
BlinkFlow: A Dataset to Push the Limits of Event-based Optical Flow
Estimation

Yijin Li1*, Zhaoyang Huang2*, Shuo Chen1, Xiaoyu Shi2, Hongsheng Li2, Hujun Bao1,
Zhaopeng Cui1, Guofeng Zhang1†

1State Key Lab of CAD&CG, Zhejiang University
2Multimedia Laboratory, The Chinese University of Hong Kong

Abstract— Event cameras provide high temporal precision,
low data rates, and high dynamic range visual perception, which
are well-suited for optical flow estimation. While data-driven
optical flow estimation has obtained great success in RGB
cameras, its generalization performance is seriously hindered
in event cameras mainly due to the limited and biased training
data. In this paper, we present a novel simulator, BlinkSim,
for the fast generation of large-scale data for event-based
optical flow. BlinkSim incorporates a configurable rendering
engine alongside an event simulation suite. By leveraging the
wealth of current 3D assets, the rendering engine enables us
to automatically build up thousands of scenes with different
objects, textures, and motion patterns and render very high-
frequency images for realistic event data simulation. Based on
BlinkSim, we construct a large training dataset and evaluation
benchmark BlinkFlow that contains sufficient, diversiform,
and challenging event data with optical flow ground truth.
Experiments show that BlinkFlow improves the generalization
performance of state-of-the-art methods by more than 40% on
average and up to 90%. Moreover, we further propose an Event-
based optical Flow transFormer (E-FlowFormer) architecture.
Powered by our BlinkFlow, E-FlowFormer outperforms the
SOTA methods by up to 91% on the MVSEC dataset and
14% on the DSEC dataset and presents the best generalization
performance. The source code and data are available at https:
//zju3dv.github.io/blinkflow/.

I. INTRODUCTION

Event cameras detect changes in intensity at each pixel
of the image as a stream of asynchronous events, which
naturally depicts pixel motions. Besides, their high temporal
precision (on the order of microseconds), low data rates, and
high dynamic ranges (> 120 dB) far exceed traditional RGB
cameras. Such significant characteristics make event cameras
popular in robotics [37], [13] and particularly suitable for
tasks such as optical flow [18], [35] estimation, which re-
quires accurate and efficient tracking of pixel motion between
frames.

The success of data-driven optical flow estimation for
RGB cameras motivates researchers to develop learning-
based methods for event-based optical flow estimation. How-
ever, previous works [43], [22], [18] highly overfit their
dataset (Fig. 1) and their performance is far from satisfactory
in practical scenarios. One major reason is the lack of large-
scale diversiform training data along with a benchmark to
evaluate their generalization performance. Due to the novelty

*Yijin Li and Zhaoyang Huang contributed equally to this work.
†Guofeng Zhang is the corresponding author.

Event Stream E-RAFT Ours

Fig. 1. Comparison of generalization. E-RAFT [18] overfits the DSEC
dataset [17] and generalizes poorly to unseen environments. In contrast, our
E-FlowFormer powered by the proposed BlinkFlow dataset presents good
generalization performance and recovers complex and flexible optical flows.

and complexity of the event camera, there are currently only
four event camera datasets that contain the ground truth data
of optical flow. These datasets cover limited scenarios, simple
motion patterns and only contain sparse optical flow ground
truth, as shown in Table I. To alleviate the problem, one
potential strategy [15] is converting the existing RGB frame-
based dataset into event data based on video interpolation,
but it inevitably produces artifacts and introduces data bias.
Such issues may be acceptable in object recognition [24]
and semantic segmentation [15], which focus on high-level
semantics, but can severely disturb low-level tasks such as
optical flow especially when encountering violent motions
and occlusion, as shown in Fig. 2.

We observe that the favorable outcome of frame-based op-
tical flow learning may largely be attributed to the synthetic
datasets [28], [11]. Motivated by them, we propose BlinkSim,
an event simulator that renders event data sequences and
obtains their optical flow ground truth. BlinkSim consists of
two modules including a configurable rendering engine and
a simulation suite with integrated multiple event emulators.
Our effort is similar in spirit to the FlyingChair [11] and
FlyingThings [28] for RGB image-based optical flow esti-
mation, but it is customized for event cameras. Specifically,
BlinkSim allows rendering very high frame rate images and
is coupled with the event data simulator suite, which ensures
realistic event data generation. Based on BlinkSim, we
generate a large training dataset and evaluation benchmark
BlinkFlow. As shown in Fig. 3, BlinkFlow covers diverse
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Frame 1 Frame 2Interpolated Frame

Fig. 2. Video interpolation artifacts (pointed by red arrows).

scene categories and complex motion patterns with sufficient
realism. To boost the research in event camera communities,
we also open-source the BlinkSim besides the release of
BlinkFlow data. BlinkSim can be extended to alleviate the
data problem in other tasks related to event cameras, such
as feature tracking [16], [5] and depth estimation [29].

Aside from data issues, the unfamiliar way in which events
encode visual information also poses challenges for optical
flow estimation. Recent methods [18], [10] have demon-
strated that the methods designed for images, i.e., usage
of correlation volume, can be adopted and work quite well
on event data. However, as event cameras provide neither
absolute brightness information nor spatially continuous data
and the event data suffers from severe noise compared to
image data, directly applying correlation to event data cannot
produce a discriminative matching cost. To address this
problem, we propose an Event optical Flow transFormer (E-
FlowFormer) architecture, which enhances the event feature
extraction by fully encoding information from input events.
Empowered by the diversiform and high-quality training
data of our BlinkFlow, E-FlowFormer learns effective and
generalizable event features to build a distinct correlation
volume for the following flow refinement.

Our contributions can be summarized in three folds: 1) We
develop a novel simulator, BlinkSim, to synthesize events
along with related ground truth. 2) We build a dataset
BlinkFlow based on BlinkSim, for training and evaluating
event-based optical flow estimation methods. BlinkFlow ex-
ceeds previous datasets in quantity, quality, and diversity. 3)
We propose an E-FlowFormer to fully unleash the power
of the large-scale training data provided by BlinkFlow. E-
FlowFormer ranks 1st on mainstream benchmarks DSEC and
MVSEC and the proposed BlinkFlow benchmark.

II. RELATED WORK

A. Optical Flow Dataset and Simulator for Event Camera

As far as we know, there are currently only four public
event camera datasets that include optical flow ground truth
data. which can be categorized based on how the ground truth
optical flow is obtained. In DVSFLOW16 [32] and DVS-
MOTION20 [1], the ground truth optical flow was deduced
from the camera’s rotational movement, as measured by the
inertial measurement unit. DSEC [17] and MVSEC [43]
computed the ground truth through LiDAR SLAM. Both
ways limit the ground truth to the static elements of the scene
and the latter one only offers sparse data up to a specific
distance and height. Besides, these datasets have a very
limited motion pattern. For example, DVSFLOW16 [32] and
DVSMOTION20 [1] contain only rotational camera motion,
while in DSEC [17], the camera primarily moves straight

ahead, interspersed with turns to the left or right. A com-
prehensive overview and comparison are listed in Table I.
As for event simulators, most of the current works [19],
[31], [25] focus on how to generate realistic events from
high-frequency image sequences. However, obtaining these
sequences is not easy either. While some works [15] propose
to convert existing frame-based datasets into event data by
firstly interpolating the frames densely, they are limited by
the interpolation artifacts and are not suitable for low-level
applications like optical flow. In this paper, we propose
BlinkSim to alleviate the problem of generating large-scale
diverse scenarios with corresponding event data and optical
flow labels. Both the BlinkSim and the generated data
BlinkFlow are released.

B. Event-based Optical Flow Estimation

Extensive research has been carried out on the use of
event cameras for estimating optical flow, given their iden-
tified advantages. Previous studies have proposed adapta-
tions of frame-based techniques (block matching [27] and
Lucas-Kanade [4]), time surface matching [1], variational
optimization [2], spatio-temporal plane-fitting [3], contrast
maximization [35] and so on. These methods usually assume
constant brightness. Alternatively, another stream of research
is exploring learning-based methods. In these methods, event
streams are typically converted into a grid-like representation
in a pre-processing step. Then frame-based designs and
frameworks such as FlowNet [11], cost volume [36] and
recurrent refinement [38], [20], [33], [34] can be applied.
In total, the learning-based methods outperform the former
hand-designed methods in current benchmarks [43], [17]. In
this paper, we propose E-FlowFormer to further improve the
capacity of the learning-based method by enhancing event
features through transformers.

III. BLINKSIM

BlinkSim is a simulator designed to automate the gen-
eration of large amounts of realistic event data and high-
quality optical flow ground truth. It is mainly composed
of two separate components: a configurable and photo-
realistic rendering engine in a high frame rate built with
the Blender1 and a simulation suite with integrated multiple
event emulators. The two modules are decoupled and can
run independently from each other. Users can simulate event
data from rendered images of thousands of 3D scenes that are
automatedly built from scratch using our rendering engine,
or generate events from existing high-speed video data by
selecting an appropriate event data simulator from our suite.
In this section, we first introduce the event generation model,
then introduce the rendering engine and the event simulation
module, respectively. Finally, we describe how we render the
diversiform event optical flow dataset, BlinkFlow, based on
the proposed simulator.

1https://www.blender.org

https://www.blender.org


TABLE I
COMPARISON OF AVAILABLE DATASETS.

Dataset Motion Pattern Dynamic Object Occlusion Training Frames Training Scenes Test Scenes Resolution
DVSFLOW16 [32] Rotation ✗ ✗ - - 5 180 × 240
DVSMOTION20 [1] Rotation ✗ ✗ - - 4 260 × 346
MVSEC [42] Drone ✗ ✗ 3k 1 4 260 × 346
DSEC [17] Car ✗ ✗ 8k 18 7 640 × 480
BlinkFlow (Ours) Random ✔ ✔ 33k 3362 225 640 × 480

DSEC MVSEC BlinkFlow Dataset (Ours)

Fig. 3. Example scenes from DSEC, MVSEC and the proposed BlinkFlow dataset. 3rd row: Event data, 4th row: Optical flow images. Our BlinkFlow
dataset contains complex object/camera motions and various scenarios which significantly outperform DSEC and MVSEC in quantity, quality, and diversity.
The 1-2, 3-4, and 5-6 columns of the BlinkFlow Dataset correspond to the sequences of FlyingObjects, E-Tartan and E-Blender, respectively. Best viewed
on a color screen in high resolution.

A. Event Generation Model

Event cameras operate by responding to changes in the
logarithmic brightness signal in an asynchronous and in-
dependent manner for each event pixel [14]. An event is
triggered when the brightness change (either increment or
decrease) since the last event at that pixel reaches a threshold
±C (with C > 0):

pk(L(uk, tk)− L(uk, tk −∆t)) ≥ C, (1)

where ∆t is the time since the last event triggered at pixel
location uk and at time tk. pk ∈ {−1, 1} is the polarity of the
brightness change. To simulate the event generation process,
we need access to the continuous representation of the visual
signal for each pixel, which is practically unattainable. In
practice, we approximate the continuous signal changes by
rendering images with a high frame rate and then synthesize
events according to frame-wise pixel differences.

B. Rendering Engine

The rendering engine for BlinkSim is developed with
the open-source 3D creation suite Blender, based on which
we can render diverse objects with complex motions under
flexible scene configurations.
3D Environment Setup Data-driven models benefit greatly
from having access to abundant and diverse training data.
To this end, we have developed a scalable pool of rendering
assets based on ShapeNet [6], which contains thousands
of real-world 3D objects. The pool also contains various
basic shapes like cuboids and cylinders which are randomly
textured with real-world images from ADE20K dataset [41].

By default, each scene is bounded by a large textured sky box
and objects are randomly selected from the pool, randomly
scaled, rotated, textured, and placed on the ground plane.
The related materials can be further extended with other
available resources. For example, we can collect objects in
Google Scanned Objects [12] and images in COCO [26]. In
addition, BlinkSim provides a user-friendly interface for im-
porting customized scenes downloaded from websites such
as BlenderKit2 and Blender Store3.
Trajectory Sampling To generate diverse motion patterns,
we need to sample various trajectories, including object-
moving and camera-moving trajectories. The two trajectories
are similar: for a timestamp t, determining a 6-degree-of-
free (DoF) pose P(t) including 3-DoF rotation and 3-DoF
translation. The difference is that we put objects in the scene
according to the object poses while we send camera poses
to the virtual camera in Blender for rendering data. We
randomly sample N points in the free space with random
rotation and fit a spline. The spline curve determines that
for any timestamp t we have a unique 6-DoF pose. We
also detect collisions between the objects and the camera
and between multiple objects by checking the intersection
of the trajectories [21]. Once a collision is detected, we
cut the trajectory of the collided objects to avoid the model
breakthrough. The next step is to sample the timestamps for
rendering. A simple strategy is sampling t evenly but may
fail to faithfully simulate events when the brightness signal
varies more quickly than the chosen rendering frame rate.

2https://www.blenderkit.com/
3https://store.blender.org/

https://www.blenderkit.com/
https://store.blender.org/
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Fig. 4. Framework of BlinkSim. BlickSim consists of a configurable
rendering engine and an event data simulation suite. It allows the fast
generation of large-scale data with realistic event data and related optical
flow ground truth.

Another choice is to adaptively increase t by limiting the
maximum pixel displacement or brightness change between
two sampled timestamps [31]. However, it requires gener-
ating high frame rate optical flows for pixel displacement
estimation, which hinders rendering efficiency, and it is
unnecessary when the motion is slow-varying. BlinkSim
supports both image sequence rendering strategies so that
users can choose a suitable strategy according to their time-
consuming requirements and motion settings.
Data Generation We render the data with two passes. As
shown in Fig. 4, we first render images of the densely-
sampled viewpoint which are used for event data generation.
In the second pass, we sample the viewpoint sparsely and
render the simulated RGB camera’s view. We use Blender-
Proc [9] which modifies the pipeline of Blender’s internal
render engine and allows us to obtain the corresponding
optical flow ground truth.

C. Event Data Simulator

Eq. 1 describes the ideal process for event generation,
but in practice, the triggering threshold is not constant.
Furthermore, there are complicated noise effects such as
refractory periods and temporal noises at low illumination.
BlinkSim integrates three state-of-the-art (SOTA) event data
simulators inside and provides flexible choices for users. The
comparison of these data simulators is listed in Table II.
ESIM [31] is an early-stage simulator that only considers
spatially varying thresholds but it runs the fastest on a
CPU. DVS-Voltmeter [25] generates the most realistic event
data by considering spatiotemporally varying thresholds,
modeling the event triggering timestamp as Brownian motion
instead of linearly distributed. Besides, it considers the
influence of temperature and parasitic photocurrent. But at
the same time, the DVS-Voltmeter runs the slowest and does
not have GPU acceleration. V2E works best when simulating
the scenes in low illuminations and it supports accelerating
rendering with GPUs, whose speed is on par with ESIM.
Users can choose suitable emulators according to the scenes
and the requirement of time consumption.

D. BlinkFlow Dataset

Based on BlinkSim, we create BlinkFlow, which consists
of a large-scale, diversiform training dataset and a chal-
lenging evaluation benchmark. We split the object pool into
two disjoint parts and generated 3362 and 200 scenes for
training and testing, respectively. Besides, we selected 20
sequences from the TartanAir [40] dataset and converted
them to event data using our event simulator suite. The
sequences were carefully chosen to ensure that no apparent
artifacts from frame interpolation. Finally, we downloaded
some well-designed assets from Blender Store and Mix-
amo4 and created 5 customized scenes including “dancing
women”, “falling dice” and so on, which are partly shown
in Fig. 3. The resulting 200, 20, and 5 test sequences
(called FlyingObjects, E-Tartan, and E-Blender, respectively)
contain a total of over 4000 frames. We choose V2E [19] for
the event simulation when generating most of the training
data and DVS-Voltmeter [25] for other training data and all
the testing data. When simulating events for each sequence,
the corresponding simulation parameters are randomly se-
lected within a range given in advance, so that the trained
network do not overfit to specific parameters. For example,
the contrast threshold C is randomly selected in the range
of [0.18, 0.25]. As shown in Table I, BlinkFlow contains
complex camera motions and dynamic objects based on our
trajectory sampling, produces events with ground truth flows
for occluded objects, provides individual training/test splits,
covers more training scenes (3362 v.s. 18) and test scenes
(225 v.s. 7), and generates more training frames (33k v.s.
8k). Such a rich dataset can push the limits of event-based
optical flow estimation and encourage researchers to explore
better neural networks for event cameras.

IV. E-FLOWFORMER

E-FlowFormer is built upon E-RAFT [18], a state-of-
the-art neural network architecture for learning event-based
optical flow estimation. It encodes event features with a
shallow Siamese CNN to construct a 4D correlation vol-
ume, which measures event similarity. However, events are
noisier than RGB images and the corresponding locations
derived from ground truth flows do not always present the
same event patterns. Inspired by recent progress in deep
learning [39], [20], [23], [30], we propose to enhance the
event feature encoding modules with transformers. We call
the enhanced neural network as E-FlowFormer. An overview
of the proposed method E-FlowFormer is presented in Fig. 5.
In this section, we first review E-RAFT and then describe
our transformer-based event feature enhancement module.

A. E-RAFT Brief Review

E-RAFT consists of three stages: feature extraction, cor-
relation volume computation, and motion refinement. Given
two consecutive packets of events, E-RAFT converts them
to tensor-like event representations and then encodes local
features of events FA, FB ∈ RH×W×D with a siamese CNN.

4https://www.mixamo.com/

https://www.mixamo.com/


TABLE II
COMPARISON OF THREE EVENT DATA SIMULATOR.

Threshold Timestamp
Modeling

Temperature
Noise

Low
Illumination

Refractory
Periods

Speed (10k ev./s)
CPU / GPU

ESIM [31] Spatial Linear ✗ ✗ ✗ 170 / -
V2E [19] Spatial Linear ✗ ✔ ✔ 26 / 141

DVS-Voltmeter[25] Spaitio-temperoal Brownian ✔ ✗ ✗ 29 / -

With the event feature tensors FA and FB , a correlation
volume C ∈ RH×W×H×W which encodes the feature
similarity for each pixel in FA with respect to all pixels
in FB is computed through:

C =
FAF

T
B√

D
∈ RH×W×H×W , (2)

where 1√
D

is a normalization factor that can avoid large
values after the dot-product operation. Then, E-RAFT itera-
tively refines the flow estimation by taking the current motion
estimation, the correlation volume, and the context features
with a ConvGRU module. The flow is usually initialized to
zero in previous implementation [18]. E-RAFT supervises
all flow predictions using a sequence loss:

L =

N∑
i=1

γN−1∥Vi − Vgt∥1, (3)

where N is the number of flow predictions. γ is the weight
that exponentially increases to give higher weights for later
predictions. Vi is the flow prediction at the i-th iteration and
Vgt is the ground truth flow.

B. Event Feature Enhancement Through Transformers

The key to E-RAFT lies in obtaining high-quality discrim-
inative event features. As previously mentioned, the features
FA and FB are encoded independently from a weight-
sharing shallow CNN. We enhance the event feature encod-
ing with transformers to incorporate their interdependence
better. Cooperated with positional encoding, transformers
can effectively capture both the relevant spatial relationships
and feature similarity between the two sets of events and
thus generate refined and discriminative event features. A
remaining issue is that the standard Transformer architecture
introduces quadratic computational complexity. To avoid
this issue, we adopt the spatially separable self-attention
proposed in Twins [7] instead of the vanilla version. The
enhanced event feature encoder improves the distinctiveness
of event features and thus brings a better correlation vol-
ume, based on which, we can identify the correspondence
through a differentiable matching layer [30]. The resulting
correspondence will be added and supervised in the sequence
loss, effectively suppressing the correlation strength far from
the ground truth locations. Besides, we use the resulting
correspondence to better initialize the following refinement
module.

V. EXPERIMENT

In this section, we first show that the models trained on
BlinkFlow gain better generalization performance than those
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Fig. 5. Network architecture of E-FlowFormer. The proposed feature
enhancement module brings a better correlation volume through the trans-
former design. Besides, it provides a better initialization of optical flow for
the following refinement module.

trained on DSEC and MVSEC, which reveals the superiority
of training data in BlinkFlow. Then, we demonstrate that
the evaluation benchmark in BlinkFlow is more challenging
and comprehensive. Finally, we evaluate the proposed E-
FlowFormer which ranks 1st on the MVSEC, DSEC and
BlinkFlow benchmarks. This indicates that the transformer-
based event feature enhancement module effectively learns
the event features.
Dataset There are two commonly used datasets for event-
based optical flow training and evaluation: MVSEC [42] and
DSEC [17]. MVSEC contains two scenarios, i.e., sequences
recorded in the indoor room and outdoor sequences recorded
while driving on public roads. The ground truth of optical
flow is approximated by multiplying the motion field by
the time interval (denoted as “dt”) where the motion field
is computed according to the camera movement and scene
depth. DSEC [17] contains data in a higher resolution
and improves the quality of the ground truth optical flow
by removing the occlusions and moving objects. Both of
MVSEC and DSEC collect data in rigid and static scenes
and compute optical flows via post-processing, resulting in
highly biased data and inaccurate ground truth. In contrast,
our BlinkFlow dataset covers various scenes and objects and
directly obtains the ground truth flows from the renderer.
We denote DSEC, MVSEC, and BlinkFlow datasets by “D”,
“M”, and “B”.
Experiment Setup. We measure the accuracy of the optical
flow using several metrics, namely the Average Endpoint
Error (AEE), outlier rate, Angular Error (AE), and N-pixel
errors (N-PE). The AEE measures the Euclidean distance
between the predicted flow and the ground truth. The outlier



Event Stream STE-FlowNet (D) STE-FlowNet (B) E-RAFT (D) E-RAFT (B) Ours Ground Truth

Fig. 6. Qualitative comparison on BlinkFlow. BlinkFlow contains challenging data that makes previous methods trained on DSEC almost fail. Models
trained on BlinkFlow consistently outperform models trained on DSEC and E-FlowFormer achieves the lowest AEE among all the methods, producing
accurate and smooth optical flow prediction.

TABLE III
GENERALIZATION PERFORMANCE COMPARISON ON DSEC AND MVSEC DATASET.

DSEC (train) MVSEC (indoor) MVSEC (outdoor)Methods Training Data AEE Outlier Training Data AEE Outlier AEE Outlier
M 9.91 77.59 D 2.17 19.77 1.34 8.52
B 1.45 9.19 B 1.72 12.21 1.37 8.59STE-FlowNet

[10] Impro. +85% +88% Impro. +22% +38% -2% -1%
M 11.24 84.89 D 2.29 18.12 1.47 8.98
B 1.34 8.12 B 1.85 12.03 1.35 8.56E-RAFT [18]

Impro. +88% +90% Impro. +19% +34% +8% +5%
M 7.92 65.85 D 2.44 22.35 1.45 9.21
B 1.25 6.73 B 1.62 11.18 1.29 8.08E-FlowFormer

(Ours) Impro. +84% +90% Impro. +34% +50% +11% +12%

rate represents the percentage of points where the endpoint
error exceeds 3 pixels and 5% of the magnitude. The AE
calculates the angle between normalized optical flow pre-
dictions and the normalized ground truth. N-PE denotes the
percentage of flow errors greater than N pixels in magnitude.

Training Data in BlinkFlow Improves Generalization. We
set up two experiments with three network architectures, i.e.,
STE-FlowNet [10], E-RAFT [18], and our E-FlowFormer, to
present that models trained on BlinkFlow (B) gain the best
generalization performance. We train models on MVSEC
(M) and BlinkFlow (B) and evaluate the models on DSEC.
As shown in Table III, the models trained on BlinkFlow
achieve at least 84% error reduction. Then, we further train
the models on DSEC and BlinkFlow and evaluate them on
MVSEC (Table III), which also reveals significant perfor-
mance improvement for E-RAFT and our E-FlowFormer, up
to 34% AEE reduction on MVSEC (indoor). BlinkFlow does
not outperform DSEC much when evaluated on the outdoor
sequence of MVSEC because DSEC and MVSEC (outdoor)
share a similar scene pattern, i.e., both are outdoor driving
scenarios. Totally speaking, both experiments present the
extraordinary superiority of our BlinkFlow. Moreover, our

proposed E-FlowFormer makes the best use of BlinkFlow
and outperforms the other two methods all-sided.
Test Data in BlinkFlow Is More Challenging. All of
DSEC, MVSEC, and our proposed BlinkFlow provide both
training data and test data. We can train and test models with
data belonging to the same dataset to present the easiness
of datasets. We select E-RAFT and STE-FlowNet and use
outlier metrics in this experiment. As shown in Table V, E-
RAFT and STE-FlowNet obtain overall less than 4 percent in
terms of outliers, which indicates that DSEC and MVSEC are
so simple that they can be easily fitted. However, BlinkFlow
is still challenging for them, which reveals that BlinkFlow
is a more comprehensive evaluation benchmark to push the
limits of event-based optical flow estimation.
E-FlowFormer Ranks 1st on MVSEC. In Table VI, we
compare with recent SOTA methods on the MVSEC dataset.
E-FlowFormer, only trained on the proposed BlinkFlow
dataset achieves comparable performances with the SOTA
methods leveraging the MVSEC training data. Especially,
E-FlowFormer outperforms other methods by a significant
margin in almost all the indoor sequences, because the
training set of MVSEC is only the outdoor sequences. It is
easy to overfit the training data and thus brings severe per-



TABLE IV
COMPARISON ON BLINKFLOW DATASET.

Methods FlyingObjects E-Tartan E-Blender
AEE Outlier AE AEE Outlier AE AEE Outlier AE

Spike-FlowNet [22] 5.39 32.16 11.67 4.13 31.31 15.26 3.82 34.72 28.03
EV-FlowNet [43] 4.02 16.64 7.14 3.41 22.17 11.31 3.24 26.95 22.46
E-RAFT [18] 3.19 9.27 5.48 2.83 16.43 10.13 2.66 19.90 18.54
STE-FlowNet [10] 3.22 10.44 5.97 2.79 16.80 9.83 2.59 18.87 17.43
E-FlowFormer (Ours) 2.94 9.03 4.92 2.48 15.98 8.42 2.38 17.56 14.78

TABLE V
DATASET COMPARISON BY TRAINING AND TESTING MODELS ON THE

SAME DATASET IN TERMS OF OUTLIER.

Methods DSEC MVSEC BlinkFlow
E-RAFT [18] 2.68 0.92 15.20
STE-FlowNet [10] 4.06 0.50 15.37

TABLE VI
COMPARISON ON MVSEC DATASET.

dt=1 frame Training
Data

indoor outdoor
AEE Outlier AEE Outlier

EV-FlowNet [43] M 1.43 9.73 0.49 0.20
Spike-FlowNet [22] M 1.08 3.90 0.47 0.00
E-RAFT [18] M 0.97 2.76 0.65 2.19
Zhu et al. [44] M 0.82 2.33 0.32 0.00
STE-FlowNet [10] M 0.69 1.00 0.42 0.00
E-FlowFormer (Ours) B 0.71 0.94 0.67 1.68
E-FlowFormer (Ours) B+M 0.51 0.09 0.29 0.05

dt=4 frame Training
Data

indoor outdoor
AEE Outlier AEE Outlier

EV-FlowNet [43] M 3.25 36.57 1.23 7.30
Spike-FlowNet [22] M 3.08 33.43 1.09 5.60
E-RAFT [18] M 2.46 23.15 1.43 9.17
Zhu et al. [44] M 3.07 39.60 1.30 9.70
STE-FlowNet [10] M 2.17 20.97 0.99 3.90
E-FlowFormer (Ours) B 1.62 11.18 1.29 8.08
E-FlowFormer (Ours) B+M 1.56 10.25 0.83 3.44

TABLE VII
COMPARISON ON DSEC DATASET.

Methods Training
Data 1PE 2PE 3PE AEE AE

MultiCM [35] D 76.57 48.48 30.86 3.47 13.98
OF-EV-SNN [8] D 53.67 20.24 10.31 1.71 6.34
E-RAFT [18] D 12.74 4.74 2.68 0.79 2.85
E-FlowFormer(Ours) B 36.39 13.02 6.05 1.33 4.65
E-FlowFormer(Ours) B+D 11.23 4.10 2.45 0.76 2.68

formance degradation on indoor sequences. On the contrary,
BlinkFlow covers complex scene structures so our method
can generalize well on both indoor and outdoor sequences.
We also fine-tune E-FlowFormer on the data combined
from BlinkFlow and MVSEC (denoted as “B+M”). Fine-
tuning further improves the performance of E-FlowFormer,
especially on the sequence of outdoor day1. Finally, E-
FlowFormer outperforms all the published methods in almost
all the sequences, up to 28% in terms of AEE metric and
91% in terms of outlier metric.
E-FlowFormer Ranks 1st on DSEC. We show the compar-
isons on the DSEC dataset in Table VII. Only trained on the
proposed BlinkFlow dataset, E-FlowFormer surpasses most
published methods except for E-RAFT. After fine-tuning

on the data combined from BlinkFlow and DSEC (denoted
as “B+D”), E-FlowFormer outperforms all other methods
in terms of all metrics, and up to 14% in terms of 2PE
metric. Notably, the margin between our approach and SOTA
methods is smaller on DSEC than on MVSEC, because
DSEC provides much more training data than MVSEC.
Meanwhile, both the training and test data of DSEC are
collected in outdoor driving scenarios, making it easy to
overfit the testing data.
E-FlowFormer Ranks 1st on BlinkFlow. We train several
state-of-the-art event-based optical flow estimation methods
with the training data in BlinkFlow and test them on the
test split in BlinkFlow, as shown in Table IV. E-FlowFormer
outperforms previous methods all-sided. E-Blender, which
contains flexible objects, is the most challenging subset
while our E-FlowFormer obtains the most significant AE im-
provement in this subset. It denotes that E-FlowFormer best
exploits the sufficient training data provided in BlinkFlow.
More qualitative results can be found in Fig. 6.

VI. CONCLUSION

In this paper, we have proposed a novel simulator,
BlinkSim, and a large-scale and diversiform dataset, Blink-
Flow. Thanks to the well-integrated BlinkSim, BlinkFlow is
two orders of magnitude ahead of other available datasets
in diversity, so it provides a much better training and test
set. We believe that BlinkFlow will push the limits of
event-based optical flow estimation and BlinkSim can also
benefit other event-based tasks. Moreover, we propose a
novel transformer-based event flow estimation network, E-
FlowFormer, which effectively learns from the training set of
BlinkFlow and ranks 1st on mainstream benchmarks DSEC
and MVSEC and the proposed BlinkFlow benchmark.
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