

Monocular Visual-Inertial SLAM for ISMAR SLAM Challenge

Jie PAN

Shaozu CAO, Jie PAN, Jieqi SHI, Shaojie SHEN

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Monocular Visual-Inertial SLAM

• System diagram

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

How to Use IMU?

- IMU integration
 - IMU has higher rate than camera
 - Cannot estimate all IMU states
 - Need to integration IMU measurements

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

The Bad of IMU Integration in the Global Frame

- IMU integration in world frame
 - Requires global rotation at the time of integration

IMU Pre-Integration on Manifold

- IMU integration in the body frame of first pose of interests
 - IMU Integration without initialization
 - Can use any discrete implementation for numerical integration
 - Intuitive: "position" and "velocity" changes in a "free-falling" frame

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

_

IMU Pre-Integration on Manifold

- Uncertainty propagation on manifold
 - Derive the error state model for the IMU pre-integration dynamics

$$\begin{split} \begin{bmatrix} \delta \dot{\alpha}_{t}^{b_{k}} \\ \delta \dot{\beta}_{t}^{b_{k}} \\ \delta \dot{\beta}_{t}^{b_{k}} \\ \delta \dot{\theta}_{t}^{b_{k}} \\ \theta \dot$$

Covariance matrix for pre-integrated IMU measurements 🧖

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

IMU Pre-Integration on Manifold

- Pre-integrated IMU measurement model
 - Describes the spatial and uncertainty relations between two states in the local sliding window

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

@2019 HKUST Aerial Robotics Group | http://uav.ust.hk

Vision Front-End

- Simple feature processing pipeline
 - Harris corners...
 - KLT tracker...
 - Track between consecutive frames, flow back
 - RANSAC for preliminary outlier removal

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Monocular Visual-Inertial SLAM

• System diagram

Global Pose Graph Optimization and Map Reuse

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

• Nonlinear graph optimization-based, tightly-coupled, sliding window, visual-inertial bundle adjustment

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

- Nonlinear graph-based optimization
 - Optimize position, velocity, rotation, IMU biases, inverse feature depth, and camera-IMU extrinsic calibration simultaneously:

$$\begin{aligned} \mathcal{X} &= \begin{bmatrix} \mathbf{x}_0, \, \mathbf{x}_1, \, \cdots \, \mathbf{x}_n, \, \mathbf{x}_c^b, \, \lambda_0, \, \lambda_1, \, \cdots \, \lambda_m \end{bmatrix} \\ \mathbf{x}_k &= \begin{bmatrix} \mathbf{p}_{b_k}^w, \, \mathbf{v}_{b_k}^w, \, \mathbf{q}_{b_k}^w, \, \mathbf{b}_a, \, \mathbf{b}_g \end{bmatrix}, k \in [0, n] \\ \mathbf{x}_c^b &= \begin{bmatrix} \mathbf{p}_c^b, \, \mathbf{q}_c^b \end{bmatrix}, \end{aligned}$$

Minimize residuals from all sensors

- IMU measurement residual
 - Additive for "position" and "velocity" changes, and biases
 - Multiplicative for incremental rotation

 $\mathbf{r}_{\mathcal{B}}(\hat{\mathbf{z}}_{b_{k+1}}^{b_{k}}, \mathcal{X}) = \begin{bmatrix} \delta \alpha_{b_{k+1}}^{b_{k}} \\ \delta \beta_{b_{k+1}}^{b_{k}} \\ \delta \beta_{b_{k+1}}^{b_{k}} \\ \delta b_{a} \\ \delta b_{g} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{w}^{b_{k}}(\mathbf{p}_{b_{k+1}}^{w} - \mathbf{p}_{b_{k}}^{w} + \frac{1}{2}\mathbf{g}^{w}\Delta t_{k}^{2} - \mathbf{v}_{b_{k}}^{w}\Delta t_{k}) - \hat{\alpha}_{b_{k+1}}^{b_{k}} \\ \mathbf{R}_{w}^{b_{k}}(\mathbf{v}_{b_{k+1}}^{w} + \mathbf{g}^{w}\Delta t_{k} - \mathbf{v}_{b_{k}}^{w}) - \hat{\beta}_{b_{k+1}}^{b_{k}} \\ 2 \left[\mathbf{q}_{b_{k+1}}^{w^{-1}} \otimes \mathbf{q}_{b_{k}}^{w} \otimes \widehat{\mathbf{b}}_{b_{k+1}}^{b_{k+1}} \right]_{xyz} \\ \mathbf{b}_{ab_{k+1}} - \mathbf{b}_{ab_{k}} \\ \mathbf{b}_{wb_{k+1}} - \mathbf{b}_{wb_{k}} \end{bmatrix}$ IMU: \mathbf{X}_{0} \mathbf{X}_{1} \mathbf{X}_{1} \mathbf{f}_{2}

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

@2019 HKUST Aerial Robotics Group | http://uav.ust.hk

IMU pre-integration "blocks"

- Vision measurement residual
 - Pixel reprojection error
 - Inverse depth model, at least 2 observations per feature, first observation to define feature direction

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

- Marginalization
 - Bound computation complexity to a sliding window of states
 - Basic principles:
 - Add all frames into the sliding window, and remove non-keyframes after the nonlinear optimization
 - keep as many keyframes with sufficient parallax as possible
 - Maintain matrix sparsity by throwing away visual measurements from nonkeyframes

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

• Marginalization via Schur complement on information matrix

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

@2019 HKUST Aerial Robotics Group | http://uav.ust.hk

- Solving the nonlinear system
 - Minimize residuals from all sensors

$$\min_{\mathcal{X}} \left\{ \left\| \mathbf{r}_p - \mathbf{H}_p \mathcal{X} \right\|^2 + \sum_{k \in \mathcal{B}} \left\| \mathbf{r}_{\mathcal{B}}(\hat{\mathbf{z}}_{b_{k+1}}^{b_k}, \mathcal{X}) \right\|_{\mathbf{P}_{b_{k+1}}^{b_k}}^2 + \sum_{(l,j) \in \mathcal{C}} \left\| \mathbf{r}_{\mathcal{C}}(\hat{\mathbf{z}}_l^{c_j}, \mathcal{X}) \right\|_{\mathbf{P}_l^{c_j}}^2 \right\}$$

- Linearize (to Ax=b), solve, and iterate until time budget is reached
- Ceres Solver (<u>http://ceres-solver.org/</u>)

Monocular Visual-Inertial SLAM

• System diagram

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

- Speeding up
 - The sliding window monocular visual-inertial bundle adjustment runs at 10Hz
 - Motion-only visual-inertial bundle adjustment to boost up the state estimation 30Hz
 - IMU forward propagation to boost to 400Hz

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

- Motion-only visual-inertial bundle adjustment
 - Optimize position, velocity, rotation in a smaller windows, assuming all other quantities are fixed

 $\begin{aligned} \mathcal{X} &= \begin{bmatrix} \mathbf{x}_0, \ \mathbf{x}_1, \dots \cdot \mathbf{x}_n, \ \mathbf{x}_c^b, \lambda_0, \lambda_1, \dots \lambda_m \end{bmatrix} \\ \mathbf{x}_k &= \begin{bmatrix} \mathbf{p}_{b_k}^w, \ \mathbf{v}_{b_k}^w, \ \mathbf{q}_{b_k}^w, \ \mathbf{b}_a, \ \mathbf{b}_g \end{bmatrix}, k \in [0, n] \\ \mathbf{x}_c^b &= \begin{bmatrix} \mathbf{p}_c^b, \ \mathbf{q}_c^b \end{bmatrix}, \end{aligned}$

Prior in cost function is ignored

- Also solved using the Ceres Solver

Monocular Visual-Inertial SLAM

• System diagram

Global Pose Graph Optimization and Map Reuse

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

- Very, very, very important for monocular visual-inertial systems
- Assumption 1: known camera-IMU extrinsic calibration during initialization
 - Does not need to be very accurate
 - Extrinsic calibration is refined in later nonlinear optimization
- Assumption 2: known accelerometer and gyroscope biases during initialization
 - Use zero values at power-up
 - Use prior values during failure recovery
 - Reasonable assumption due to slow varying nature of biases
- Pipeline
 - Monocular vision-only SFM in a local window
 - Visual-inertial alignment

- Monocular vision-only structure-from-motion (SfM)
 - In a small window (10 frames, 1sec)
 - Up-to-scale, locally drift-free position estimates
 - Locally drift-free orientation estimates
 - Not aligned with gravity

IMU is not used in this step

- Visual-inertial alignment
 - Estimates velocity of each frame, gravity vector, and scale
 - Note the coordinate frames

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

• Visual-inertial alignment

- Solve a linear system
 - Scale and rotate the vSfM

$$\begin{aligned} \mathcal{X}_{I} &= \left[\mathbf{v}_{b_{0}}^{c_{0}}, \, \mathbf{v}_{b_{1}}^{c_{0}}, \, \cdots \, \mathbf{v}_{b_{n}}^{c_{0}}, \, \mathbf{g}^{c_{0}}, \, s\right] \\ \min_{\mathcal{X}_{I}} \sum_{k \in \mathcal{B}} \left\| \hat{\mathbf{z}}_{b_{k+1}}^{b_{k}} - \mathbf{H}_{b_{k+1}}^{b_{k}} \mathcal{X}_{I} \right\|^{2} \end{aligned}$$

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Monocular Visual-Inertial SLAM

• System diagram

Global Pose Graph Optimization and Map Reuse

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Loop Closure

- Loop detection
 - Describe features by BRIEF
 - Extract new FAST features
 - (500, only use for loop detection)
 - Query Bag-of-Word (DBoW2)
 - Return loop candidates

Calonder, Michael, et al. "Brief: Binary robust independent elementary features." *Computer Vision–ECCV 2010* (2010): 778-792. Gálvez-López, Dorian, and Juan D. Tardos. "Bags of binary words for fast place recognition in image sequences." *IEEE Transactions on Robotics* 28.5 (2012): 1188-1197.

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Loop Closure

- Feature Retrieving
 - Try to retrieve matches for features that are used in the VIO
 - BRIEF descriptor match
 - Geometric check
 - Fundamental matrix test with RANSAC
 - At least 30 inliers
- Output:
 - Loop closure frames with known pose
 - Feature matches between VIO frames and loop closure frames

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Monocular Visual-Inertial SLAM

• System diagram

Global Pose Graph Optimization and Map Reuse

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Monocular Visual-Inertial Odometry with Relozalization

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

電子及計算機工程學系 DEPARTMENT OF ELECTRONIC & COMPUTER ENGINEERING

Monocular Visual-Inertial Odometry with Relozalization

- Relocalization
 - Visual measurements for tightly-coupled relocalization
 - Observation of retrieved features in loop closure frames
 - Poses of loop closure frames are constant
 - No increase in state vector dimension for relocalization
 - Allows multi-constraint relocalization

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Monocular Visual-Inertial SLAM

• System diagram

Global Pose Graph Optimization and Map Reuse

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Seq Name	APE(mm)	RPE(mm)	ARE(deg)	RRE(deg)	Badness	InitQuality
C0	67.812	25.907	3.529	0.635	7.697	3.475
C1	47.356	1.889	1.682	0.141	4.691	6.871
C2	69.143	14.785	2.049	0.321	5.879	3.711
C3	27.834	5.182	1.549	0.403	6.261	1.514
C4	66.927	21.137	0.878	0.123	1.494	7.033
C5	17.568	3.926	1.619	0.156	10.617	1.397
C6	49.625	10.866	1.743	0.284	1.922	5.526

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Seq Name	APE(mm)	RPE(mm)	ARE(deg)	RRE(deg)	Badness	InitQuality
C7	14.735	2.676	0.805	0.130	9.699	1.848
C8	47.193	6.187	3.530	1.040	4.058	1.341
С9	20.167	3.180	1.619	0.318	15.422	2.264
C10	40.418	11.506	4.993	0.212	10.038	3.225
C11	31.688	6.602	1.726	0.589	9.659	1.498
D8	29.524	8.242	2.936	0.818	21.139	1.257
D9	14.064	1.484	1.896	0.180	0.218	0.910
D10	152.871	26.105	12.285	8.072	32.598	0.543

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

@2019 HKUST Aerial Robotics Group | http://uav.ust.hk

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono

電子及計算機工程學系 DEPARTMENT OF ELECTRONIC & COMPUTER ENGINEERING

Thanks!

Questions?

Source Code: http://github.com/HKUST-Aerial-Robotics/VINS-Mono