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Abstract. Recent advances in event-based vision suggest that they com-
plement traditional cameras by providing continuous observation with-
out frame rate limitations and high dynamic range which are well-suited
for correspondence tasks such as optical flow and point tracking. How-
ever, so far there is still a lack of comprehensive benchmarks for cor-
respondence tasks with both event data and images. To fill this gap,
we propose BlinkVision, a large-scale and diverse benchmark with rich
modality and dense annotation of correspondence. BlinkVision has sev-
eral appealing properties: 1) Rich modalities: It encompasses both
event data and RGB images. 2) Rich annotations: It provides dense
per-pixel annotations covering optical flow, scene flow, and point track-
ing. 3) Large vocabulary: It incorporates 410 daily categories, sharing
common classes with widely-used 2D and 3D datasets such as LVIS and
ShapeNet. 4) Naturalistic: It delivers photorealism data and covers
a variety of naturalistic factors such as camera shake and deformation.
BlinkVision enables extensive benchmarks on three types of correspon-
dence tasks (i.e., optical flow, point tracking and scene flow estimation)
for both image-based methods and event-based methods, leading to new
observations, practices, and insights for future research. The benchmark
website is https://www.blinkvision.net/.

1 Introduction

Modern image-based computer vision technology still cannot match the accu-
racy and robustness of human vision in many areas. One possible reason is that
traditional cameras suffer from motion blur and limited frame rates, and they
often rely on well-lighted conditions. In contrast, event cameras [13, 36] detect
changes in intensity at each pixel as a stream of asynchronous events, which
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Fig. 1: BlinkVision is a large-scale and diverse benchmark with rich modality
and dense annotation of correspondence. It covers 410 daily categories, sharing
common classes with popular 2D and 3D datasets. The per-category object distribu-
tions, scene structure hierarchy, data samples, and supported applications of BlinkVi-
sion are shown in this figure.

eliminates frame rate limitations and enables operation within a high dynamic
range. However, they can not capture fine-grained details as traditional cameras
do. Looking at how human vision works, we find that two cells in the human
retina, i.e., cones and rods, work similarly to these two types of cameras, re-
spectively. According to the duplex theory of vision [45], which posits that rods
and cones serve different functions, their combination ensures the robustness of
human visual processing. Therefore, we believe that combining the advantages
of traditional cameras and event cameras can significantly enhance computer
vision systems, providing more comprehensive and adaptive vision capabilities.

However, there are currently only a few benchmarks [15, 32, 34] providing
both event data and RGB frames, which hinder the development of algorithms
that fully exploit the event data and fuse information from both modalities. This
shortfall is particularly prominent in the domain of pixel correspondence esti-
mation [8,27,28,61], i.e., optical flow, scene flow, and point tracking estimation.
Previous benchmarks built for pixel correspondence are either highly biased to
specific scenes [15, 63] or rather simple [53]. A primary factor is that obtaining
such precise pixel-wise annotations for these tasks is expensive.

To boost the research in this area, we present BlinkVision, a synthetic bench-
mark for optical flow, scene flow and point tracking estimation using RGB frames
and events. Our dataset has several appealing properties: 1) Rich modalities:
BlinkVision encompasses three visual modalities: final RGB images, clean RGB
images and event data. The final RGB images reflect real-world challenges like
motion blur and limited dynamic range while the clean RGB images are devoid of
such imperfections. The clean RGB images can be seen as the latent images [48]
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Table 1: A comparison between BlinkVision and other widely-used bench-
marks on pixel correspondence estimation. “Occ”, “Chara” and “Cats” is the
abbreviation for occlusion, character and categories, respectively. Rlvis denotes the ra-
tio of the 1.2k LVIS [20] categories being covered. “N/A” denotes the dataset does not
provide category labels.

Datasets Event Clean Final Optical
Flow

Scene
Flow

Point
Tracking Occ Chara Animal Cats Rlvis(%)

MVSEC [64] ✔ ✗ ✔ ✔ ✗ ✗ ✗ ✗ ✗ N/A 0
DSEC [15] ✔ ✗ ✔ ✔ ✗ ✗ ✗ ✗ ✗ N/A 0
BlinkFlow [34] ✔ ✔ ✗ ✔ ✗ ✗ ✔ ✔ ✗ 55 4.1
EKubric [59] ✔ ✔ ✗ ✔ ✔ ✔ ✔ ✗ ✗ 17 0.9
Sintel [9] ✗ ✔ ✗ ✔ ✗ ✗ ✔ ✔ ✔ N/A 0
KITTI [17] ✗ ✗ ✔ ✔ ✔ ✗ ✗ ✗ ✗ N/A 0
FlyingThings [42] ✗ ✔ ✗ ✔ ✔ ✗ ✔ ✗ ✗ 55 4.1
Kubric [18] ✗ ✔ ✗ ✔ ✔ ✔ ✔ ✗ ✗ 17 0.9
TAP-Vid [12] ✗ ✔ ✗ ✗ ✗ ✔ ✗ ✔ ✗ N/A 0
PointOdyssey [62] ✗ ✔ ✗ ✗ ✗ ✔ ✔ ✔ ✔ N/A 0
BlinkVision (Ours) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 410 33.4

of event cameras. 2) Rich annotations: It provides annotations covering op-
tical flow, scene flow, and point tracking. Unlike benchmarks [15, 17, 62] which
only contain sparse annotations, our data provide dense per-pixel annotations of
each image, covering objects including moving cars, deformable characters, and
animals. 3) Large vocabulary: It incorporates 410 daily categories, sharing
common classes with widely-used 2D and 3D datasets such as ImageNet [33],
LVIS [20], and ShapeNet [10], as depicted in Fig. 1. To our knowledge, our data
have the widest variety of objects in existing pixel correspondence benchmarks.
This expansive vocabulary is pivotal, enabling rigorous exploration of algorith-
mic generalization across varied objects. 4) Naturalistic: BlinkVision employs
high-quality assets and rendering tools and thus is able to deliver photorealism
data. Besides, it covers a variety of naturalistic factors such as camera shake and
deformation.

To make full use of BlinkVision, we set up a public benchmark website that
allows uploading results and provides a public leaderboard. Besides, we evalu-
ated both existing image-based and event-based methods on three typical cor-
respondence tasks (i.e. optical flow, point tracking, and scene flow estimation).
The results reveal new observations and challenges and serve as the baseline
for future approaches. Specifically, we first study the robustness of existing
image-based methods under large frame intervals and extreme illumination and
point out the new challenge for these methods. Second, the benchmark results
on existing event-based methods show that current methods do not fully un-
leash the potential of event cameras. Third, we show that fine-tuning existing
methods on the training set of BlinkVision significantly boosts the generalizabil-
ity, demonstrating the vast diversity of BlinkVision. Finally, the broad diversity
and accessible category labels in BlinkVision allow us, for the first time, to ana-
lyze the performance of correspondence tasks on different categories. We believe
BlinkVision has the potential to serve as a cornerstone benchmark for advancing
the development of more robust computer vision systems.
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Fig. 2: Scenes samples in the proposed BlinkVision benchmark.

2 Related Work

A comprehensive overview and comparison between these benchmarks and BlinkVi-
sion is listed in Table 1.

Image-based optical flow and scene flow benchmarks. Early evaluations
depended on synthetic datasets, like the famous "Yosemite" sequence [7]. MPI
Sintel [9] was one of the most representative synthetic benchmarks derived from
a short open-source animated 3D movie and it became one of the most popular
benchmark datasets. KITTI [17] was almost the most well-known among real
data. It computed ground truth for static scenes through the data from a 3D
laser scanner and the ego-motion data of the car. In a later version, KITTI
extended the ground truth to rigidly moving cars by fitting CAD models of
cars. FlyingThings3D [42] was a more recent synthetic dataset. It contained the
ground truth of both optical flow and scene flow. FlyingThings3D and KITTI
were the two most commonly used benchmarks in scene flow evaluation. However,
on both datasets, ground truth about scene flow was not available in occluded
regions. Furthermore, on KITTI, ground truth for foreground points was either
missing or approximated by a fitted car CAD model.

Image-based point tracking benchmarks. The first point-tracking dataset
was FlyingThings++ [21], which was based on FlyingThings3D. It was initially
designed for training the network. Due to the lack of evaluation benchmarks,
it was also used for evaluation in the early stages. Later, Doersch et al . [12]
proposed a real data benchmark named TAP-Vid, which was based on two real-
world datasets: DAVIS [49] and Kinetics [30]. TAP-Vid relied on manual anno-
tation and could not handle occlusions. PointOdyssey [62] was a newly proposed
benchmark that was based on synthetic data and therefore could provide dense
ground truth. However, it did not guarantee that every pixel had ground truth
because it only tracked the mesh vertices of the object. Furthermore, the natu-
ralism of PointOdyssey was limited to its interior parts. Its outdoor portion had
no realistic layout, just a skybox with randomly dropped objects.

Event-based Benchmarks. Early event-based optical flow benchmarks [53]
limited the camera to only rotational motion and inferred ground truth from
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the rotational motion of the camera. Two later benchmarks, DSEC [15] and
MVSEC [64] computed the ground truth through LiDAR SLAM. Similar to
KITTI, these two benchmarks limited the ground truth to the static elements
of the scene. Besides, they had a rather limited motion pattern. More recently,
Li et al . [34] proposed a large-scale diversiform synthetic benchmark named
BlinkFlow, which presented more challenging scenes and complex motion pat-
terns. As for the scene flow benchmark, Wan et al . [59] recently converted the
existing FlyingThings [42] and Kubric [18] datasets to event datasets through
video-to-event [14] technology. However, due to the limited frame rates in the
original video data, this step inevitably produced artifacts in the event data.
Wan et al . also extended the real-world event dataset DSEC with scene flow
ground truth. As for the event-based point-tracking benchmark, existing meth-
ods usually employed Structure-from-Motion [54] (SfM) technology to associate
keypoints across multiple frames to obtain correspondence ground truth. Event
Camera Dataset [46] and EDS dataset [22] were two common benchmarks in this
area. Limited by the sparsity and accuracy of SfM, these benchmarks did not
support the evaluation of arbitrary point tracking.

3 BlinkVision Dataset

In this section, we describe how to build BlinkVision, including the scene setup,
data rendering, and generation for the ground truth labels. The process is based
on Blender [2] as it provides photorealistic rendering and a flexible data interface
that allows us to obtain customized correspondence ground truth. At the last,
we introduce the statistics and distribution of the BlinkVision data.

3.1 Scene Setting

Previous synthetic benchmarks [9, 43] generally rely on open-source movies to
avoid heavy scene construction. However, these movies are biased and do not
cover diverse enough scenarios. In order to establish a comprehensive evaluation
benchmark, we manually assemble a collection of scenarios that are as rich and
diverse as possible. We first look for ready-made scenes that are photorealistic
and visually diverse. Specifically, we purchased 40 indoor scenes and 13 outdoor
scenes from Evermotion Archinteriors Collection [3] that cover common scenes
such as living rooms, kitchens, offices, bedrooms, restaurants and gardens. The
original scene is static. To enhance the realism, we procured 29 scanned and
high-fidelity human bodies from ActorCore [1] and 88 artist-designed animals,
together with 104 free characters from Mixamo [4]. These assets are rigged. We
re-targeted them to a wide range of motion models (e.g., more than 100 human
motions including dancing, walking, talking, etc.) and placed them in various
locations. The human’s motions mainly come from motion capture [1] and the
animal’s motions are designed by the artist to closely emulate their natural mo-
tions. Furthermore, we built 50 additional outdoor scenes that cover cases such
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as a drone flying through the forest and a camera following a human or car from
the crowd, which are common but rarely included in existing correspondence
benchmarks. We set the camera trajectory by referencing the shooting trajec-
tories of real-world videos, including handheld shots, car shots, and drone shots
that cover non-uniform motion such as sudden stops and sharp turns. Finally,
we obtained 80 indoor sequences and 63 outdoor sequences, where 56 indoor
sequences and 47 outdoor sequences are for testing and the others are used for
fine-tuning. Some samples of our data are shown in Fig. 2. In the supplementary,
we also provide video samples. All the assets used in the testing and fine-tuning
are totally disjoint, even including trees.

3.2 Multi-modality Data Rendering

We use Blender to render brightness B in linear color space. The following sim-
ulations of real-world image capturing and event data are both based on the
linear color space. We employ tone mapping and gamma correction on B to ob-
tain commonly used sRGB images. We call these sRGB images “RGB (clean)”
because they do not suffer from effects like blurs or overexposed. On the contrary,
we call the simulated real-world image capture “RGB (final)”.

Simulation of Real-world Image Capturing. Real-world image capture suf-
fers from motion blur and limited dynamic range. While Blender supports the
simulation of the former, the latter needs additional processing. The latter ef-
fect usually leads to overexposed or underexposed. To simulate it, we follow
previous work [40] and employ the following steps: (1) Random exposure ra-
tio. We uniformly sample the exposure ratio w in the log2 space within [−3, 3]
and multiply it by B to simulate underexposed or overexposed, which gives us
the augmented HDR image H = B × 2w. (2) Dynamic range clipping. We clip
H according to the formulation C(H) = min(H, 1). This step leads to infor-
mation loss for pixels in the overexposed regions. (3) Non-linear mapping. To
align with how humans see a scene, a camera typically uses a non-linear camera
response function (CRF) to modify the contrast of the captured image, which
can be formulated by In = F(Ic). We randomly sample CRFs from an exist-
ing dataset [19]. (4) Quantization. The pixel values are quantized to 8 bits by
Q(In) = ⌊255×In+0.5⌋/255. This step causes information loss in underexposed
and smooth gradient areas.

Event Data. Event cameras work by responding to changes in the logarithmic
brightness signal (i.e., L = logB) asynchronously and independently for each
pixel [13]. An event is triggered when the change in brightness (either increase
or decrease) since the last event at that pixel reaches a threshold of ±T (with
T > 0):

pk(L(uk, tk)− L(uk, tk −∆t)) ≥ T, (1)

where ∆t is the time since the last event triggered at pixel location uk and at
time tk. pk ∈ {−1, 1} is the polarity of the brightness change. To model the
event generation process, we need access to a continuous representation of the



BlinkVision: A Benchmark for Correspondence Estimation 7

Fig. 3: Statistics of optical flow in BlinkVision.

Fig. 4: Statistics of point trajectories in BlinkVision. To save time, we sample
the tracks using a grid with a size of 20. Trajectory segments are defined as contiguous
sections of point trajectories, with interruptions caused by occlusion. The diameter is
the maximum distance a point moves over time. We clip the trajectory diameter and
divide it by the diagonal length of the image to obtain the ratio.

visual signal for each pixel. In practice, it is approximated by rendering images
at high frame rates for efficiency [34, 51]. Events are then synthesized based on
frame-by-frame pixel differences. More specifically, we adaptively sample frames
according to [34, 51] to ensure that the maximum pixel displacement between
two sampling timestamps is bounded. In practice, we employ frame interpolation
before simulating the event data to further reduce the pixel displacement. We
use DVS-Voltmeter [37] to synthesize events because it can simulate complex
noise effects (such as noise effects of temperature and parasitic photocurrent),
thus generating realistic events.

3.3 Ground Truth Generation

Blender provides optical flow data between two consecutive frames and a seg-
mentation mask for each object. However, we cannot directly obtain these data
from Blender: (1) pixel correspondence across multiple frames; (2) scene flow
between frames; (3) semantic category for each object.

Pixel Correspondence. The data of (1) and (2) can be computed in a unified
framework. Given camera poses T (camera-to-world), depth maps Z at frames i
and j, and the camera intrinsic K, for the pixel location u at frame i, we first
project it to world coordinate: P = TiZi(u)K

−1ũ, where ũ is the homogeneous
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coordinates of u. Then we re-project the 3D point P to frame j through duj =
KT−1

j P , where uj is the corresponding pixel location and d is the depth value at
frame j. In this way, we get the pixel correspondence between any two frames
and the corresponding depth, i.e., (1) and (2).

However, this only works for static objects. To handle dynamic objects and
even those objects with deformation motion such as humans and animals, we
bake the face index and barycentric coordinate (λ1, λ2, λ3) of each mesh face
into textures. After rendering the texture, we locate the triangular face that the
tracked pixel belongs to (indexed by the rendered face index) and obtain the
vertices’ 3D position (V1, V2, V3) of that face via Blender’s API. The 3D position
of tracked pixels can be computed through P = λ1V1 + λ2V2 + λ3V3. This step
replaces the back projection for the static objects. It is worth noting that we
need to triangulate every mesh face in the scenes before baking.

Semantic Labeling. BlinkVision contains thousands of objects which makes
manual semantic labeling expensive. To this end, we develop an automatic label-
ing framework that is based on open-vocabulary semantic understanding [50,60].
First, we pre-define a category list based on LVIS [20]. The category together
with category descriptions is encoded into text embedding Ft ∈ RN×D with a
pre-trained text encoder, i.e., CLIP, where N is the number of categories and
D is the feature dimension. For each object asset, we render it individually to
a 224 × 224 image. The process is rather fast while keeping photorealistic be-
cause it does not need to compute complex path tracing between objects. We
use the pre-trained image encoder from CLIP [50] to extract the image embed-
ding Fi ∈ RD. The probability of the image belonging to one of the pre-defined
categories is computed through P (c|Fi) = softmax

(
Fi · (Ft)

⊤)
c
.

3.4 Dataset Overview

BlinkVision consists of 40 training sequences and 103 testing sequences. The
training set provides 107,880 frame pairs for optical flow and scene flow, and
1025 sub-sequences for point tracking. The frame rate for RGB images and
ground truth data is 20 FPS. The frame rate is not practically significant be-
cause we adjusted it to ensure sufficient motion between adjacent frames. This
adjustment reduces the data size uploaded to the benchmark website. For each
sequence of BlinkVision, we selected the sub-sequences by starting tracking from
the first frame. Once the overlap with the reference frame (i.e., how many tracked
points remain inside the image) is smaller than 40%, we start to track a new
reference frame. If the overlap is smaller than 20%, we stop this track. Addi-
tionally, we discard short tracks that are less than 20 frames long because they
are less challenging without long-term motion accumulation, which could result
in the benchmark easily reaching saturation. As a result, we generate 1025 sub-
sequences where each sub-sequence contains 640×480 dense point trajectories.
For the test set, we selected 12,804 frame pairs for evaluating optical flow and
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Fig. 5: Qualitative results of FlowFormer++ [55] before and after fine-tuning on
the training set of BlinkVision.

scene flow, and 865 sub-sequences for evaluating point tracking. BlinkVision in-
cludes raw data on depth, normal, camera pose, etc. At this stage, we focus on
pixel-level motion tasks. The additional raw data will be released later, which
will benefit other tasks such as depth estimation [35] and SLAM [23,24,39].

Table 1 summarizes key statistics of BlinkVision compared to related works.
BlinkVision contains more than 40K 3D models in 410 categories. It shares some
common categories with 2D and 3D datasets [10,20] , and bears a huge diversity
in semantics, geometry, and appearance, enabling a wide range of research topics.

We provide statistics of optical flow in Fig. 3. For benchmarking, we discard
those pixels whose flow magnitudes are larger than half of the image diagonal.
The latter situation usually occurs when the object is too close to the cam-
era, and its magnitude can even approach infinity. As a result, the magnitude
shown in Fig. 3 has an upper bound of 400. The broad distribution in Fig. 3
reveals the diverse motions in BlinkVision. Besides, the diverse distribution of
“X Variance” and “Y Variance” also indicates the presence of complex object
shapes in BlinkVision. We also provide statistics of point trajectories in Fig. 4.
BlinkVision allows the evaluation of point tracking with different trajectories’
lengths, from small to big, corresponding to different downstream applications
like video editing [25, 41] or augmented reality [31, 39]. The broad distribution
of “occlusion ratio” and “number of segments” indicates that BlinkVision brings
diverse and challenging data. The occlusion ratio has an upper bound that is
less than 100 percent due to our strategy of sub-sequences selection. To quantify
the amount of motion a point undergoes, we calculate its trajectory diameter,
which is the maximum distance between any two positions of the point over its
entire trajectory. We observe that point motion in BlinkVision is diverse and
nearly uniformly distributed across the entire image plane.

4 Benchmark

We release all the data except for the ground truth for the test split. For a fair
comparison, we create a public benchmark website with leaderboards. We also
release the evaluation code for our online benchmarking.
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Table 2: Optical flow result of
RGB-frame-based methods. “St.”
denotes Stride. “†” denotes fine-tuning.
“FF” denotes FlowFormer [26] and
“FF++” denotes FlowFormer++ [55].

Method EPE - clean
St. 1 St. 2 St. 4 St. 8 Avg.

RAFT [56] 1.83 4.62 10.18 20.46 9.27
GMA [29] 1.82 4.37 9.52 18.68 8.60
FF [26] 1.60 3.77 7.57 16.03 7.24
FF++ [55] 1.54 3.57 7.43 16.26 7.20

RAFT† [56] 1.33 2.96 6.39 12.72 5.85
FF++† [55] 1.09 2.35 4.88 10.58 4.73

Method EPE - final
St. 1 St. 2 St. 4 St. 8 Avg.

RAFT [56] 2.54 5.69 11.27 22.67 10.54
GMA [29] 2.56 5.72 11.21 21.35 10.21
FF [26] 2.26 4.80 9.24 18.23 8.63
FF++ [55] 2.28 4.83 9.39 19.08 8.90

RAFT† [56] 1.94 3.88 7.35 15.17 7.08
FF++† [55] 1.66 3.34 6.42 12.73 6.04

Table 3: Optical flow result of event-
based methods. “St.” denotes Stride. “†” de-
notes fine-tuning.

Event

Methods St. 1 St. 2 St. 4 St. 8 Avg.

E-RAFT [16] 2.81 7.04 17.82 28.60 14.07
STE-FlowNet [11] 2.59 5.94 13.13 41.89 15.89
E-FlowFormer [34] 2.41 5.66 12.53 30.45 12.76

E-RAFT† [16] 1.68 3.63 7.48 14.20 6.75
E-FlowFormer† [34] 1.51 3.00 5.96 13.60 6.02

Event + RGB (clean)

Methods St. 1 St. 2 St. 4 St. 8 Avg.

DCEIFlow [58] 3.31 14.07 34.78 61.56 28.43
DCEIFlow† [58] 2.19 6.30 12.54 26.11 11.79

Event + RGB (final)

Methods St. 1 St. 2 St. 4 St. 8 Avg.

DCEIFlow [58] 4.08 14.24 34.54 61.27 28.53
DCEIFlow† [58] 2.52 6.86 13.64 28.45 12.87

4.1 Optical Flow

In this section, we comprehensively evaluate the performance of existing opti-
cal flow methods on BlinkVision. Specifically, we first analyze the robustness
of image-based methods under large frame intervals and extreme illumination.
Large motion, severe occlusion, and information loss in these extreme cases pose
great challenges to existing image-based methods. In contrast, event cameras
naturally depict continuous pixel motion and possess a large dynamic range,
thus offering great potential for solving these challenges. We then benchmark
existing event-based methods, including event-only methods and event-RGB fu-
sion methods. We find that existing event-based methods cannot fully unleash
the potential of event cameras. We analyze the possible reasons and point to
possible opportunities for future research.

Experimental Setup. To study the impact of frame intervals on existing meth-
ods, we select frames separated by 1, 2, 4, and 8 from the reference frame as tar-
get frames. To reduce the file size of results that are uploaded to the benchmark
website, we uniformly sample a reference frame from ten consecutive frames. As
a result, there are 12,804 frame pairs for testing in total. We follow the previous
work [26,47,56] and report the EPE (end-point-error) as the evaluation metric.

Results. We benchmark several image-based methods in Table 2. We make the
following observations: 1) The error generally increases linearly with stride size.
This is expected because doubling the stride yields motion that is twice as fast,
resulting in an error that is also expected to be twice as high. 2) Extreme light-
ing has a heavy effect on existing image-based methods. In the supplementary
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Table 4: Point tracking result of RGB-
frame-based methods under different frame
interval. “St.” denotes Stride.

RGB(clean)

Method Metric St. 1 St. 2 St. 4 St. 8 Avg.

PIPs [21]
δavg 37.77 39.34 36.34 25.50 34.74

Survival↑ 52.28 55.39 54.55 47.58 52.45
MTE↓ 50.77 47.81 49.53 62.42 52.63

PIPs++
[62]

δavg 40.02 38.25 30.24 16.84 31.34
Survival↑ 53.44 53.13 47.57 39.71 48.46
MTE↓ 45.51 51.02 59.87 73.17 57.39

Context-
TAP [8]

δavg 38.75 39.47 36.51 25.99 35.18
Survival↑ 49.98 53.09 52.61 46.18 50.46
MTE↓ 51.46 49.61 51.83 64.39 54.32

RGB(final)

Method Metric St. 1 St. 2 St. 4 St. 8 Avg.

PIPs [21]
δavg 33.02 34.44 31.56 21.77 30.20

Survival↑ 48.35 51.56 50.72 44.56 48.80
MTE↓ 53.94 51.54 53.65 66.14 56.32

PIPs++
[62]

δavg 35.83 34.24 27.11 15.32 28.12
Survival↑ 50.47 50.36 45.32 38.46 46.15
MTE↓ 48.37 53.74 62.34 74.59 59.76

Context-
TAP [8]

δavg 33.46 34.17 31.39 22.00 30.25
Survival↑ 45.58 48.91 48.53 43.06 46.52
MTE↓ 55.09 53.76 56.33 68.11 58.32

Table 5: Point tracking result
of event-based methods. “*” de-
notes that we track ORB [52] fea-
ture points rather than grid sam-
pled points. “DET” denotes Deep-
ETracker [44]

Event

Method δavg ↑ Survival↑ MTE↓

AMH [5] 18.95 37.98 75.44
HASTE [6] 18.60 37.43 77.36
AMH* [5] 26.76 41.93 62.48
HASTE* [6] 27.65 42.87 62.52

Event + RGB (clean)

Method δavg ↑ Survival↑ MTE↓

DET [44] 21.62 35.44 80.80
DET* [44] 33.46 48.82 60.69

Event + RGB (final)

Method δavg ↑ Survival↑ MTE↓

DET [44] 19.05 33.52 85.00
DET* [44] 31.78 48.67 58.79

materials, we analyze how different exposure factors lead to performance loss. 3)
Fine-tuning on the training split of BlinkVision significantly improves the per-
formance. In Fig. 5 we show qualitative results of FlowFormer++ before and
after fine-tuning on BlinkVision. After fine-tuning, the flow predictions are more
precise and clear, especially near the object boundary. As shown in Table 2, the
benchmark is still challenging for methods after fine-tuning.

We report the evaluation of event-based methods in Table 3. It is surprising
that the performance of existing event-based methods is worse than image-based
methods and they also suffer from severe degradation under large frame inter-
vals. The reasons are mainly twofold. First, existing training data for events lag
behind that of RGB. This can be verified by the performance of E-RAFT [16]
and E-FlowFormer [34] after fine-tuning. These two methods are far behind
RAFT [56] before fine-tuning, but exceed the fine-tuned RAFT [56] and even
FlowFormer++ [55] after fine-tuning (in “Stride-1”, “Stride-2” and “Stride-4”
of the “final” case), indicating that the poor performance of the former mainly
comes from limited training on existing event-based training data. Second, exist-
ing event-based methods usually convert events to regular 3D voxel grids before
processing, which quantizes the event data and leads to information loss. This
problem is more serious when dealing with event data within large frame inter-
vals. As a result, it calls for a more powerful representation of event data and
new algorithms that can deal with long-range optical flow estimation.
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Fig. 6: Qualitative results of PIPs++ [62].
Darker lines in the right figure (e.g., red) indi-
cate larger errors.

Fig. 7: Performance distribution
of FlowFormer++ [55].

Table 6: Scene flow result of RGB-
frame-based methods. “St.” denotes
Stride.

EPE-2d

Method RGB St. 1 St. 2 St. 4 St. 8

RAFT-3D [57] clean 2.15 4.34 8.59 16.08
final 3.48 7.29 10.74 18.57

CamLiFlow [38] clean 2.79 6.05 12.34 23.89
final 4.28 8.28 16.30 30.61

EPE-3d

Method RGB St. 1 St. 2 St. 4 St. 8

RAFT-3D [57] clean 1.91 3.83 7.25 12.18
final 2.02 3.96 7.39 14.21

CamLiFlow [38] clean 1.45 2.76 5.36 9.12
final 1.53 2.88 5.60 9.81

Table 7: Scene flow result of event-
based methods. “St.” denotes Stride.

EPE-2d

Method RGB St. 1 St. 2 St. 4 St. 8

RPEFlow [59]
clean 1.53 3.50 7.36 17.44
final 1.92 4.10 8.15 18.38

EPE-3d

Method RGB St. 1 St. 2 St. 4 St. 8

RPEFlow [59]
clean 5.08 9.07 15.77 25.24
final 5.20 9.38 15.67 25.03

4.2 Point Tracking

In this section, we evaluate the performance of existing methods for long-term
point tracking on BlinkVision. Similar to what we analyzed on optical flow, we
analyze the robustness under large frame intervals and extreme illumination,
and the gaps between existing image-based methods and event-based methods.

Experimental Setup. Although BlinkVision provides per-pixel dense annota-
tions for point tracking, we find that existing methods are not efficient enough to
process so much data. As a result, we grid sample the tracked pixels with a grid
size of 20 pixels. We follow PointOdyssey [62] and use δavg, median trajectory
error (MTE) and survival rate as the evaluation metrics.

Results. We benchmark several image-based methods in Table 4. Similarly, we
observe that extreme lighting has a major impact on existing image-based point
tracking methods. In Table 4 we can see that larger frame intervals (such as 4 and
8) severely degrade performance. However, for PIPs [21] and Context TAP [8],
increasing the interval from 1 to 2 makes the performance slightly better. We
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Table 8: Cross-dataset evaluation of
optical flow methods fine-tuned on
BlinkVision. “BV” denotes BlinkVision.

RGB

Method Data Sintel Sintel KITTI(clean) (final)

RAFT [56] - 2.08 3.41 5.10
+BV 1.69 3.04 4.66

Events

Method Data E- Flying- E-
Blender Objects Tartan

E-RAFT [16] - 2.66 2.9 3.27
+BV 1.92 2.67 2.55

E-FlowFormer [34] - 2.38 2.89 2.91
+BV 1.75 2.58 2.36

Events + RGB

Method Data E- Flying- E-
Blender Objects Tartan

DCEIFlow [58] - 8.96 9.58 7.44
+BV 4.76 2.37 2.88

Table 9: Performance evaluation
for typical categories at each
difficult level.“FF” denotes Flow-
Former [26] and “FF++” denotes
FlowFormer++ [55]. We use the EPE
as the evaluation metric.

Difficult Category
RAFT FF FF++

[56] [26] [55]

Hard
person 9.82 8.72 8.61
tree 9.79 9.76 10.10

rhinoceros 8.90 7.07 6.78

Medium
bench 4.29 3.60 3.68
globe 3.43 2.52 2.51

lantern 2.44 1.92 1.95

Easy
notebook 1.08 0.57 0.84
coaster 0.86 0.87 0.79
painting 0.31 0.30 0.26

guess it might be the limited temporal receptive field of these two methods (only
8 frames) that makes the accumulated error quickly increase when the stride is
too small. Some qualitative results are shown in Fig. 6. BlinkVision contains
many challenging cases that cannot be handled by the SOTA methods.

We show the performance of event-based methods in Table 5. We find that
event-based approaches perform particularly poorly. In addition to the reasons
for insufficient training data and model design, we deduce that the receptive field
of event-based point-tracking methods is relatively small and therefore cannot
perform well on the task of tracking arbitrary points. To verify the claim, we
replace the input of grid sampled positions with ORB [52] feature points, de-
noted by “*” in the table. The new results perform even better, validating our
ideas. Although the new results cannot be strictly compared with image-based
methods, it performs better under extreme frame interval, i.e., “Stride-8”, which
shows the large potential of event-based methods.

4.3 Scene Flow

Experimental Setup. We use the same pairs as the optical flow benchmark
and we follow [38,57] to use 2D EPE and 3D EPE as the evaluation metrics.

Results. We benchmark two state-of-the-art image-based methods, i.e., RAFT-
3D [57] and CamliFlow [38] as shown in Table 6 and show the results of event-
based methods in Table 7. The conclusions of the optical flow benchmark apply
to the scene flow task and present similar challenges for existing methods in this
area. We show qualitative results in the supplementary materials.



14 Y. Li et al.

4.4 Cross-dataset Evaluation

We also fine-tune existing optical flow methods on the BlinkVision training set
and then evaluate them on existing representative benchmarks. The results are
shown in Table 8. We observe that fine-tuning on BlinkVision brings signifi-
cant improvement for both image-based methods (2.08 vs. 1.69) and event-based
methods (2.38 vs. 1.75 and 9.58 vs. 2.37), which demonstrates the vast diversity
of BlinkVision boosts the generalizability of these methods.

4.5 Performance Distribution on Categories

Previous methods in optical flow mainly perform evaluations on biased and lim-
ited scenarios, which is not comprehensive and robust enough to demonstrate
the ability of the methods for different categories of objects in different sce-
narios. Thanks to the vast diversity of data and semantic labels provided by
BlinkVision, for the first time, we analyze the performance distribution of sev-
eral image-based optical flow methods on different categories. The results are
shown in Fig. 7. The average curve is imbalanced: hard categories usually in-
clude complex shapes (e.g., hammocks and shrubs) or with deformable motion
(e.g., persons and animals). We thus split the categories into three levels of “dif-
ficulty” based on the average curve, and the performance evaluation for typical
categories at each level is presented in Table 9. We believe such fine-grained
analysis helps understand the generalization capacity of the methods.

5 Conclusion

We propose BlinkVision, a large-scale diversiform benchmark for three types of
correspondence tasks, i.e., optical flow, point tracking, and scene flow estimation
using RGB frames and events. Extensive benchmarks on BlinkVision point to
new challenges for existing image-based approaches and show that existing event-
based approaches are far from fully unlocking the potential of event cameras.
BlinkVision reveals new observations, challenges, and opportunities for future
research into more robust visual systems such as human vision.
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