Real-Time Monocular Visual SLAM by Combining Points and Lines

Xinyu Wei, Zengming Tang, Huiyan Wu, Jun Huang*

Shanghai Advanced Research Institute, Chinese Academy of Sciences

Outline

- Background
- SLAM Combining Points and Lines
- Line Features in Visual SLAM
- Results
- Conclusion

Background

What is Visual SLAM?

- SLAM: Simultaneous Localization And Mapping.
- **Mapping**: Constructing a map of an unknown environment.
- Localization: Estimating the six degrees of freedom (DoF) robot motion.

ORB SLAM, 2015 R Mur-Artal et al. LSD-SLAM, 2014 J Engel et al.

Robotics Augmented Reality (AR)

Background Direct SLAM & Feature-Based SLAM

- Information: Full image vs. Features (ORB, SIFT, LSD, ...)
- Tracking: Minimizing photometric error vs. Minimizing reprojection error
- **Mapping**: Per-pixel depth vs. 3D points/lines/...

Background Direct SLAM & Feature-Based SLAM

	Absolute KeyFrame Trajectory RMSE (cm)							
	ORB-SLAM	PTAM	LSD-SLAM	RGBD- SLAM				
fr1_xyz	0.90	1.15	9.00	1.34 (1.34)				
fr2_xyz	0.30	0.20	2.15	2.61 (1.42)				
fr1_floor	2.99	Х	38.07	3.51 (3.51)				
fr1_desk	1.69	Х	10.65	2.58 (2.52)				
fr2_360 _kidnap	3.81	2.63	X	393.3 (100.5)				
fr2_desk	0.88	Х	4.57	9.50 (3.94)				
fr3_long _office	3.45	Х	38.53	_				
fr3_nstr_tex_far	ambiguity detected	4.92 / 34.74	18.31	_				
fr3_nstr_ tex_near	1.39	2.74	7.54	_				
fr3_str_tex_far	0.77	0.93	7.95	_				
fr3_str_ tex_near	1.58	1.04	Х	_				
fr2_desk_person	0.63	Х	31.73	6.97 (2.00)				
fr3_sit_xyz	0.79	0.83	7.73	_				
fr3_sit_halfsph	1.34	Х	5.87	_				
fr3_walk_xyz	1.24	X	12.44	_				
fr3_walk_halfsph	1.74	Х	Х	-				

Motivation

More information is needed to improve the robustness and accuracy of feature point based SLAM system. In the direct methods, the benefits of robustness and invariance to photometric variations which are provided by features are sacrificed. Lines are usually abundant in manmade scenes.

(The experimental results are taken from ORB SLAM, 2015, R Mur-Artal et al.)

Outline

- Background
- SLAM Combining Points and Lines
- Line Features in Visual SLAM
- Results
- Conclusion

SLAM Combining Points and Lines Typical SLAM System

- **The front-end**: Abstracting sensor data into models that are amenable for estimation.
- **The back-end**: Performing inference on the abstracted data produced by the front-end.

(The image is taken from SLAM: Present, Future, and the Robust-Perception Age, 2015, C Cadena et al.)

SLAM Combining Points and Lines

The front-end: Tracking; The back-end: Local Mapping, Loop Closing.

Tracking: Localizing camera pose in every frame and selecting new keyframe.

Local Mapping:

Maintaining the dynamic map which includes keyframes, map points (3D points in map) and map lines (3D line segments in map).

Loop Closing: Searching loop and corrects it.

SLAM Combining Points and Lines

The Feature Level Parallel Processing

Problem:

High computational burden is required for the multifeature processing tasks. In the existing similar SLAM systems, only a few barely reached the real-time specifications (20 Hz).

The proposed system can run at around 30 Hz.

Outline

- Background
- SLAM Combining Points and Lines
- Line Features in Visual SLAM
- Results
- Conclusion

Line Features in Visual SLAM Map Lines in System

- Map Lines: $L = (L_P, L_F)$
- L_P: The 3D line containing the line segment which is parameterized with Plücker line coordinate and orthonormal representation;
- L_F : A set of keyframes in which the line can be observed.

Observation angle β of *L* in the keyframe *F*

Calculation of the endpoints *A*, *B* of *L*

Line Features in Visual SLAM A Fast Line Matching Algorithm

- **Task**: Finding the best matching line *l* of map line *L* in frame *F*.
 - 1. Projecting the endpoints A and B of L in F, getting the projection line segment l_L .
 - 2. Computing the candidate matching line segments of l_L in F.
 - 3. Calculating the best matching line of *L*.

$$d_1(l_L, l) = \alpha(d(l_L, p_1) + d(l_L, p_2))$$

$$d_2(l_L, l) = (1 - \alpha)(d'(p_1, a) + d'(p_2, b))$$

$$d(l_L, l) = (d_1(l_L, l) + d_2(l_L, l))\frac{l_F^*}{l_L^*}$$

Classification of the features

Matching error of segments l_L and l

Line Features in Visual SLAM Map Line Initialization

- **Task**: Using line segment matches and camera poses to calculate new map lines.
 - 1. Obtaining sampling point matches on 2D lines in two frame.
 - 2. Calculating 3D points according to sampling point matches.
 - 3. Creating map lines with line fitting.

Sampling points matching based on epipolar constraint

Map line fitting

Line Features in Visual SLAM Map Line Initialization

Accurate sampling point matching with unreliable line endpoints

Outline

- Background
- SLAM Combining Points and Lines
- Line Features in Visual SLAM
- Results
- Conclusion

Results - Localization Accuracy on C3_train

• Intel Core i7-3770 (4 cores @3.4GHz) , 4 GB RAM, No GPU

Results - Localization Accuracy on C5_train

Results - Localization Accuracy on C6_train

Results - Camera trajectories on The Test Dataset

Results - Localization Accuracy on The Training Dataset

Sequence		PTAM		ORB-SLAM2		DSO		PL-SLAM	
APE/RPE (mm)	CO	75.442	6.696	96.777	5.965	231.86	10.456	82.780	7.028
	C1	113.406	16.344	95.379	10.285	431.929	12.555	68.875	22.223
	C2	67.099	6.833	69.486	5.706	216.893	5.337	51.400	9.970
	C3	10.913	4.627	15.310	7.386	188.989	4.294	12.259	6.506
	C4	21.007	4.773	10.061	2.995	115.477	4.595	30.015	4.437
	C5	40.403	8.926	29.653	11.717	323.482	7.978	18.973	8.418
	C6	19.483	3.051	12.145	6.741	14.864	2.561	9.435	3.080
	C7	13.503	2.462	5.832	1.557	27.142	2.213	15.413	3.225
ARE/RRE (deg)	CO	12.051	0.257	5.119	0.342	9.983	0.401	4.605	0.436
	C1	53.954	0.291	8.534	0.242	39.007	0.524	33.426	0.193
	C2	8.789	0.301	5.550	0.255	10.584	0.253	2.640	0.577
	C3	6.225	0.293	1.431	0.264	20.580	0.241	1.287	0.624
	C4	6.295	0.255	1.015	0.157	5.217	0.180	2.624	0.221
	C5	14.03	0.452	1.963	0.546	40.939	0.324	1.933	0.563
	C6	2.348	0.217	0.892	0.169	1.435	0.189	1.068	0.304
	C7	1.218	0.153	0.569	0.115	2.239	0.135	0.779	0.211
Completeness (%)	CO	79.386		65.175		14.476		79.696	
	C1	60.893		68.303		0.869		17.131	
	C2 85.348		79.263		22.878		81.437		
C3 71.6		35	98.497		43.493		100.000		
	C4	95.418		100.000		80.371		99.895	
	C5	87.399		97.785		2.059		100.000	
	C6 97.399		99.786		100.000		100.000		
	C7	100.000		100.000		100.000		99.122	

(The experimental results of PTAM, ORB-SLAM2 and DSO are taken from VI-SLAM Survey for AR, 2019, Jinyu LI et al.)

Results - Localization Accuracy on The TUM RGB-D Dataset

Results - Localization Accuracy on The TUM RGB-D Dataset

	Absolute KeyFrame Trajectory RMSE (cm)							
Sequence	Ours	PL-	ORB-	DTAM	LSD-	RGBD-		
		SLAM	SLAM	PIAN	SLAM	SLAM		
f1_xy	0.87	1.21	0.94	1.15	9	1.34		
f2_xyz	0.25	0.43	0.23	0.2	2.15	1.42		
f3_long_office	1.10	1.97	1.68	-	38.53	-		
f3_nstr_tex_near	1.40	1.58	1.43	2.74	7.54	-		
f3_str_tex_far	0.97	0.89	1.05	0.93	7.95	-		
f3_str_tex_near	1.16	1.25	1.19	1.04	-	-		
f2_desk_person	0.64	1.99	0.72	-	31.73	2		
f3_sit_xyz	0.81	0.066	0.89	0.83	7.73	-		
f3_sit_halfsph	1.56	1.31	1.40	-	5.87	-		
f3_walk_xyz	1.17	1.54	1.56	-	12.44	-		
f3_walk_halfsph	1.68	1.6	1.93	-	-	-		

(The experimental results of PTAM, ORB-SLAM2 and DSO are taken from VI-SLAM Survey for AR, 2019, Jinyu LI et al.)

Results

Running Time of Each Operation (TUM DataSet)

Mann avantion time (ma)

323.85

205.03

						Thread	Onaration	I I	Mean execution time (ms)		
	Operation	Mean execution time (ms)			Thread	Operation	Ours-A	Ours-B	PL-SLAM	ORB-SLAM	
Thread		Ours-A	Ours-B	PL-SLAM	ORB-SLAM		KeyFrame	15.38	19.18	17.08	13.99
	Features	14.94 24.37					Insertion	10.00	17.10	1,100	10177
Tracking	extraction		31.32	12.36		Map Feature	0.44	0.49	1.18	0.08	
	Initial Pose		32 4.75 22 9.41	7.16	3.27	Local Mapping	Culling				
	Estimation	4.82					Map Feature	190.94	231.22	74.64	76.74
	Track Local			12.58	6.93		Creation				
	Map	9.22					Local BA	154.06	179.68	218.25	107.95
	Total	28.98	38.53	51.06	22.56		KeyFrame	2.01	3 78	127	6.27
L							Culling	2.74	5.70	12.7	0.27

Total

363.76 434.35

Outline

- Background
- SLAM by Combining Points and Lines
- Line Features in Visual SLAM
- Results
- Conclusion

Conclusion

- A real time monocular SLAM system using both points and line segments.
- Novel line processing algorithms in visual SLAM.
- A feature level parallel processing framework.

Future Work

- Using geometric constraints (coplanar, vertical, et al.) of features to improve the reconstruction accuracy of map.
- Multi-sensor (camera, IMU, GPS, et al.) information fusion in SLAM.

Thanks!