
Snake-SLAM (Prototype)

Darius Rückert
University of Erlangen-Nuremberg

August 30, 2019

Abstract

Snake-SLAM is a sparse, keypoint-based Visual SLAM system for
RGBD and monocular input streams. For each frame, ORB features are
computed and matched in a multi-stage approach to previously triangu-
lated points. If a new keyframe is required, the best frame out of a history
buffer is selected. Bad pose estimates are then refined using the newly
created keyframe. Snake-SLAM supports map optimization, large scale
loop closure, and relocalization after lost tracking.

Figure 1: Keyframes and world points for the C3 and C7 test dataset.

1 Initialization

For monocular SLAM systems, a stable initialization is crucial for accurate
camera tracking. In many cases, a late initialization with good feature matches
is better than a premature initialization with small parallax. In our system, we
first compute two-view feature matches and filter them by checking the ratio
between the best and second best match. Then, the relative transformation
between the images is computed using the 5-point algorithm. The two-view
reconstruction is accepted, if it satisfies the following conditions

• 5-point inliers > thin

1



• triangulation angle α > thα

• histogram density > thhis

2 Tracking

The localization of a novel frame is achieved by matching the image features
to previously triangulated points from a predicted camera position. Instead
of using all mappoints, only a small subset is selected and used for matching.
This subset is called local map. If the tracking using the initial local map is
successful, the matching is repeated on a second local map which includes more
points. This two-stage tracking allows us to use different outlier thresholds and
generally improves stability on unpredictable camera motion. If the local map
tracking fails, we try to recover it using a two-view reconstruction with the last
keyframe. If that fails as well, the system switches into relocalization mode.

During relocalization new frames are matched to all keyframes using a binary
bag of word database (see ORB-SLAM). Candidates from the database are then
used in a two-view reconstruction to estimate the frame’s pose.

3 Keyframe insertion

During exploration, new keyframes must be inserted into the map, because
previously unseen geometry might become visible. The traditional approach is
to select a frame as a keyframe, if the tracking is weak. Weak is very loosely
defined here and usually implemented using heuristics. We also use a heuristic
to decide when new keyframes are needed, but do not immediately select the
latest valid frame as a keyframe. Instead, we keep track of the latest N frames
in a history buffer and generate a keyframe from the best candidate. After
insertion, all frames after the new keyframe are optimized again.

This method allows us to generate a map of higher quality because better
keyframes are selected. For example, if a bad frame with motion blur is tracked,
other systems would use that bad frame as a keyframe and degrade the map.
Our approach selects a good frame from the past instead.

4 Structure

Snake-SLAM consists of multiple modules which each run independently on
different threads (see Figure xx). The input module reads the camera data
and computes feature points. The tracking module computes the current pose
and decides if a new keyframe should be inserted. Local Mapping, inserts the
new keyframe into the map and generates new 3D points. The optimization
module, improves the current map by applying bundle adjustment and removing
outliers. Loop Closing detects large scale loops and closes them using pose graph
optimization.

2



Local MappingInput Tracking Optimizer Loop Closing

Local 
Map

Map

Local Map Local Map Local Map
Local 
Map

Figure 2: Snake-SLAM overview. Each module operates on local copies of the
map.

In contrast to other system (e.g. ORB-SLAM), our modules do not operate
directly on the global map. Each module has a local copy of the global map in
a local coordinate system. That means, poses compute by the tracking are first
transformed into the respective coordinate system before they can be used by
the other modules. This was mainly implemented for efficiency reasons. First,
the local copies are more cache-friendly, because they only contain the abso-
lutely necessary information. And second, we can get rid of all synchronization
primitives except the copy operation between the local and global map.

5 Performance

Currently all modules except the feature detection are well optimized and per-
form significantly better than ORB-SLAM. The feature detection is work in
progress as we want to move it to the GPU. For the ISMAR SLAM challenge
we manually capped the frame rate to 100 fps, compiled with debug information,
and run all modules sequential on a single thread, because more than 30 fps will
not be rewarded. If we enable all optimization and enable multi threading our
system can easily reach 800 fps and more on a modern desktop PC.

Module Average Time (ms)
Feature Detection (CPU) 6
Feature Detection (GPU expected) < 1
Tracking (1 Thread) 1.1
Tracking (2 Threads) 0.7
Keyframe Insertion 5
Optimization 16
Loop Closing 11

Table 1: Execution time of the individual modules.

3


