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Abstract. Recently neural radiance fields (NeRF) have been widely ex-
ploited as 3D representations for dense simultaneous localization and
mapping (SLAM). Despite their notable successes in surface modeling
and novel view synthesis, existing NeRF-based methods are hindered
by their computationally intensive and time-consuming volume render-
ing pipeline. This paper presents an efficient dense RGB-D SLAM sys-
tem, i.e., CG-SLAM, based on a novel uncertainty-aware 3D Gaussian
field with high consistency and geometric stability. Through an in-depth
analysis of Gaussian Splatting, we propose several techniques to con-
struct a consistent and stable 3D Gaussian field suitable for tracking
and mapping. Additionally, a novel depth uncertainty model is proposed
to ensure the selection of valuable Gaussian primitives during optimiza-
tion, thereby improving tracking efficiency and accuracy. Experiments
on various datasets demonstrate that CG-SLAM achieves superior track-
ing and mapping performance with a notable tracking speed of around
15 Hz. We will make our source code publicly available. Project page:
https://zju3dv.github.io/cg-slam.
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1 Introduction

Dense visual Localization and Mapping (Visual SLAM) is a long-standing prob-
lem in 3D computer vision over recent decades, which targets performing pose
tracking and scene mapping simultaneously with a variety of downstream ap-
plications such as virtual/augmented reality (VR/AR), robot navigation, and
autonomous driving. Traditional visual SLAM systems [24] have shown accurate
tracking performance across various scenes, while the underlying 3D representa-
tions (e.g ., point cloud, mesh, and surfel) demonstrate limitations in facilitating
highly free scene exploration, such as photorealistic scene touring, fine-grained
map updating, etc.

Inspired by the Neural Radiance Field (NeRF) [29] in surface reconstruction
and view rendering, some novel NeRF-based SLAM methods [17,28,37,61] have
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FPS ≈ 15 HzMean PSNR: 33.27 dB Mean PSNR: 34.60 dBAcc: 1.10 cm RMSE: 0.29 cm Acc: 1.28 cm RMSE: 0.31 cm

Fig. 1: CG-SLAM, which adopts a well-designed 3D Gaussian field, can simultaneously
achieve state-of-the-art performance in localization, reconstruction and rendering. Ben-
efiting from 3D Gaussian representation and a new GPU-accelerated framework that
is developed from a thorough derivative analysis of camera pose in 3D Gaussian Splat-
ting [23], CG-SLAM can perform extremely fast rendering and solve the long-standing
efficiency bottleneck suffered by previous rendering-based SLAM methods.

been proposed recently and demonstrated promising performance in tracking,
surface modeling, and novel view synthesis. Nevertheless, existing NeRF-based
methods follow the ray-tracing rendering pipeline that is computation-intensive
and time-consuming. Therefore they can only perform tracking and mapping
by sampling a limited number of camera rays, ignoring the natural structural
information in images. To avoid local optima in tracking and artifacts, they
normally require many optimization steps, which makes it struggle to bring the
best of both worlds concerning accuracy and efficiency.

Very recently the 3D Gaussian Splatting [23] method has been introduced
for efficient novel view synthesis, and its rasterization-based rendering pipeline
allows much faster image-level rendering, showing great potential in solving the
inherent challenge of NeRF-based SLAM. However, it is nontrivial to reasonably
incorporate the 3D Gaussian field in the SLAM setting. As a photorealistic
view synthesis technique, the 3D Gaussian field is prone to overfitting the input
images due to strong anisotropy and the lack of explicit multi-view constraints.
As a result, on one hand, the 3D Gaussian splatting can not guarantee accurate
modeling of 3D surfaces; on the other hand, since the Gaussians may not align
with the environment’s surfaces, this will lead to poor extrapolation capability
and further degrade the camera tracking. Moreover, the increase of Gaussians
in the mapping process will inevitably slow down the tracking efficiency.

In this paper, we introduce a real-time Gaussian splatting SLAM system,
i.e., CG-SLAM, based on a novel uncertainty-aware 3D Gaussian field with high
consistency and geometric stability. To this end, we first conduct a compre-
hensive mathematical analysis regarding the derivatives of camera poses in the
EWA (Elliptical Weighted Average) splatting process [63], and develop a CUDA
framework tailored for the SLAM task that effectively decouples the tracking and
mapping components. Second, in order to reduce the inherent overfitting prob-
lem, we utilize a scale regularization term that appropriately encourages the
Gaussian ellipsoids to approximate Gaussian spheres, to reduce anisotropy and
achieve a good trade-off between tracking accuracy and rendering realism. At
the same time, we observed that solely employing alpha-blending depth cannot
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impose effective constraints on the positions of Gaussian primitives. Thus, to-
wards high-quality mapping, we further align median depth and alpha-blending
depth to encourage Gaussian primitives to be well distributed over the scene sur-
faces, facilitating a consistent Gaussian field with more concentrated geometry
density. Furthermore, in order to further improve the system’s accuracy and ef-
ficiency, we design a novel depth uncertainty model to guide our Gaussian-based
SLAM to focus on those stable and informative ones. We evaluate our system
on a wide variety of RGB-D datasets, and the experimental results demonstrate
that our CG-SLAM has superior performance in terms of tracking accuracy,
reconstruction quality, and runtime efficiency.

Overall, our contributions can be summarized as follows:

– We present a new GPU-accelerated framework for real-time dense RGB-D
SLAM based on a thorough theoretical analysis of camera pose derivatives
in 3D Gaussian Splatting.

– We design multiple loss terms to build up a consistent and stable 3D Gaus-
sian field suitable for tracking and mapping.

– We propose a novel depth uncertainty model, which assists our system in
selecting more valuable Gaussian primitives during optimization, thereby
improving tracking efficiency and accuracy.

– Experiments on various datasets demonstrate that our method can achieve
competitive or better tracking and mapping results compared to baselines.

2 Related Work

2.1 Dense Visual SLAM

Following the seminal contributions of DTAM [32] and KinectFusion [31] to
dense visual SLAM systems, there has been significant progress in developing
efficient scene representation models. TSDF [31, 32], surfels [22, 39, 52], voxel
hashing [6, 33, 34], and octrees [42, 49] have been introduced to tackle the chal-
lenges of scalability within the SLAM task. Some more advanced technolo-
gies, including bundle adjustment [39], loop closure, and learning-based algo-
rithms [25,26,46,47,55], were subsequently integrated into the SLAM framework
to further improve system performance. These enhancements have significantly
brought better accuracy and robustness for localization and reconstruction capa-
bilities, thus pushing the frontiers of what is achievable in dense SLAM systems.
Compared with traditional methods, our CG-SLAM can reconstruct a fully dense
3D map for rich applications.

2.2 Neural Implict Radiance Field based SLAM

Neural radiance fields [29] have shown promising potential in many 3D computer
vision applications, such as novel view synthesis [3, 4, 14, 30], dynamic scene
modeling [13, 15, 41, 48], and generalization [18, 40, 51, 53, 58]. Recent research
works [27, 45] attempted to replace traditional maps, in tasks such as structure
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Fig. 2: System Overview. In a 3D Gaussian field constructed from an RGB-D se-
quence, we can render color, depth, opacity, and uncertainty maps through a GPU-
accelerated rasterizer. Additionally, we attach a new uncertainty property to each
Gaussian primitive to filter informative primitives. In the mapping process, we uti-
lize multiple rendering results to design effective loss functions towards a consistent
and stable Gaussian field. Subsequently, we employ appearance and geometry cues to
perform accurate and efficient tracking.

from motion (SFM) and SLAM, with the neural implicit field to jointly optimize
scene representation and camera poses. Different kinds of neural fields brought
insights into NeRF-SLAM works. NICE-SLAM [61] chose a fully covered voxel
grid to store neural features, while Vox-Fusion [56] further improved this grid to
an adaptive size. Besides, Point-SLAM [37] attached feature embeddings to the
point cloud on object surfaces. The neural point-based method is more flexible
and can encode more concentrated volume density. Co-SLAM [50] adopted a hy-
brid representation that includes coordinate encoding and hash grids to achieve
smoother reconstruction and faster convergence. In addition to the aforemen-
tioned works, some methods [8, 20, 36] only used the neural field as a map and
still performed tracking based on a traditional feature point-based visual odom-
etry. Our CG-SLAM system can achieve better and more efficient performance
in tracking, mapping, and rendering than NeRF-based methods.

2.3 3D Gaussian Splatting Field

3D Gaussian splatting is a revolutionary novel-view synthesis approach in 3D
computer vision. This approach does not contain any neural network and allows
photorealistic real-time(≥100 FPS) rendering at 1080p resolution. 3D Gaus-
sian splatting has influenced a wide range of research topics, such as the 3D
avatar [1, 19, 35, 59, 62], scene editing [7, 12, 57], image segment [60], and surface
reconstruction [5,11,16]. These studies have demonstrated its generalization and
effectiveness. Similar to the neural field, some concurrent manuscripts [21, 54]
have been made to reversely infer camera poses within a built 3D Gaussian
field. However, these works straightforwardly apply a raw 3D Gaussian field in
the SLAM framework without specialized designs, such as anisotropy regulariza-
tion and uninformative Gaussian primitive filtering. Additionally, they overlook
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the design on efficiency, which is the most important improvement that the
Gaussian splatting technique should bring to a SLAM system. We believe that
the advantages of the 3D Gaussian field in pose optimization have not been fully
explored in these works, especially in terms of efficiency, and expect to further
develop an advanced Gaussian-based visual SLAM system.

3 Method

The overview of our proposed rasterization-based Gaussian SLAM system is
shown in Fig. 2. Given a set of RGB-D sequences, our system incrementally gen-
erates a stable, consistent, and uncertainty-aware Gaussian field, serving camera
pose optimization and geometry reconstruction. In Sec. 3.1, we briefly introduce
the 3D Gaussian splatting model and rasterization principles. We incorporated
an uncertainty model that utilizes the geometry prior to attach the uncertainty
property on rendered images and Gaussian primitives. This strategy helps re-
move outliers in mapping and makes full use of informative Gaussians in tracking
(Sec. 3.2). Moreover, in Sec. 3.3, we detail the Gaussian primitive management
strategy and some innovative loss terms that ensure geometry stability and ac-
curacy. Finally, by minimizing the re-rendering loss from low-uncertainty prim-
itives, we can build a real-time and accurate tracking module (Sec. 3.4).

3.1 Preliminary

Scene Representation. 3D Gaussian Splatting defines a 3D scene as a set of
anisotropic Gaussian distributions, which are associated with means X ∈ R3 and
covariances Σ ∈ R3×3. To ensure that the covariance matrix remains positive
semi-definite throughout the gradient descent, it is endowed with a more intuitive
and comprehensible physical meaning, that is, the configuration of an ellipsoid.
Specifically, Σ is simplified and decomposed into:

Σ = RSSTRT , (1)

where scaling matrix S = diag([s]) is derived from the scale factor s ∈ R3

and rotation matrix R ∈ R3×3 is derived from the quaternion q ∈ R4. Each
Gaussian ellipsoid is also assigned an opacity σ ∈ R and spherical harmonics
(SH) coefficients, which respectively represent the volume density and view-
dependent radiance within a nearby local region.

Following Zwicker et al . [63], given a world-to-camera rotation W and the
Jacobian J of the affine approximation of the projective transformation, the
EWA splatting algorithm illustrates how to approximately project a 3D Gaussian
ellipsoid onto the image plane to determine its effective range and per-pixel
opacity values on this image plane. We can obtain the corresponding 2D Gaussian
distribution N (µ̂, Σ̂) as:

Σ̂ = JWΣWTJT , (2)

and µ̂ is the 2D pixel location of a 3D gaussian primitive center.
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Fast Rasterization-based Rendering. Fast Gaussian splatting raster-
izer enables efficient pixel-by-pixel parallel rendering, and is fully differentiable,
which provides a useful GPU-accelerated framework. For an incoming frame,
the rasterizer can pre-sort all visible Gaussian primitives in order of depth from
near to far. In terms of color rendering, the Gaussian splatting rasterizer adopts
an α-blending solution, which accumulates radiance c and opacity values σ on a
given pixel by traversing the above depth queue as follows:

Î =

N∑
i=1

αiTici , (3)

Ti =

i−1∏
k=1

(1− αk) , (4)

αi = N (µ̂i, Σ̂i)σi , (5)

where Î is the rendered color, Ti is the accumulated transmittance, αi is the
opacity contributed to a pixel, and ci is the color of a Gaussian primitive com-
puted from its SH coefficients. N is the number of Gaussian primitives involved
in the splatting process of a pixel. In terms of depth rendering, considering the
loss term designed for geometry consistency, our rasterizer provides not only
α-blending depth D̂alpha but also the median depth D̂median:

D̂alpha =

N∑
i=1

αiTidi , (6)

D̂median = dmedian , (7)

where di is the depth of a Gaussian primitive. For a pixel, in its splatting process,
we regard a Gaussian at which the cumulative transmittance T falls below 0.5
for the first time as the "median Gaussian". Its depth is recorded as dmedian.
Tmedian is the cumulative transmittance at this median Gaussian.

(Tmedian ≥ 0.5) and (Tmedian+1 < 0.5) . (8)

Besides, the accumulated opacity value Ô is similarly required to distinguish
unobserved areas for spawning Gaussians:

Ô =

N∑
i=1

αiTi . (9)

3.2 Uncertainty Modeling

Uncertainty model remains a trending topic in multi-view 3D reconstruction in
recent decades. Inspired by [38], we believe that explicitly modeling uncertainty
in our 3D Gaussian field has a positive effect on increasing the ratio of informative
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Fig. 3: Uncertainty of the Gaussian Primitives. Uncertainty of a Gaussian prim-
itive is derived from its dominated pixels and corresponding depth biases, reflecting
the geometric value and confidence of this primitive.

Gaussians, which is crucial for the robustness and conciseness of a SLAM system.
Hence, we propose an uncertainty model suitable for RGB-D observations from
two perspectives: rendering images and Gaussian primitives.

Uncertainty Map. α-blending depth is essentially an expected value cal-
culated by sampling Gaussian ellipsoids along a pixel ray. Under the reasonable
assumption of a normal distribution, we think that the uncertainty map is highly
related to its variance. We can render an uncertainty value from the 3D Gaussian
field as in Eq. (10).

U =

N∑
i=1

αiTi( di −D )2 , (10)

whereD represents depth observations from the camera sensor. To mitigate dras-
tic changes in positions of Gaussian primitives during optimization, we proposed
a geometry variance loss term (Eq. (11)) based on the H ×W uncertainty map
to force them to be near the observed depth.

Lvar =
1

HW

HW∑
n=1

|Un| . (11)

Uncertainty of Gaussian primitives. From the perspective of geometric
consistency, we design a loss term Lalign as in Eq. (12) to align the α-blending
depth and median depth.

Lalign =
1

HW

HW∑
n=1

|D̂n
alpha − D̂n

median| . (12)

The α-blending depth of a pixel is dominated by the Gaussian primitive with the
largest weight. We call this pixel a "dominated pixel" of this maximum weight
Gaussian primitive. Our alignment loss forces D̂alpha and D̂median to be similar,
which makes this maximum weight Gaussian primitive always occur at dmedian.
Thus, as shown in Eq. (13), the uncertainty vi of the ith Gaussian primitive
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is determined by the difference between its depth and depth observations from
all its dominated pixels within a keyframe window F = {f1, f2, ..., fk}. Fig. 3
further visualizes that a Gaussian primitive receives depth difference values from
its dominated pixels in multiple viewpoints.

νi =
1

M1 + ...+Mk

∑
fk∈F

Mk∑
p=1

αk,p
i T k,p

i ( Dk
p − dki )2 . (13)

In a keyframe fk, α
k,p
i and T k,p

i represent the opacity and transmittance of
the ith Gaussian primitive on a pixel p. Dk

p represents the depth observation
on a pixel p in fk. dki is the depth value of the i-th Gaussian primitive at fk.
{M1, ...,Mk} are the number of dominated pixels of the ith Gaussian primitive in
different keyframes. Benefiting from uncertainty modeling, we can regularly de-
tect and remove unreliable Gaussian primitives with high uncertainty exceeding
a threshold τ=0.025. Specifically, during the mapping optimization, primitives
with vi > τ will be manually reduced to a low-opacity level. These low-opacity
Gaussian primitives can be optimized again to remove truly irreversible ones,
which is a more adaptive and reasonable strategy.

3.3 Mapping

We employ various loss functions to update Gaussian properties, aiming for a
consistent and stable Gaussian field. In addition to color and SSIM loss in the
original 3D Gaussian splatting, previous experience from NeRF-SLAM works
suggests that geometry loss is a necessary part. To overcome anisotropic inter-
ference (Arrow-shaped Gaussian primitives), we add a soft scale regularization
loss in the mapping process. Note that our system performs the initialization at
a slightly higher cost, i.e., more optimization iters.

Lcolor =
1

HW

HW∑
n=1

|În − In| , (14)

Lssim = SSIM(Î , I) , (15)

Lgeo =
1

HW

HW∑
n=1

|D̂n
alpha −Dn| , (16)

Liso =
1

G

∑
i∈G

max(
max({sxi , s

y
i , s

z
i })

min({sxi , s
y
i , s

z
i })

, ϵ)− ϵ , (17)

where In andDn represent ground-truth color and depth, ϵ=1.0 is a hyperparam-
eter that controls the level of anisotropy, and G represents all visible Gaussians
under the current view.

Lmapping = ω1Lcolor + ω2Lssim + ω3Lgeo

+ ω4Lalign + ω5Liso + ω6Lvar .
(18)
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These loss functions customized for the SLAM task facilitate faster convergence
in mapping and lay a solid foundation for subsequent tracking.

Gaussian Management. In initialization, we densely project Gaussian
primitives into 3D space based on depth observations of the first frame. In subse-
quent mapping, we set an empirical threshold ψ = 0.5 to extract unobserved or
under-constructed pixels where Ô < ψ. Then, we utilize color and depth informa-
tion on these pixels to spawn fresh Gaussian primitives. In addition, we inherited
the original splitting, cloning, and removing strategy for Gaussian densification.

3.4 Tracking

In our system, we have proposed the first comprehensive mathematical theory on
derivatives w.r.t. pose in 3D Gaussian splatting framework (refer to supplemen-
tary), and empirically discovered that the Lie algebraic representation is more
advantageous for camera tracking, especially for the rotation, in a Gaussian field.
The camera pose optimization, i.e., rotation and translation {so(3)|T}, mainly
includes two parts: sequential tracking and sliding bundle adjustment.

Sequential Tracking. Given the fixed scene representation, the camera
pose is initially guessed via the constant speed assumption where the last pose
is transformed by the last relative transformation, and then we refine this rough
pose using similar photometric and geometric losses weighted by λ = {λ1, λ2}.

Ltracking = λ1Lcolor + λ2Lgeo , (19)

{so(3)|T} = argmin
{so(3)|T}

(Ltracking) . (20)

Sliding Bundle Adjustment. Cumulative error is a typical problem in
SLAM, also in Gaussian-based SLAM systems. To ease it, we set up a sliding
window F containing k co-visible keyframes and jointly optimize camera extrin-
sics and scene representation in this window. Due to the efficiency, we encode
keyframes into a descriptor pool with a pre-trained NetVLAD [2] model to deter-
mine co-visibility through the cosine similarity scores, instead of the view frustum
overlap method in previous works. In addition to keyframes from NetVLAD [2],
we also added the current frame and the most recent keyframes in the sliding
window considering temporal associations. We still employ Lmapping in sliding
bundle adjustment, where Ψ is a set of all optimizable Gaussian properties.

Ψ, {so(3)|T} = argmin
Ψ,{so(3)|T}

(Lmapping) . (21)

4 Experiments

In this section, we describe our experimental setup and validate that the pro-
posed system can achieve improvement in both accuracy (Sec. 4.1 and Sec. 4.2)
and efficiency (Sec. 4.3). We also confirmed the effectiveness of our design choices
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(Sec. 4.4). Additionally, we demonstrate our advantages in image rendering and
capability for online third-person view rendering in supplementary. We color
each cell as best , second best , and third best .

Datasets. To evaluate our system in various scenarios, we use three standard
benchmarks: Replica [43], TUM [44], and ScanNet [10]. The Replica dataset
contains 8 available synthetic RGB-D sequences generated by Sucar et al . [45].
We examined the generalization of our method on real-world TUM [44] and
ScanNet [10] datasets, which contain 5 and 6 challenging scenes respectively.

Implementation Details. We run our system on a desktop equipped with
an Intel i9-14900K and an NVIDIA RTX 4090 GPU. We set the learning rate
of {so(3)|T} to {0.0015, 0.00215} in sequential tracking in all experiments. For
the Replica [43] dataset, we perform 60-iteration mapping with weights ω = {
0.7, 0.1, 0.25, 0.25, 0.1, 0.15 } in a sliding window with k = 4 keyframes and
15-iteration sequential pose optimization weighted by λ = {0.2, 1.0}. We select
keyframes at an interval of 30. For TUM [44] and ScanNet [10] datasets, we use
ω = { 1.0, 0.1, 0.8, 0.5, 0.1, 0.5 }, k = 4, λ = {1.0, 0.6}. Faced with challenging
real-world scenes, we need to extract more keyframes at an interval of 15, perform
mapping at 40∼50 iterations, and increase tracking iterations to 25. For further
implementation details, please refer to our supplementary.

Metrics. We quantitatively evaluate reconstruction quality using different
3D metrics. Given 3D triangle meshes, we compute mapping Accuracy [cm],
Completion [cm], and Completion Ratio [<5cm %]. Following NICE-SLAM [61],
we discard unobserved regions that are not in any viewpoints. As for tracking
performance, we measure ATE RMSE [44] for estimated trajectories.

Baselines. We primarily consider state-of-the-art NeRF-SLAM works, in-
cluding NICE-SLAM [61], Co-SLAM [50], Point-SLAM [37], and Vox-Fusion [56],
as baselines. For a fair comparison, we reproduced all results from these baselines
and reported their reconstruction performance with the same evaluation mech-
anism. We also add some concurrent manuscripts such as GS-SLAM [54] and
SplaTAM [21] for reference, and we directly report the results in their papers.

4.1 Localization Evaluation

We report the localization accuracy of our system in 8 Replica [43] scenes in
Tab. 1, where we surpass all other methods by a notable margin of around
25%∼75%. In our Gaussian-based system, image-level pose optimization and the
well-designed Gaussian field promote fast and stable convergence to an optimal
solution. This is the reason why we have lower variances and higher accuracy. As
shown in Tab. 2, despite noisy and sparse depth information in the real-world
TUM-RGBD dataset [44], our method still achieves better or competitive per-
formance in 5 selected scenarios. We also benchmark our method and baselines
on the similarly challenging ScanNet [10] to compare their tracking performance
in Tab. 3. Sensor data from multiple large-scale ScanNet scenes suffers from
severe motion blur and specular reflections. Our method further demonstrates
its effectiveness and superiority on this dataset, excelling or maintaining com-



CG-SLAM 11

Table 1: Tracking Results on the Replica Dataset [43] (ATE RMSE [cm]
↓). Our system consistently achieved the best performance in this dataset, both for
8 individual scenes and for the average. It is worth noting that GS-SLAM [54] and
SplaTAM [21] are concurrent with ours.

Method rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

NICE-SLAM 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13 1.06
Co-SLAM 0.77 1.04 1.09 0.58 0.53 2.05 1.49 0.84 0.99
Point-SLAM 0.56 0.47 0.30 0.35 0.62 0.55 0.72 0.73 0.54
Vox-Fusion 0.40 0.54 0.54 0.50 0.46 0.75 0.50 0.60 0.54
GS-SLAM 0.48 0.53 0.33 0.52 0.41 0.59 0.46 0.70 0.50
SplaTAM 0.31 0.40 0.29 0.47 0.27 0.29 0.32 0.55 0.36

Ours 0.29 0.27 0.25 0.33 0.14 0.28 0.31 0.29 0.27
Ours-light 0.44 0.36 0.33 0.29 0.27 0.43 0.52 0.58 0.40

Table 2: Tracking Results on the TUM-RGBD Dataset [44] (ATE RMSE
[cm] ↓). Our system achieves better tracking accuracy and lower variance in different
scenarios. "-" indicates unavailable results because the related work is not open source.

Method fr1/desk fr1/desk2 fr1/room fr2/xyz fr3/office Avg.

NICE-SLAM 4.26 4.99 34.49 31.73 3.87 15.87
Co-SLAM 2.7 4.57 30.16 1.9 2.6 8.38
Point-SLAM 4.34 4.54 30.92 1.31 3.48 8.92
Vox-Fusion 3.52 6.00 19.53 1.49 26.01 11.31
GS-SLAM 3.3 - - 1.3 6.6 -
SplaTAM 3.35 6.54 11.13 1.24 5.16 5.48

Ours 2.43 4.54 9.39 1.20 2.45 4.0
Ours-light 3.14 4.73 10.67 1.28 2.60 4.48

Table 3: Tracking Results on the ScanNet Dataset [10] (ATE RMSE [cm]
↓). Our method achieves state-of-the-art tracking results in 6 scenes and exceeds other
methods on average. "-" indicates failure results in Vox-Fusion [56].

Method Sc.0000 Sc.0059 Sc.0106 Sc.0169 Sc.0181 Sc.0207 Avg.

NICE-SLAM 12.00 14.00 7.90 10.90 13.40 6.20 10.70
Co-SLAM 7.18 12.29 10.9 6.62 13.43 7.13 9.37
Point-SLAM 10.24 8.29 11.86 22.16 14.77 9.54 12.19
Vox-Fusion 8.39 8.95 - 9.50 12.20 6.43 -
SplaTAM 12.83 10.10 17.72 12.08 11.10 7.46 11.88

Ours 7.09 7.46 8.88 8.16 11.60 5.34 8.08
Ours-light 5.62 8.73 9.78 7.93 12.02 5.45 8.17

petitiveness in various scenes. Extensive experiments showcase the remarkable
ability of our proposed system to track and handle complex situations.

4.2 Reconstruction Evaluation

In Tab. 4, we quantitatively measure the mapping performance of our proposed
system, in comparison to NICE-SLAM [61], Co-SLAM [50], Point-SLAM [37],
and Vox-Fusion [56]. It can be observed that our method outperforms all base-
lines on mapping accuracy. We use TSDF-Fusion [9] to construct our mesh map.
We achieve state-of-the-art reconstruction in observed areas. It is worth noting
that the Gaussian-based method neither has a global MLP nor a fully covered
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Table 4: Reconstruction Results on the Replica [43] Dataset. In terms of map-
ping accuracy, our method can outperform all existing methods. Due to the inherent
limitation of 3D Gaussian representation, our method is slightly worse in completion.

Method Metric rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

NICE-SLAM
Acc.[cm]↓ 3.53 3.60 3.03 5.56 3.35 4.71 3.84 3.35 3.87
Comp.[cm]↓ 3.40 3.62 3.27 4.55 4.03 3.94 3.99 4.15 3.87
Comp.Ratio[<5cm%]↑ 86.05 80.75 87.23 79.34 82.13 80.35 80.55 82.88 82.41

Co-SLAM
Acc.[cm]↓ 2.11 1.68 1.99 1.57 1.31 2.84 3.06 2.23 2.10
Comp.[cm]↓ 2.02 1.81 1.96 1.56 1.59 2.43 2.72 2.52 2.08
Comp.Ratio[<5cm %]↑ 95.26 95.19 93.58 96.09 94.65 91.63 90.72 90.44 93.44

Point-SLAM
Acc.[cm]↓ 1.45 1.14 1.19 1.05 0.86 1.31 1.57 1.51 1.26
Comp.[cm]↓ 3.46 3.02 2.65 1.65 2.21 3.62 3.47 3.90 3.00
Comp.Ratio[<5cm%]↑ 88.48 89.44 90.13 93.39 90.51 86.17 86.00 85.74 88.73

Vox-Fusion
Acc.[cm]↓ 1.77 1.51 2.23 1.63 1.44 2.09 2.33 2.02 1.88
Comp.[cm]↓ 2.69 2.31 2.58 1.87 1.66 3.03 2.81 3.51 2.56
Comp.Ratio[<5cm%]↑ 92.03 92.47 90.13 93.86 94.40 88.94 89.10 86.53 90.93

Ours
Acc.[cm]↓ 1.10 0.97 0.96 0.85 0.67 1.10 1.28 1.16 1.01
Comp.[cm]↓ 3.26 2.77 2.79 1.49 2.15 3.34 3.23 3.66 2.84
Comp.Ratio[<5cm%]↑ 88.26 89.48 89.10 93.60 90.14 86.04 85.78 85.66 88.51

Ours-light
Acc.[cm]↓ 1.17 0.98 0.99 0.87 0.71 1.2 1.36 1.26 1.06
Comp.[cm]↓ 3.32 2.65 2.81 1.51 2.20 3.44 3.27 3.78 2.87
Comp.Ratio[<5cm%]↑ 88.20 89.33 89.10 93.41 90.14 85.64 85.47 85.30 88.43

feature grid, as in Co-SLAM [50]. Consequently, such a system exhibits a slightly
weaker hole-filling ability compared to the NeRF-based method, which explains
why our system is slightly worse in the Completion metric. As shown in Fig. 4,
we qualitatively present the ground truth mesh and mesh reconstructions from
ours and other baselines. Evidently, our system achieves more detailed geometry
and less noisy outliers.

4.3 Runtime and Memory Analysis

We evaluate the runtime and memory footprint of our system compared to other
works in Tab. 5. We reported the tracking and mapping efficiency in terms of
per-iteration time consumption and the total number of optimization iterations.
With the support of the GPU-accelerated rasterizer, our system can operate
at around 8.5Hz. Meanwhile, our carefully designed pipeline allows this system
to expand to a lightweight version and to work with half-resolution images. For
tracking, this lightweight version can work twice as fast as the original one, at the
cost of a slight decrease in accuracy, as shown in Tabs. 1 to 3. For mapping, our
lightweight version demonstrates similar superiority in Tab. 4. It can be clearly
seen that both our versions achieve better performance than Co-SLAM [50].
Further efficiency analysis on TUM-RGBD [44] and ScanNet [10] is shown in
supplementary. Also, our customized Gaussian field allows us to outperform the
concurrent Gaussian-based works with less computational burden.

However, as a non-MLP scene representation, the 3D Gaussian field in-
evitably requires much memory consumption to store different properties. This
reason results in a considerable memory footprint in the Gaussian-based SLAM
system, which is a common limitation in other Gaussian-based research topics.
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Fig. 4: Reconstruction Performance on Replica [43] Dataset. We qualitatively
compared the mesh reconstruction results from CG-SLAM and other baselines, where
CG-SLAM can produce more detailed geometry at a lower computation cost.

Table 5: Runtime and Memory Usage. We comprehensively compared the runtime
and memory usage on Replica [43] Office 0. Our proposed CG-SLAM can perform more
efficient tracking and mapping than existing works, actually reaching a real-time level.
"-" indicates unavailable results in related works.

Method Tracking Mapping Mapping System Decoder Scene
[ms× it]↓ [ms× it]↓ Interval FPS↑ Param↓ Embeeding↓

Vox-Fusion 23.61 × 30 86.55 × 10 10 1.25 0.98 MB 0.162 MB
NICE-SLAM 6.19 × 10 91.59 × 60 5 0.86 0.43 MB 89.56 MB
Co-SLAM 4.45 × 10 11.9 × 10 5 14.64 6.37 MB -
Point-SLAM 6.14 × 40 22.25× 300 5 0.63 0.54 MB 28.11 MB
GS-SLAM 11.9 × 10 12.8× 100 - 8.34 - -
SplaTAM 41.7 × 40 50.1 × 60 1 0.21 - -

Ours 6.02 × 10 28.9 × 60 30 8.47 - 231.66 MB
Ours-light 3.80 × 10 10.70 × 60 30 16.83 - 56.50 MB

4.4 Ablation Study

To verify the rationality of our designs, we investigate the effectiveness of the
anisotropy regularization, alignment and variance losses, and uncertainty model.

Effectiveness of Isotropy Loss. Ablation results in Tab. 6 reveal how
the anisotropy regularization term affects tracking metrics. We can notice that
anisotropy (w/o Liso) will reduce the tracking accuracy by disrupting the view
extrapolation of a 3D Gaussian field. Oppositely, excessive regularization (Isotropic
Gaussians) will degrade rendering and subsequently affect the photometric loss,
leading to poor tracking performance. Overall, a soft controllable constraint like
Liso is a reasonable choice. To more intuitively illustrate this phenomenon, we
display opacity maps with and without anisotropy regularization in Fig. 5 (b),
and apparent arrow-shaped artifacts occur in the latter.

Effectiveness of Alignment and Variance Losses. Alignment and vari-
ance losses push primitives closer to object surfaces, facilitating novel view syn-
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𝒘/𝒐 𝓛𝒊𝒔𝒐

(b)(a)

𝒘/𝓛𝒊𝒔𝒐

Fig. 5: Uncertainty Model Ablation and Anisotropy Interference. (a) Uncer-
tainty Model Ablation. This plot illustrates that the uncertainty model helps improve
tracking accuracy while avoiding some extreme errors. (b) Anisotropy Interference. It
can be clearly seen that in the case of w/o Liso, serious arrow-shaped artifacts occur
on the edges of the image.

Table 6: Isotropy Loss Ablation Results(ATE RMSE [cm] ↓). The experimental
results demonstrate the effectiveness of our anisotropy regularization term. "-" indicates
a failure situation.

Setting rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

w/ Liso 0.29 0.27 0.25 0.33 0.14 0.28 0.31 0.29 0.27
w/o Liso 0.32 0.31 0.54 0.36 0.24 0.31 0.72 - -

Isotropic Gaussians 0.30 0.32 1.04 0.29 7.62 0.38 1.54 1.36 1.61

thesis and SLAM. The effectiveness of these two losses is demonstrated in the
supplementary.

Effectiveness of Uncertainty Model. As shown in Fig. 5 (a), tracking
error curves show that our uncertainty model can improve tracking accuracy
while avoiding some extreme errors. For further quantitative ablation results,
refer to the supplementary material.

5 Conclusion

We have proposed CG-SLAM, a dense RGB-D SLAM based on a consistent and
uncertainty-aware 3D Gaussian field. Our targeted loss functions strengthen the
3D Gaussian field in terms of consistency and stability. The uncertainty model
further distills highly informative primitives in this field to reduce interference
from outliers. Besides, a customized GPU-accelerated rasterization pipeline en-
ables our system to achieve state-of-the-art accuracy and efficiency in various
scenes. Through extensive experiments, it can be concluded that our method
outperforms previous works regarding tracking, mapping, and efficiency.

Limitations. Considerable memory usage is one limitation of the Gaussian-
based system. We expect that a more compact Gaussian field can be adopted in
the SLAM task. In addition, the Gaussian-based method has a weak prediction
ability for unobserved areas. Moreover, our system is not capable of handling
dynamic objects in the environment. We believe it is a very interesting direction
for future work.
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