PLVI-SLAM: Visual-Inertial Monocular SLAM Using Point and Line
Features

Xinyu Wei* Zengming Tang’

Huiyan Wu* Jun Huang?®

Shanghai Advanced Research Institute, Chinese Academy of Sciences
Shanghai, China

ABSTRACT

This paper presents PLVI-SLAM, a tightly-coupled monocular vi-
sual—inertial SLAM system using both point and line features. We
fuse the multi-features from visual sensors and inertial measure-
ments from IMU to improve the robustness and accuracy of monoc-
ular SLAM system. Compared with point features, line features
are abundant in man-made environments and they can complement
points well. We use parallel processing framework to speed up
the multi-feature process. To efficiently fuse preintegrated IMU
measurements and multi-feature observations, a joint optimization
algorithm is proposed. A loop closing module is utilized in the
system to implement online relocalization.

Index Terms: Visual-Inertial SLAM—Point and Line Features—
Sensor Fusion;

1 INTRODUCTION

In recent years, monocular Simultaneous Localization And Mapping
(SLAM) system with low-cost inertial measurement units (IMUs)
attracted much attention. Many VI-SLAM [6, 8] and VIO [4,7,11]
systems are proposed. These systems used the acceleration and
angular velocity information from IMUs to improve the robustness
of monocular SLAM system. The combination of visual sensors
and IMUs make the SLAM system being capable of recovering the
metric scale and more robust in textureless scenes.

According to the methods of data fusing, monocular vi-
sual-inertial SLAM system can be classified into two main cat-
egories: loosely-coupled and tightly-coupled algorithms. Loosely-
coupled algorithms using data from IMUs and cameras to estimate
the pose of camera or robot separately. And then fuse the two pose
estimates to obtain final result. Tightly-coupled algorithms combin-
ing the two types of data to estimate the camera pose. Compared to
loosely-coupled algorithm, tightly-coupled algorithms can usually
get more accurate results. Tightly-coupled fusion is usually done
by the the Extended Kalman filter (EKF) and optimization-based
algorithms. But due to the EKF approaches discard the historical
measurements, the graph optimization methods generally have more
accuracy results and can handle large environment.

In visual SLAM, point features are commonly used to represent
the image information. But in low-textured environments such as
man-made scenes, it is difficult to find a reliable set of point fea-
tures. In comparison, line features are usually abundant in these
environments. Combination of points and line segments can im-
prove the visual SLAM in such challenging scenes. In addition,
line features can provide more geometrical structure information
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of the environment and is suitable for some applications such as
Augmented Reality (AR).

To obtain geometrical structure information of the environment
and improve the robustness of visual SLAM system, we proposed
the PLVI-SLAM, a tightly-coupled monocular visual-inertial SLAM
system using both point and line features. We utilized the graph
optimization methods to fusing the multi-features and inertial mea-
surements, and obtain the accuracy camera poses.

2 SYSTEM OVERVIEW

The PLVI-SLAM is built upon our previous work [10]. The system
has three threads: tracking, map managing and loop closing (Fig.
1). In the tracking module, point and line features are extracted
and matched with 3D features in map. The inertial measurements
between two frames are combined into a single relative motion
constraint. Then a graph optimization method is used to optimized
the current camera pose. The map managing module maintain the
system map which includes the keyframes, map points and map
lines. In this thread, 3D features in map, keyframes, groscope bias,
acceleration bias and gravity vector are jointly optimized. The loop
closing thread searches loop and corrects it. We process the features
and inertial measurements in parallel threads. In Fig. 1, the parallel
processing modules are denoted with blue doted boxes.

2.1 Traking

For each new frame, ORB [9] and EDLine [1] features are detected.
And IMU preintegration is conducted as [2]. In our system, the
rotation of camera is represented as a manifold structure of the
rotation group SO(3). Then the initial camera pose is estimated
with the preintegrated IMU measurements. When the initial pose is
obtained. The 3D features in local map are projected in current frame
and the 2D-3D feature matches is calculated using a fast matching
algorithm [10]. After getting the initial pose, feature matches
and preintegrated IMU measurements, a pose graph optimization
is conducted to refine the initial pose . The optimization procedure
includes the optimization on reference keyframe and optimization in
local map. At last, the keyframe is selected based on the tracking
quality.

2.2 Map Managing

When a new keyframe is selected. Map managing module add the
keyframe in map. In this thread, old map features and keyframes
are culled and new map features are created. All variables including
the poses of keyframes, map features, gyroscope bias, acceleration
bias, metric scale and gravity vector are jointly optimized. And
this graph-based optimization is conducted in the local window as
[6]. In addition, for the horizontal plane can be determinated by the
gravity vectors, which means the absolute roll and pitch angles can
be observed, we use the 4-DOF pose graph optimization method as
[7].

In map managing. The maintaining of map features is difficult.
‘We use multi criteria including life cycle, observation number and
tracking quality to cull features, and multiple optimizations to opti-
mized features and keyframes.
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Figure 1: Overview of PLVISLAM system

2.3 Loop Closing [11] F. Zheng, G. Tsai, Z. Zhang, S. Liu, C.-C. Chu, and H. Hu. Trifo-

. . . vio: Robust and efficient stereo visual inertial odometry using points
To reduce drlﬁs’ we used DBOW2_ [3] to identify the Places that and lines. In 2018 IEEE/RSJ International Conference on Intelligent
have been visited. In the loop closing module, a loop is detected Robots and Systems (IROS), pp. 3686-3693. IEEE, 2018.

as [5]. After loop detection, a pose-graph optimization on 4 degrees
of freedom is performed to refine the map.
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