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Fig. 1: We propose 100-Phones, a large visual-inertial dataset that consists of 350 sequences collected by 100 different models of
phones, aiming to promote the mass deployment of VI-SLAM for AR on mobile phones.

Abstract—Visual-inertial SLAM (VI-SLAM) is a key technology for Augmented Reality (AR), which allows the AR device to recover its
6-DoF motion in real-time in order to render the virtual content with the corresponding pose. Nowadays, smartphones are still the
mainstream devices for ordinary users to experience AR. However the current VI-SLAM methods, although performing well on high-end
phones, still face robustness challenges when deployed on a larger stock of mid- and low-end phones. Existing VI-SLAM datasets use
either very ideal sensors or only a limited number of devices for data collection, which cannot reflect the capability gaps that VI-SLAM
methods need to solve when deployed on a large variety of phone models. This work proposes 100-Phones, the first VI-SLAM dataset
covering a wide range of mainstream phones in the market. The dataset consists of 350 sequences collected by 100 different models
of phones. Through analysis and experiments on the collected data, we conclude that the quality of visual-inertial data vary greatly
among the mainstream phones, and the current open source VI-SLAM methods still have serious robustness issues when it comes to
mass deployment on mobile phones. We release the dataset to facilitate the robustness improvement of VI-SLAM and to promote the
mass popularization of AR. Project page: https://github.com/zju3dv/100-Phones.

Index Terms—Augmented Reality, Dataset, Benchmark, VI-SLAM

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a technique that
enables a mobile device to track its own 6 Degrees of Freedom (6-DoF)
motion in an unknown environment, while simultaneously construct-
ing the map of the environment. Visual-inertial SLAM (VI-SLAM)
combines complementary visual and inertial measurements, achieving
impressive results over the past decades [2, 20, 30, 38, 55]. Nowadays,
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VI-SLAM has become a standard technology for Augmented Reality
(AR), enabling accurate recovery of the 6-DoF pose of AR device for
rendering virtual content in alignment with the real-world environment.

In recent years, dedicated AR glasses have been developed offer-
ing excellent AR experiences, such as Microsoft HoloLens1, Apple
Vision Pro2, and XReal Light3. However, these devices are still in an
early stage and have not been widely adopted. The mainstream AR
devices are still smartphones. With the built-in camera and IMU of
the smartphone, ordinary users can also experience simple but practi-
cal AR applications, such as AR navigation, AR tourism, AR home
decoration, etc. There are commercial products like Apple ARKit4

1https://www.microsoft.com/en-us/hololens
2https://www.apple.com/apple-vision-pro/
3https://www.xreal.com/light/
4https://developer.apple.com/augmented-reality/arkit/
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and Google ARCore5 that provide VI-SLAM capabilities for Apple
and Android phones respectively. While Apple phones have relatively
consistent sensor characteristics, Android phones on the market dif-
fer widely, which poses great challenges for VI-SLAM methods. It
remains a mystery how ARCore can achieve the mass deployment on
the diverse Android phones. In the literature by contrast, the existing
VI-SLAM methods only perform well on high-end phones, but poorly
when deployed on a larger stock of mid- and low-end phones. There
is no work to analyze the impact of different phone models, making it
difficult for the emerging VI-SLAM methods to be widely applied. A
suitable dataset is the key to fill this gap. However, the existing public
VI-SLAM datasets use either very ideal camera and IMU [1, 45], or
only a limited number of high-end phones [21, 26] for data collection,
which cannot reflect the capability gaps that VI-SLAM methods need
to solve for mass deployment on existing smartphones.

In this work, we propose 100-Phones, the first VI-SLAM dataset
covering a wide range of mainstream phones in the market, as illustrated
in Fig. 1. The specific contributions include:

• We propose a large VI-SLAM dataset that consists of 350 se-
quences collected by 100 different models of phones. The dataset
is released to facilitate the improvement of VI-SLAM methods
for mass deployment on mobile phones.

• We analyze the sensor characteristics of the 100 phone models,
leading to the conclusion that the quality of visual-inertial data
vary greatly among mainstream phones, which is challenging for
VI-SLAM methods.

• We design the dataset into four subsets, each with a distinct motion
pattern, to reflect different aspects of VI-SLAM methods. We also
design two ground-truth solutions for small-scale and large-scale
scenes respectively.

• We propose an evaluation metric that not only directly evalu-
ates the AR effect in a goal-oriented way, but also unifies the
traditional individual metrics into a single one to reflect the accu-
mulating drift within a subsequence, enabling a concise analysis
of VI-SLAM methods.

• We conduct experiments using four representative VI-SLAM
systems, leading to the conclusion that the current VI-SLAM
methods still have serious robustness issues when it comes to
mass deployment on mobile phones.

2 RELATED WORK

In this section, we first review the existing methods of visual-only
SLAM and visual-inertial SLAM respectively, then review the existing
visual-inertial datasets.

2.1 Visual-only SLAM

PTAM [18] is the pioneering real-time monocular SLAM system for
AR. It utilizes front-end and back-end threads, where the front-end
for camera tracking, and the back-end for environment mapping by
Bundle Adjustment (BA) [52]. This framework is commonly adopted
by subsequent visual SLAM systems [6, 9, 25, 32, 49]. Among them,
ORB-SLAM [32, 33] utilizes ORB features [41] to improve accuracy
and enable loop closure. SVO [9] and DSO [6] propose photometric-
based direct methods to improve robustness of the feature-based indirect
counterparts in low-texture environments. There are also deep learning-
based methods [50, 51, 57] to further improve the robustness of the
traditional geometry-based methods. Recently, with the rapid progress
of Neural Radiance Fields (NeRF) [29, 31], the implicit representation
has also been applied to visual SLAM for dense mapping [40, 58].

Despite decades of development that have significantly improved
the robustness of visual SLAM, the visual-only methods still face ro-
bustness challenges in environments with poor texture, motion blur,
defocus, etc. On the other hand, there are also robustness issues in
scenarios with pure rotation or distant view, where there is lack of

5https://developers.google.com/ar/

parallax for monocular camera of mobile phones to infer the 3D in-
formation [13]. Furthermore, monocular visual SLAM struggles to
recover the true scale.

2.2 Visual-inertial SLAM
Visual-inertial SLAM (VI-SLAM) integrates the complementary IMU
measurements to improve the robustness of visual SLAM and recover
the true scale at the same time. In order to fuse visual and inertial
measurements, the filter-based methods use inertial measurements for
state prediction and visual measurements for state update. Representa-
tive works include MSCKF [30] and OpenVINS [12]. In contrast, the
optimizer-based methods repeatedly re-linearize the visual and inertial
factors to achieve superior accuracy, but at the expense of increased
computational demands [4]. To improve the efficiency of optimization,
OKVIS [20] introduces a sliding window of keyframes, where the
oldest keyframe is marginalized upon the arrival of a new keyframe.
VINS-Fusion [38, 39] implements the sliding window-based optimiza-
tion in the front-end, and executes loop closure and 4-DoF pose graph
optimization in the back-end to reduce error accumulation. It further
supports temporal calibration that estimates the camera-IMU time offset
that commonly exists in mobile phones. DM-VIO [53] also adopts the
similar framework, but minimizes the photometric error instead of the
re-projection error as the indirect methods. It further proposes a delayed
marginalization to improves accuracy. ORB-SLAM3 [2] builds on the
visual-only ORB-SLAM2 [33] which maintains a global map based on
the visibility among keyframes. The global map-based ORB-SLAM3
achieves superior accuracy compared to the sliding window-based
counterparts.

Incorporating IMU greatly improves the robustness of visual SLAM,
however, the solution space is also increased. The gravity, scale, veloc-
ity and bias have to be additionally recovered, which requires sufficient
motion excitation to ensure the observability [56]. The recovery usually
needs an explicit initialization process, which has higher requirements
for the visual reliability and the motion excitation [14, 34]. As a result,
the integration of IMU introduces new robustness challenges. Further-
more, due to the substantial accumulation of IMU errors, if the visual
information is unreliable for a long time, the robustness is still prob-
lematic. While there exist deep learning-based approaches to mitigate
IMU errors [3, 27], the visual reliance cannot be eradicated. When it
comes to mass deployment on mobile phones where different models
have different error characteristics, these robustness issues will become
more severe.

2.3 Visual-inertial Dataset
In the field of robotics, the most widely used visual-inertial datasets
are KITTI [11] and EuRoC [1], which are collected by car and MAV
respectively. They both adopts stereo cameras and high-quality IMU,
with ground-truth obtained by high-precision GPS and motion capture
(MoCap) system respectively. They are not suitable for AR, as AR
devices are usually handheld or head-mounted which have different mo-
tion patterns from cars or MAVs. ZJU-SenseTime [21] and NEAR [54]
are two AR-oriented visual-inertial datasets. The visual-inertial data are
collected by handheld phones, and ground-truth poses are also obtained
by MoCap system.

The MoCap system can achieve mm-level accuracy. However, it
requires deploying expensive outside-in sensors in the environment,
so it is difficult to be extended to large-scale scenes or outdoors. The
TUM-VI dataset [45], although collects data in large-scale scenes, only
provides ground-truth for parts the trajectories inside the room where
the MoCap system was installed. PennCOSYVIO [37] overcomes this
limitation by deploying visual tags in large-scale scenes, which are
manually measured to provide visual constraints to recover ground-
truth poses, achieving dm-level accuracy. NAVER LABS [19] and
EgoCart [47] use natural features as visual constraints without any
special deployments, and apply Structure from Motion (SfM) [43]
to recover ground-truth poses with cm-level accuracy. However, the
sensors are mounted on wheeled carts, which are not suitable for AR.
LSFB [24, 26] proposes a visual-inertial dataset for AR in large-scale
scenes. The visual map of the scene is pre-built by SfM, and each
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trajectory is recovered by combining visual localization in the pre-built
map and the visual-inertial constraints, achieving cm-level accuracy.
They use two mobile phones and an AR glasses to build the dataset for
AR. Sarlin et al. [42] also employ a similar way to use heterogeneous
AR devices in large scenes to construct a benchmark dataset called
LaMAR.

While robots or AR glasses usually adopt global shutter fisheye
cameras and high-quality IMUs, in this work, we focus on smartphones
whose cameras are typically rolling shutter and pinhole with small
Field of View (FoV), and IMUs are of lower quality. More importantly,
different phone models may have large variations in their sensor char-
acteristics. Existing visual-inertial datasets only cover one or a limited
number of devices, making it impossible to reflect the robustness issues
of VI-SLAM methods when deployed on a large variety of phone mod-
els. We propose a visual-inertial dataset covering 100 different phone
models to fill this gap.

3 PROPOSED DATASET

Google Pixel 4a Huawei P40 Realme GT Vivo X60 Pro
Honor 20 Huawei P40 Pro Samsung A60 Vivo Y51s
Honor 20 Pro Huawei P40 Pro+ Samsung Galaxy Note10 Vivo Y52s
Honor 20s Huawei P60 Samsung Galaxy S21 Ultra Vivo Y73s
Honor 30 Meizu 17 Pro Sharp AQUOS sense4 lite Vivo Z5
Honor 30 Pro Motorola Edge S Sharp AQUOS sense4 plus Vivo Z5i
Honor 30 Pro+ Motorola Moto G100 Vivo iQOO 7 Vivo Z6
Honor 30s OnePlus 9 Vivo iQOO Neo Xiaomi Mi 10
Honor 50 OnePlus 9 Pro Vivo iQOO Neo5 Xiaomi Mi 10 Lite
Honor 80 Oppo A95 Vivo iQOO U3 Xiaomi Mi 10 Pro
Honor 8X Oppo Find X2 Vivo iQOO Z1x Xiaomi Mi 10s
Honor Magic5 Oppo Find X2 Pro Vivo iQOO Z3 Xiaomi Mi 11
Honor V30 Pro Oppo Find X3 Vivo iQOO5 Pro Xiaomi Mi 11 Lite
Honor X10 Oppo K7 Vivo Nex Xiaomi Mi 8
Huawei Mate 20 Oppo R17 Pro Vivo S1 Pro Xiaomi Mi 9
Huawei Mate 30 Pro Oppo Reno Vivo S10 Xiaomi Mi 9 Pro
Huawei Mate 50 Oppo Reno Ace Vivo S6 Xiaomi Mi CC9
Huawei Mate X Oppo Reno Ace 2 Vivo S7 Xiaomi Mi CC9 Pro
Huawei Mate X2 Oppo Reno Z Vivo S7e Xiaomi Mi Mix 3
Huawei Nova 10 Oppo Reno3 Vivo S7t Xiaomi Redmi K30 Pro
Huawei Nova 2S Oppo Reno4 Vivo X27 Xiaomi Redmi K40
Huawei Nova 3 Oppo Reno5 Vivo X30 Xiaomi Redmi K40 Pro
Huawei Nova 8 Oppo Reno5 A Vivo X50 Pro Xiaomi Redmi Note10 Pro
Huawei Nova 8 Pro Oppo Reno5 K Vivo X50 Pro+ ZTE Nubia Red Magic 6R
Huawei P30 Oppo Reno6 Vivo X60 ZTE Nubia Z30 Pro

Table 1: List of 100 phone models.
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Fig. 2: Distribution of (a) prices, (b) processor performance levels and
(c) memory sizes among 100 phone models.The pie chart is annotated
outside, while the numbers within the pie chart represent the number of
phone models.

We select 100 mainstream Android phone models currently available
on the market to build the dataset, and name it 100-Phones. Specifically,
we first selected 80 mobile phones from the 560 most popular mod-
els since 2018, acquired from Tencent WeTest6 who provides mobile
compatibility testing services. Consider these 80 models are mainly do-
mestic phones in China, we then added 10 popular international models
based on their consumer ratings on Amazon. These popular models are
generally moderately priced. So we further added 2 expensive (>$800)
and 8 cheap (<$300) phones. During selection, we also considered the
processor performance. The evaluation website NanoReview7 conducts
a comprehensive rating of mainstream smartphone processors and clas-
sifies them into five levels: A+, A, B, C, and D. We selected models
ensuring the total number of A+, A, and B was equal to the total number

6https://wetest.qq.com/products/cloud-phone
7https://nanoreview.net/en/soc-list/rating

of C and D. The 100 selected phone models are listed in Table 1, and
the distribution of prices, processor performance levels, and memory
sizes is shown in Fig. 2. Note that iPhones were not selected. This is
due to the fact that all iPhones are equipped with high-quality sensors
to support Apple ARKit. Existing VI-SLAM methods have already
performed well on iPhones [22, 25]. Therefore, they fall beyond the
scope of this work.

In this section, we describe the construction of the proposed dataset.
We first calibrate the 100 phones, as detailed in Sect. 3.1. Then we
analyze their sensor characteristics based on the calibration results, as
reported in Sect. 3.2. We design the dataset into four subsets, each with
a distinct motion pattern, to reflect different aspects of VI-SLAM meth-
ods. The first three subsets are collected in a small-scale scene using
the 100 phones, and the fourth subset is collected in three large-scale
scenes using five selected phones. The statistics of the four subsets
are given in Table 2, and the details are presented in Sect. 3.3 and
Sect. 3.4 for subsets in small-scale and large-scale scenes respectively.
The images and IMUs are acquired with their timestamps using the
Android API, specifically android.hardware.camera2 for images, and
android.hardware.sensor.TYPE_GYROSCOPETYPE/TYPE_ACCEL-
EROMETER for gyroscope/acceleration respectively. The image
resolution is set to 640 × 480. During data acquisition, all other
softwares were shut down to ensure that system resources would not be
preempted.

sub-dataset “circle” “line” “rotation” “general”
#phones 100 100 100 5

#sequences 100 100 100 50
#frames 170K 122K 169K 322K

scale 2m radius 10m line stand still ∼ Km2

Table 2: Statistics of four sub-datasets.

3.1 Calibration
For each of the 100 phones, we use Kalibr [10, 36] to calibrate the
camera parameters and the camera-IMU parameters. For the sake of
completeness and to facilitate subsequent discussions, we give a brief
description of the calibration process proposed in [10]. The involved
notations and equations will be used in the subsequent analysis of
sensor characteristics.

Camera calibration is performed by capturing an AprilTag [35]
at different viewpoints, and recover the camera intrinsic parameters K
together with the camera pose Ti for each image i by

argmin
K,Ti

∑
i j
|| f (K,Ti,X j)− xi j||2, (1)

where f (K,T,X) projects a 3D point X to the image by camera intrinsic
K and extrinsic T . X j is the j-th 3D point of AprilTag and xi j is its 2D
observation detected on i-th image.

Camera-IMU calibration is performed by capturing another se-
quence of the AprilTag in which the phone is moved to excite all IMU
axes. As proposed in [10], the camera-IMU extrinsic TCI and time
offset ∆t, together with the IMU pose ΦT (t) and IMU bias b(t) at
continuous time t, are recovered by

argmin
TCI,∆t,ΦT (t),b(t)

∑
i j
|| f (K,TCI ◦ΦT (ti +∆t),X j)− xi j||2σx

+∑
k
||Φω (tk)−ωk||2σω

+∑
k
||Φa(tk)−ak||2σa

+
∫

||ḃ(t)||2σw
dt,

(2)

where ωk and ak are respectively the IMU gyroscope and acceleration
measurement at timestamp tk. The IMU pose trajectory is represented
by B-spline, such that its derivatives can be expressed analytically.

https://wetest.qq.com/products/cloud-phone
https://nanoreview.net/en/soc-list/rating


Φω (t) and Φa(t) are the derived angular velocity and linear accelera-
tion respectively. σx, σω , σa and σw are variance of noise for image
point, gyroscope and acceleration measurement, and bias random walk
respectively. Details are referred to [10].

3.2 Sensor Characteristics

We select ten sensor metrics that are closely related to VI-SLAM to
analyze the sensor characteristics of the 100 phone models. For each
metric, we calculate the distribution of its value among the 100 phone
models, as shown in Fig. 3.
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Fig. 3: Distribution among 100 phone models for the ten sensor metrics
(a)∼(j).
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Fig. 4: Correlation between the selected pairs of characteristics (a)∼(j).
One blue dot corresponds to one phone model. A red line is fitted by
RANSAC algorithm [7] for (a)∼(d).

The metric of camera frequency and IMU frequency are respectively
the number of visual and inertial measurements VI-SLAM can acquire
per second. Usually the more measurements per second, the more
beneficial for the state estimation of VI-SLAM. As shown in Fig. 3 (a)
and (b), camera frequency is relatively consistent while IMU frequency
varies among the 100 phones. In terms of camera FoV and exposure
time, they both affect the robustness of VI-SLAM. With a larger FoV,



(a) SteamVR (b) “Circle” (c) “Line” (d) “Rotation”

Fig. 5: Dataset in small-scale scene. (a) shows the devices of SteamVR tracking 2.0 to obtain ground-truth. (b)(c)(d) are the collected data for three
sub-datasets, each with ground-truth trajectory on the left and representative images on the right.

more features can be observed in a single frame, and more common
features can be matched between different frames, which are both
beneficial for VI-SLAM. On the other hand, exposure time affects
VI-SLAM by the image quality. Too short exposure time will make the
image too dark, while too long exposure time will easily cause motion
blur, which are both challenging to VI-SLAM. As shown in Fig. 3 (c)
and (d), FoV is relatively consistent while exposure time varies among
the 100 phones. It can also be seen that compared with the global
shutter fisheye camera of the EuRoC dataset [1], the camera of mobile
phone is more challenging to VI-SLAM, as the FoV is smaller, and
it is more prone to motion blur. The remaining metrics are obtained
from camera-IMU calibration described in Sect. 3.1. The metrics of
re-projection error, gyroscope noise and acceleration noise are directly
obtained from the first three error terms in Eq. (2). These error terms
can reflect the noise level of visual and inertial measurements to some
extent. Camera-IMU time offset is the resulting ∆t, and bias are the
resulting 1

n ∑
n
i=1 b(ti). Since VI-SLAM needs to estimate them online,

the larger time offset or bias exist in the raw data, the more challenge for
online estimation. As shown in Fig. 3 (e)∼(j), image noise is relatively
consistent, while IMU noise, bias and camera-IMU time offset vary
greatly among the 100 phones.

Intuitively, high-end phones have better image and IMU quality
than low-end phones in all aspects. To verify, we further investigate
whether there is any correlation between different sensor metrics. As
shown in Fig. 4, we select pairs of sensor metrics and observe how one
metric varies with the other, using the metric values of the 100 phone
models, one phone corresponding to one dot in the figure. We observe a
rough linear correlation among re-projection error, gyroscope noise and
acceleration noise, as shown in Fig. 4 (a) and (b). This is partially due to
the fact that they come from the three error terms of Eq. (2) in the first
place, which are naturally balanced during optimization. Nevertheless,
it reflects to some extent that the quality is a coarsely consistent among
visual and inertial measurements. For phones with smaller values of
these three metrics, the visual and inertial measurements simultaneously
fit the calibration model better, than the phones with larger values. We
also observe a coarse linear correlation between the IMU noise and
IMU bias, as shown in Fig. 4 (c) and (d), which indicates that the
phones with better data quality usually have IMU biases adjusted to a
lower level. For other metrics, we do not find obvious correlations as
shown in Fig. 4 (e)∼(h). For example, the phones with higher sensor
quality, may have lower IMU frequency or larger camera-IMU time
offset. We also analyze the price and the processor performance rating
in Fig. 4 (i) and (j) respectively, and do not find obvious correlations
either. This makes it more complicated to deploy a SLAM method to
different models of phones with sensor characteristics that may vary
randomly.

3.3 Dataset in Small-scale Scene
We use each phone to collect three simple yet typical motions in a
small scene, creating three sub-datasets, each containing 100 sequences
corresponding to the 100 phones:

• “Circle”: The operator is walking around a 2m radius circle twice,
as shown in Fig. 5(b). This is the simplest sub-dataset, in which
most feature points have sufficient visual parallax, and IMU expe-
riences sufficient motion excitation along all axes.

• “Line”: The operator is walking forth and back along a 10m
line, as shown in Fig. 5(c). This is a typical motion during AR
navigation. It presents greater challenges compared to “circle”,
because IMU experiences less motion excitation along the straight
line, and feature points quickly leave the field of view when
turning around.

• “Rotation”: The operator is rotating in place for one minute,
as shown in Fig. 5(d). This is a typical motion pattern during
AR tourism, where the user stands still and rotates the phone to
observe the surrounding AR effects. Although it is not a pure
rotation, the parallax of the feature points is much smaller than
the previous two sub-datasets, making it the most challenging one
for visual-based methods.

We choose SteamVR Tracking 2.0 to obtain ground-truth poses for
its portability and cm-level accuracy in small scenes [15]. Specifically,
we place four SteamVR base stations8 in the scene, and rigidly mount
the phone and VIVE tracker9 together, as shown in Fig. 5(a). We follow
the method of [21] to temporally and spatially align the ground-truth
trajectory of VIVE tracker to that of IMU. For temporal alignment, we
estimate the VIVE-IMU time offset ∆t by

argmax
∆t

∑t ||θVIVE(t)||||θIMU(t +∆t)||√
∑t ||θVIVE(t)||2

√
∑t ||θIMU(t +∆t)||2

, (3)

where θVIVE(t) and θIMU(t) are relative rotation between timestamps
(t, t +1s) in the trajectory of VIVE tracker and IMU respectively. For
spatial alignment, we capture images of an AprilTag [35] at different
viewpoints, and recover the VIVE-camera extrinsic TCV by

argmin
TCV

∑
i j
|| f (TCV ◦TVi ,X j)− xi j||2, (4)

where f (T,X) projects a 3D point X to the image by camera pose T . TVi

is the ground-truth pose of VIVE tracker at the time of i-th image. X j
is the j-th 3D point of AprilTag and xi j is its 2D observation detected
on i-th image.

3.4 Dataset in Large-scale Scenes
The first three sub-datasets mainly focus on the robustness to different
phone models. We design the fourth sub-dataset for the robustness to
large-scale scenes and general motions. We select five phones and col-
lect data in three large-scale scenes. Each phone collects ten sequences.
Each sequence has 2K∼15K frames, and moves 70∼500m, resulting

8https://www.vive.com/us/accessory/base-station2/
9https://www.vive.com/us/accessory/tracker3/

https://www.vive.com/us/accessory/base-station2/
https://www.vive.com/us/accessory/tracker3/


(a) (b) (c)

Fig. 6: Dataset collected in the three large-scale scenes (a)(b)(c). For each scene, the reconstructed visual map is shown, overlaid with three
recovered trajectories in different colors (red, green and blue). The representative images are shown on the right.

Vivo
iQOO Z3

Vivo
S7t

Xiaomi
Mi 9

Vivo
iQOO 7

Huawei
Mate 30 Pro

price ($) <300 300∼400 400∼500 500∼600 >800
processor perf. level C C C A B
cam. freq. (Hz) 30 27 21 30 24
IMU freq. (Hz) 202 202 411 417 480
cam. FoV (degree) 53.41 54.09 49.89 55.35 51.98
cam. expo. (ms) 30 20 16 30 10
gyr. noise (10−3 rad/s) 5.38 6.51 8.68 5.34 6.47
acc. noise (cm/s2) 2.91 2.50 3.86 9.04 2.18
gyr. bias (10−3 rad/s) 5.43 2.02 1.62 6.94 1.96
acc. bias (cm/s2) 12.14 11.97 17.11 6.78 12.71
re-proj. error (pixel) 0.51 0.44 0.80 0.37 0.72
time offset (ms) 36 27 29 36 15

Table 3: The price and sensor characteristics of the 5 selected phones
to collect dataset in large-scale scenes.

in 50 sequences of this sub-dataset. The selection of the five phones is
based on their prices and processor performance, as listed in Table 3.
Note that except for Vivo iQOO 7 with a relatively large acceleration
noise, other sensor metrics are distributed in the common range.

We use the method proposed in [26] to obtain ground-truth in the
large-scale scenes. The method is based on reconstructing an accurate
visual map of the large-scale scene. For each visual-inertial sequence
captured in it, the ground-truth poses are obtained by joint optimization
taking both the visual localization in the pre-built map and visual-
inertial constraints. The visual map is reconstructed by SfM [43] using
a panoramic camera Insta360 ONE RS10. For each image acquired by
mobile phone, the features of SuperPoint [5] are extracted and matched
against the pre-built visual map by the method of [17,44]. KLT [46] and
SIFT [28] features are also extracted and matched among the acquired
images. The obtained feature correspondence is denoted as (X j,xi j),
where X j is the j-th 3D point and xi j is the corresponding 2D point in
i-th image. The joint optimization is formulated as

argmin
Mi,X j∈X

∑
i j
|| f (Ti,X j)− xi j||2 +∑

i
h(Mi,Mi+1), (5)

where Mi = (Ti,vi,bi) is the motion state for image i, and Ti, vi and vi
are camera pose, IMU velocity and IMU bias respectively. X is the
set of 3D points of the KLT and SIFT features. f (T,X) projects a 3D
point X to the image by camera pose T . h(Mi,M j) is the IMU cost
function evaluating the deviation of motion states (Mi,M j) and IMU
measurements between image (i, j) by IMU pre-integration [8]. Eq. (5)
is efficiently solved by ICE-BA [23].

Fig. 6 shows the reconstructed visual map for the three scenes,
overlaid with three representative trajectories on each scene. Thanks
to the accurate visual map obtained by SfM, the recovered trajectory
has cm-level accuracy as reported in [26]. This accuracy is enough

10https://www.insta360.com/cn/product/insta360-oners

to evaluate current VI-SLAM methods, which usually achieve only
m-level accuracy in large-scale scenes.

4 EVALUATION METRICS

We use the Absolute Positional / Rotational Error (APE/ARE) and the
Relative Positional / Rotational Error (RPE/RRE) that are commonly
used in the literature [4, 21, 48] to evaluate the performance of VI-
SLAM. These metrics are defined as

εAPE =

√
1
n

n

∑
i=1

||pi − p∗i ||2,

εARE =

√
1
n

n

∑
i=1

|| log(R−1
i R∗

i )||2,

εRPE =

√√√√ 1
n−1

n−1

∑
i=1

||(pi+1 − pi)− (p∗i+1 − p∗i )||2,

εRRE =

√√√√ 1
n−1

n−1

∑
i=1

|| log((R−1
i+1Ri)−1((R∗

i+1)
−1R∗

i ))||2,

(6)

where Ti = (pi,Ri) is the i-th pose of SLAM comprised of the position
pi and the rotation matrix Ri. The superscript ∗ denotes the corre-
sponding ground-truth pose. The trajectory of SLAM is aligned to
ground-truth by SE(3) before calculating APE/ARE. Following [2, 26],
we also calculate the Scale Error (SE) as

εSE = |s−1|, (7)

where s is the scale estimate from Sim(3) alignment. We distinguish
APE after SE(3) and Sim(3) alignment as two different metrics.

These traditional metrics cannot directly reflect how stable the AR
effect is seen by the user. For example, the user is more likely to
perceive the positional error of the virtual objects near them, and the
rotational error of the objects far away. Moreover, using multiple
individual metrics is not conducive to analyzing the overall performance
of VI-SLAM methods. For instance, one VI-SLAM method may have
a smaller positional error than another method, but a larger rotational
error at the same time, making it difficult to judge which method is
better. To address these issues, we propose a metric called AR Deviation
(ARD) to measure the gap between rendered virtual cubes using the
pose from SLAM and from ground-truth. ARD is calculated as

εARD =

√√√√ 1
mn

n

∑
i=1

m

∑
j=1

|| f (Ti,X j)− f (T ∗
i ,X j)||2, (8)

where f (T,X) projects a 3D vertex X of the virtual cube to the image by
camera pose T . Similar idea has been proposed in [16]. The difference

https://www.insta360.com/cn/product/insta360-oners


(a) “Circle”

(b) “Line” (c) “Rotation” (d) “General”

Fig. 7: Illustration of AR deviation for the four sub-datasets (a)∼(d). The green cube is the ground-truth, and the blue cube is the evaluated one. The
AR deviation is represented by the red lines that connect the corresponding vertices of the two cubes.

is that our aim is to reflect the accumulating error within a subsequence,
rather than the absolute pose error of a single frame. Specifically,
instead of aligning the whole trajectory, we align the coordinate system
every 10 seconds. We denote the pose at the alignment moment as Ti.
In the next 10 seconds, we transform each pose Tk of k-th frame and
the object vertices X j to the coordinate system of i-th frame by

T ′
k = Tk ◦T−1

i

T ∗
k
′ = T ∗

k ◦ (T ∗
i )

−1

X ′
j = T ∗

i ◦X j

(9)

Fig. 7 illustrates the process. Green and blue cubes represent the AR
effect rendered using the pose of SLAM and ground-truth respectively.
Red lines between the vertices of green and blue cubes represent the
AR deviation. The errors are reset every 10 seconds. See the fifth image
of Fig. 7(a) for example, where the green and blue cubes coincide. We
place different numbers and positions of virtual cubes for different
sub-datasets. Specifically, for “circle”, we place one virtual cube at the
center of the circular trajectory. For “line”, we place one virtual cube
every 2m on the straight-line trajectory. For “rotation”, we place one
virtual cube at 2m in front of the first frame. For “general”, we place a
virtual object every 2m along the 10m trajectory in front of each current
frame. See Fig. 7 and the supplementary video for details.

Finally, the metrics in Eq. (6) and (8) are calculated by Root Mean
Squared Error (RMSE). If the error is drifting abnormally for certain
frames, which frequently happens on low-end phones, the error will
overwhelm the rest of the sequence. Therefore, we treat such frames
as localization failures, remove them from the RMSE calculation, and
count the failure rate as another evaluation metric. We consider a frame
as failure if its RPE/RRE is larger than 0.2m/6◦, or its ARD is large than
400 pixels. Frames before completion of visual-inertial initialization
are also considered as failures.

5 EXPERIMENTS

VINS-Fusion DM-VIO ORB-SLAM3 OpenVINS
direct/indi. indirect direct indirect indirect

solver optimizer optimizer optimizer filter
map sliding win. sliding win. global map sliding win.

temp. calib. yes no no yes
loop closure yes no yes no

Table 4: Four representative VI-SLAM systems.

We select four representative monocular VI-SLAM systems to
conduct experiments: VINS-Fusion [38, 39], DM-VIO [53], ORB-

SLAM3 [2], and OpenVINS [12]. They have been evaluated on pre-
vious datasets EuRoC [1] and TUM-VI [45] in their papers, demon-
strating that they represent the current state-of-the-arts. In Table 4,
we compare five important aspects that can characterize different VI-
SLAM systems. DM-VIO is the only photometric-based direct method
while others are feature-based indirect methods. OpenVINS is the only
filter-based method while others are optimizer-based methods. ORB-
SLAM3 is the only one that maintains a globally consistent map while
others only maintain a sliding window-based local map. VINS-Fusion
is the only one that supports both temporal calibration of camera-IMU
time offset and loop closure. In this section, we use the proposed 100-
Phones dataset to evaluate these systems. We evaluate the front-end
poses rather than the optimized poses, because AR needs to obtain
poses in real-time.

Since no previous work has evaluated VI-SLAM systems using such
a large number of devices, we first need to determine the algorithm
configuration for the diverse sensor characteristics, specifically, how
to handle the camera-IMU time offset, and how to set the IMU noise
parameters. We conduct corresponding experiments to analyze the
effect of time offset and IMU noise parameters on the performance
of VI-SLAM in Sect. 5.1 and Sect. 5.2 respectively. For the sake of
conciseness, both experiments do not use the full dataset or use all
evaluation metrics. The full evaluation is given in Sect. 5.3.

5.1 Effect of Time Offset

Although we have calibrated the camera-IMU time offset for the 100
phones in our dataset, it is not feasible to pre-calibrate every phone in
practice when it comes to mass deployment. Moreover, it is unclear
whether the pre-calibrated time offset will change over time. To analyze
the impact of time offset, we employ the two systems VINS-Fusion
and OpenVINS which support online temporal calibration. We select
the simplest “circle” dataset, which has sufficient parallax and motion
excitation such that the observability for time offset estimation is guar-
anteed. We compare each system with and without temporal calibration.
We further compare results using raw data and using the synchronized
data by the pre-calibrated time offset. The combination of the two
algorithmic configurations and the two data configurations results in
four configurations. We choose AR deviation defined in Eq. (8) as the
evaluation metric. In contrast to previous works that only use RMSE
to compare accuracy, we propose to use the Cumulative Distribution
Function (CDF) to compare robustness simultaneously. A point (x,y)
on the CDF curve denotes the probability of having an error less than x
is y. The curve above has better accuracy and robustness than the curve
below. At the convergence point on the rightmost curve, 1− y is the
failure rate. The results are shown in Fig. 8, where the CDF curves and
the traditional RMSE as the vertical lines are both shown.



0 100 200 300 400
AR deviation (pixels)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

w/ temp.calib + raw data
w/ temp.calib +  sync data
w/o temp.calib + raw data
w/o temp.calib +  sync data

(a) VINS-Fusion

0 100 200 300 400
AR deviation (pixels)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

w/ temp.calib + raw data
w/ temp.calib +  sync data
w/o temp.calib + raw data
w/o temp.calib +  sync data

(b) OpenVINS

Fig. 8: Effect of time offset on (a) VINS-Fusion and (b) OpenVINS. Curve
represents CDF and vertical line represents RMSE of AR deviation.

Comparing VINS-Fusion and OpenVINS, the gaps among the four
configurations of VINS-Fusion is much smaller than that of OpenVINS,
indicating that VINS-Fusion is more robust to time offset. But the con-
clusions are consistent between the two systems. If time offset is not
handled (green curve), the result is the worst. Either online calibration
(blue curve) or offline synchronization (red curve) can significantly
improve the result. There is still a gap between blue and red curves,
indicating that there is still room for improvement of online calibration.
If time offset has been synchronized offline, the results of VINS-Fusion
with and without temporal calibration (yellow and red curve respec-
tively) are very close, which reflects to some extent that the offline
calibrated time offset does not change much over time. By contrast,
the yellow curve is higher than the red curve by OpenVINS. We hy-
pothesize that temporal calibration, although not necessary, may still
be beneficial by involving redundant degrees of freedom for systems
that are not robust enough.

This experiment suggests that the time offset must be properly han-
dled. Considering the fact that the other two systems DM-VIO and
ORB-SLAM3 do not support temporal calibration, we use the synchro-
nized data for the following experiments.

5.2 Effect of IMU Parameters
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(c) ORB-SLAM3
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Fig. 9: Effect of IMU parameters on the four systems (a)∼(d). Curve
represents CDF and vertical line represents RMSE of AR deviation.

To run VI-SLAM, it is necessary to provide the IMU measurement
noise and bias random walk noise as algorithm parameters. Existing
datasets are collected with only one or very few devices, allowing for
parameter tuning tailored to each dataset. However, this approach may

not be suitable for our dataset, where the IMU noise among the 100
different models of phones varies greatly, as presented in Sect. 3.2.
We conduct an experiment to analyze whether a unified set of tuned
parameters can be generalized to all phone models in our dataset. We
run all systems on the “circle” dataset using AR deviation defined in
Eq. (8) as the metric, to compare the two configurations:

• Tuned parameters: We use the default parameters of VINS-Fusion
tuned on EuRoC as the unified parameters for all phones. We
find that this set of parameters performs better than other default
parameters on all systems overall.

• Calibrated parameters: We use the IMU measurement noise and
bias random walk noise obtained from the results of camera-IMU
calibration as the IMU parameters set for each phone separately.

The results are shown in Fig. 9. For VINS-Fusion, the tuned pa-
rameters work slightly better in both accuracy and robustness. This
is partly because they are originally tuned for VINS-Fusion. On the
contrary, for DM-VIO and ORB-SLAM3, the calibrated parameters
have better accuracy and robustness than the tuned parameters, and gap
for ORB-SLAM3 is significant. For OpenVINS, the tuned parameters
have slightly higher accuracy, and similar robustness compared to the
calibrated parameters. Overall, the calibrated parameters perform bet-
ter. So we use the calibrated parameters for the following experiments.
More sophisticated strategies that consider both the calibration results
and the algorithm characteristics can be further explored in the future.

5.3 Full Evaluation
We run all systems on the entire dataset using all the eight evaluation
metrics introduced in Sect. 4. The results are shown in Fig. 10. To
better illustrate the error distribution, we select boxplot to plot the
results, where the median, the quartiles and the outliers are shown for
each metric on each sub-dataset.

For the first three sub-datasets, all the 100 sequences in the same sub-
dataset follow the same motion in the same scene. The performance
variation comes from different models of phones. On the simplest
“circle” dataset, the results are relatively consistent, but there are many
outliers. On the other two datasets “line” and “rotation”, the boxes
are much taller, reflecting the performance variations among different
models of phones. We found two main robustness issues for these
two datasets. On the one hand, it is difficult to successfully accom-
plish visual-inertial initialization on the low-end phones, resulting in
high failure rates, or large errors if the algorithm is overly optimistic
about the success of initialization. This is as expected on “rotation”
which lacks sufficient parallax. But it is also evident on “line” with
sufficient parallax (even worse than “rotation” by VINS-Fusion and
ORB-SLAM3), indicating that the low-quality IMU is the primary
source of the robustness issue. On the other hand, the low-quality
IMU causes serious error accumulation, and loops fail to be closed
to correct the error. This is as expected on “line”, in which there is
a lack of shared views between the two trajectories forth and back
along the line. But it is also evident on “rotation” in which there are
sufficient shared views while rotating in place. It is possibly due to
the error accumulation being too severe for most of the frames with
shared views to be successfully matched. Consequently, after being
aligned to the ground-truth trajectory, only a portion of the translations
in the trajectory can be successfully aligned, and most of the rotations
are not aligned, resulting in large APEs and unreasonable AREs. In
such cases, the proposed metric of AR deviation proves to be a more
effective indicator of performance. For the fourth dataset “general”,
there are also substantial variations in error distributions among differ-
ent sequences, indicating the robustness issues related to large-scale
scenes and general motions.

Comparing the overall performance among the four systems, VINS-
Fusion performs the best, followed by DM-VIO. It is noteworthy that
the direct method DM-VIO is expected to be sensitive to rolling shutter
cameras, but the result is close to the best indirect VINS-Fusion, and
bettern than the indirect ORB-SLAM3. This suggests that the low-
quality IMU is the primary factor affecting robustness when applied to
a large dataset of diverse mobile phones. The robustness of OpenVINS



(a) AR deviation (b) APE by SE(3) (c) APE by Sim(3) (d) RPE
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Fig. 10: Boxplot of the eight metrics (a)∼(h). The performance of four systems on four sub-datasets are compared using these metrics. For each
metric, we calculate the metric value for each sequence, and plot the median, the quartiles and the outliers over the 100 sequences for the first three
sub-datasets, and over the 50 sequences for the fourth sub-dataset. (b)(c)(d)(f)(g) use logarithmic scale for better visibility of their wide range of
values.

is the worst, with a large number of failures and large errors in the
successful frames. Overall, all of the four systems face serious robust-
ness issues on the proposed dataset. These issues are not revealed on
the existing datasets such as EuRoC [1], where these systems achieve
consistently cm-level accuracy and nearly 100% success rates. This
also underscores the value of the proposed dataset.

6 CONCLUSION

In this work, we propose 100-Phones, a large VI-SLAM dataset con-
sisting of 350 sequences collected by 100 different models of phones.
The sensor characteristics among these 100 phone models vary greatly,
posing unprecedented challenges for VI-SLAM methods. We design
four sub-datasets with distinct motion patterns to reflect different as-
pects of VI-SLAM methods. We conduct evaluations on the collected
dataset using four representative VI-SLAM systems, revealing that the
current VI-SLAM methods still have serious robustness issues when it
comes to mass deployment on mobile phones.

In the experiments, we discover that dealing with different camera-
IMU time offsets and IMU noises among different phone models ef-
fectively improves the robustness of VI-SLAM. However, we only
implements simple adjustments based on the calibration results. More
sophisticated strategies that are tailored to specific algorithm character-
istics deserve to be further explored. Moreover, there are more factors
that merit further analysis, such as the rolling shutter effect of phone
cameras, and the degenerated cases due to insufficient parallax or mo-
tion excitation, among others. We believe that the proposed dataset will
facilitate future analyses aimed at improving the robustness towards
mass deployment of VI-SLAM on mobile phones, ultimately promoting
the widespread adoption of AR.
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