of the cloth-

ing and body, but as a supervised learning method, the per-

formance may degrade dramatically because of data domain

gap. When the human is moving, BCNet fails to recover

the dresses accurately due to arbitrary cloth deformation.

In contrast, the appearance loss of our double-layer NeRF-

s poses dense constraints on the clothing and body motion

capture in a weakly-supervised manner. As a result, our

method can achieve a much higher accuracy of geometry

tracking even without the ground truth. The predicted gar-

ments of TailorNet [23] are not consistent with the real im-

ages since their model is conditioned on human poses and

shapes. ICON obtains higher IoU accuracy by using the hu-

man mask in recovering the geometry. However, there are

obvious artifacts on the recovered dresses of ICON [36].

Based on one-piece personalized template, it is hard for

both DeepCap [10] and NerfCap [34] to extract the cloth-

ing motion, which is important for downstream application-

s in AR/VR. In contrast, our method tracks the motion for

both the clothing and body. Without a pre-scanned cloth

template, our method still obtains a high tracking accuracy

Method
S4 of [10] ‘FranziRed” of [8]

PSNR SSIM PSNR SSIM

NerfCap [34] 24.52 90.79 23.18 91.49
Our method 23.06 90.28 21.70 90.54

Table 2. Comparison to NerfCap [34] in terms of novel-view syn-

thesis on two datasets.

Method AMVIoU PSNR SSIM

w/o simulation loss 89.03 22.66 89.35

w/o mask loss 88.75 23.21 89.49

w/o color loss 89.36 - -

blending render [6] 88.75 23.64 90.51

1 camera view 88.49 21.34 87.12

2 camera views 89.23 21.89 88.38

6 camera views 90.10 23.80 90.60
ours(4 views) 89.58 23.06 90.28

Table 3. Ablation studies on S4 from DeepCap dataset [10].

thanks to the implicit representation.

We also compare the quality of free-viewpoint synthesis

with NerfCap [34]. Figure 4 shows two compared exam-

ples and Table 2 reports the quantitative comparison. With-

out using any clothing template, our method still obtains

close or comparable synthesis quality to NerfCap that uses

a ground truth template. Our results are rendered by com-

posing the NeRFs of the body and clothing, which is more

complicated than a single NeRFs of NerfCap. For example,

when the mutual motion occurs between the body and cloth-

ing (like cloth sliding), new body parts may appear, leading

to the decrease of our synthesis quality.

(a) (c)(b) (d) (e) (f)
Figure 4. Comparison of novel-view synthesis with NerfCap [34].

(a,d) Ground truth. (b,e) NerfCap [34]. (c,f) Our method.

4.3. Ablation studies

The ablation experiments are performed to demonstrate

the effectiveness of our framework on the S4 from DeepCap

dataset [10]. The quantitative results are listed in Table 3.

Effectiveness of different losses. We first evaluate the ef-

fectiveness of the main losses in our optimization, i.e., the

simulation loss, the mask loss, and the color loss. We report

the accuracy by removing each of them, and show qualita-

tive comparison examples in Figure 5. Without the simula-

tion loss, the body-cloth collision becomes severe, showing

that the simulation loss can preserve physically-plausible

body-cloth interactions. Using the input human mask can
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improve the alignment accuracy with the human silhouettes.

The color loss of dynamic NeRF can further enhance the

detailed deformation on the human surface by posing dense

appearance constraints for the geometry tracking.

(a) (c)(b) (d) (e)
Figure 5. Ablation study for different losses. (a) Ground truth.

(b) Using complete losses. (c) W/o simulation loss. (d) W/o mask

loss. (e) W/o color loss. There are unnatural cloth deformation-

s without the simulation loss. The rendered mask cannot align

with the silhouette well without the mask loss. Compared to that

without color loss, the surface detailed deformation can be further

improved using complete losses (b).

(a) (c)(b)
Figure 6. Comparison of different rendering. (a) Ground truth. (b)

Our composite rendering. (c) Blend rendering [6]. We show the

synthesis of the clothing, body, and full human. There are much

cloth appearance on the body caused by the blending [6], while our

method separates the appearance of the clothing and body better.

Effectiveness of the composite rendering. We compare

our composite rendering with the blending rendering in [6].

Through free composition of two NeRFs for each point,

the method of [6] can obtain high fitting color. However,

the blending may generate missing areas or artifacts in the

novel-view synthesis. Moreover, it fails to recover the ap-

pearance of the body and clothing reliably as shown in Fig-

ure 6. Comparatively, we can recover the appearance of the

body and clothing separately and compose them into a full

human more accurately using the composite rendering.

The number of camera views. We investigate the influ-

ence of different number of input camera views on the per-

formance of our approach. We compare the results of our

method under {1, 2, 4, 6} views, and show the comparison

example of novel-view synthesis in Figure 7. The result-

s become slightly better using more camera views because

the moving humans are captured more completely.

Ground Truth 1 view 2 views 4 views 6 views

Figure 7. Ablation study for different numbers of camera views.

With more cameras, the novel-view synthesis quality becomes bet-

ter (marked in cycle).

4.4. Applications

Benefiting from separate tracking results of human body

and clothing, we can enable interesting applications like

cloth retargeting as shown in Figure 8. Since the body mesh

and cloth mesh are captured, we can exchange the garments

between two person by simulating the garments on the other

body. Moreover, free-viewpoint motion can be created by

simulating the clothing on human body sequences.

Figure 8. Application of cloth retargeting. From the captured re-

sults using our method, we can retarget the garments between the

S4 of DeepCap and the ‘FranziRed” of DynaCap.

5. Conclusion
In this paper, we proposed a novel performance capture

method for clothed humans with a double-layer neural radi-

ance fields (NeRF). Our double-layer NeRFs can effective-

ly model moving humans in daily-life clothes. By matching

the rendered color with the observed color, our method esti-

mates the clothing and body motion and temporally-varying

appearance robustly. In addition, we learn a differential

physics-aware network for different garment types which

supports physically-plausible body-cloth interactions and

cloth dynamics. The experimental results on real datasets

demonstrate the effectiveness of the proposed method.
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