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ABSTRACT
This paper presents a real-time monocular SLAM algorithm

which combines points and line segments. We extend tradi-

tional point-based SLAM system with line features which are

usually abundant in man-made scenes. The system is more

robust and accurate than traditional point-based and direct-

based monocular SLAM algorithms. In order to improve the

timeliness of multi-feature based SLAM, we propose a novel

feature level parallel processing framework and a fast line

matching algorithm. For improving the reconstruction accu-

racy of 3D line segments which is usually affected by unre-

liable line endpoints, a sample point-based 3D reconstruction

algorithm for line segments is proposed. Our system is im-

plemented based on a popular monocular SLAM known as

ORB-SLAM and tested on the TUM RGB-D benchmark. The

experiment results demonstrate that the proposed system per-

forms better than current state-of-the-art visual SLAM with

respect to accuracy.

Index Terms— Visual SLAM, line segment, bundle ad-

justment, 3D reconstruction, line matching

1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) algorithm

is used to estimate the map of the environment and the pose

of a mobile robot simultaneously. Monocular SLAM, which

uses monocular images as input and has the advantages of low

price and compactness, is widely used in various fields such

as augmented reality and autonomous vehicle navigation.

Existing monocular SLAM can be classified into two

main categories with respect to the information which is used:

feature-based methods [1, 2, 3, 4] and direct methods [5, 6, 7].

The feature-based methods use features extracted from im-

ages to estimate camera poses and a 3D map. In these meth-

ods, point is the most commonly used feature type. While

many famous SLAM systems such as PTAM [1] and ORB-

SLAM [2] are based on point features and have a good per-

formance, the feature point based SLAM is still prone to fail

in low-textured environments where it is difficult to find a re-

liable set of point features [8]. The primary cause of this prob-

lem is an important limitation that only information that con-
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(a) Source image (b) Point features (c) Points and lines

Fig. 1: Compared with point features extracted from image,

combining points and line segments can provide more abun-

dant information of the surroundings.

forms to the point feature can be used in feature point based

SLAM system, which is also one major motivation for the lat-

ter methods [5]. The direct methods use the intensity values

of all the image instead of features. These methods are able

to exploit all the information in the image to build dense or

semi-dense maps. But the benefits of robustness and invari-

ance to photometric variations which is provided by features

are sacrificed, and the camera localization accuracy of direct

methods is generally lower than the current state-of-art fea-

ture point based methods such as ORB-SLAM [2].

In order to tackle the problem in traditional feature point

based SLAM systems, combination of points and line seg-

ments has been utilized in SLAM systems [9, 10, 11]. Com-

pared with points, line segments can provide more geomet-

rical structure information and are usually abundant in man-

made scenes [12, 13] (see Fig. 1). Thus line segments are

able to complement points well and improve the robustness

and accuracy of feature point based SLAM system. Recently,

Pumarola et al. proposed PL-SLAM [9], which is a monoc-

ular SLAM with points and lines. PL-SLAM improved the

trajectory accuracy of point based SLAM system and could

estimate an initial map using only lines. In [10], authors used

the stereo camera to capture point and line features. Based on

LSD [14] and LBD [15], they introduced an improved extrac-

tion and matching method for line features. In [11], a proba-

bilistic stereo visual odometry system was proposed based on

the combination of both point and line segment.

In a real-time SLAM system, processing line segments

and points simultaneously is challenging. Firstly, high com-

putational burden is required for the multi-feature process-

ing tasks [8]. In the existing similar SLAM systems, only
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a few [9, 10] barely reached the real-time specifications (20

Hz). Secondly, compared with points, there exist more diffi-

culties in the line segments matching and triangulation, which

are primarily caused by the unreliable line endpoints. Fo-

cusing on these issues, we propose a feature level parallel

processing framework, a fast line matching algorithm and a

sample point based 3D reconstruction algorithm for line seg-

ments. The system is built upon the ORB-SALM, which is

a famous feature point based monocular SLAM using ORB

features [16]. The main contributions of the paper are as fol-

lows.

• We propose a real time monocular SLAM system

using both points and line segments, and we con-

duct extensive experiments with comparison to current

state-of-the-art visual SLAM using the TUM RGB-D

dataset [17].

• We propose novel line processing algorithms in visual

SLAM, which include a sample point based 3D recon-

struction algorithm for line segments and a fast line

matching algorithm.

• A feature level parallel processing framework is in-

troduced. With this framework, the proposed multi-

feature based system can run at around 30 Hz.

2. SYSTEM OVERVIEW

The proposed system is built upon ORB-SLAM [2]. Since the

combined process of two kinds of features significantly in-

creases the amount of calculation and complexity, the system

is not a simple extension from ORB-SLAM. Novel line seg-

ment processing algorithms and a feature level parallel pro-

cessing framework are adopted in the system (as shown in

Fig.2). The main building blocks are briefly reviewed and the

line segment related operations are presented in detail.

The system has three threads including tracking, local

mapping and loop closing. The tracking localizes camera

pose in every frame. The local mapping maintains the dy-

namic maps which includes keyframes, map points (3D points

in map) and map lines (3D line segments in map). The loop

closing constantly searches loop and corrects it. In Fig. 2, the

feature level parallel processing modules are denoted with red

doted boxes in which point and line segments are parallel pro-

cessed. These modules are presented in detail in Section 4.1.

In our system, line segments are detected by the EDLines

detector [18]. After feature detection, the initial pose is esti-

mated with point matches. Line segments are not involved in

this step because the existing line descriptors, i.e. MSLD [19]

and LBD [15], do not perform as efficient as point descriptors,

and that will reduce the efficiency of feature level parallelism.

We only extract the LBD line descriptors from keyframes in

local mapping thread. Once the initial estimation of the cam-

era pose is completed, matches with the local map points and

lines are searched, and camera pose is optimized with these

Fig. 2: Overview of the proposed SLAM system.

matches. The local map lines matching algorithm is explained

in Section 3.1. When a keyframe is selected, the local map-

ping thread creates new map lines from it and culls the spe-

cific map lines according to an exigent policy. The new map

lines creation is detailed in Section 3.2.

3. LINE FEATURES IN VISUAL SLAM

3.1. Line Segment Matching

In our system, there exist two line segment matching tasks:

2D-2D and 3D-2D line segment matching. The 2D-2D one

is implemented based on the method in [15]. The 3D-2D

line segment matching is conducted in three steps: project-

ing the 3D line segments in the image, determining candidate

matches and identifying the best match.

The 3D line segment projection is essentially the projec-

tion of the endpoints. Due to occlusion and deformation of

the segment, the detection of line endpoints is usually unreli-

able [20]. We seek to alleviate this issue by using observation

angle to determine the most suitable endpoints. In our sys-

tem, map line is represented as L = (LP , LF ). LP is the 3D

line containing the line segment which is parameterized with

Plücker line coordinate and orthonormal representation [21].

LF is a set of keyframes in which the line can be observed.
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As illustrated in the left image in Fig. 3, we define the

observation angle of L in the current frame F as the angle β
between the principal axis Lz and the plane πL containing L
and the camera center C. The right image in Fig. 3 denotes

the calculation process of the 3D endpoints. We first find the

keyframe FL which have the closest observation angle of L
with current frame. Then the endpoint A of L are determined

by the intersection of L and the plane πa which contains cam-

era center C and the vertical line la of ab. ab is the matching

line segment of L in FL. The other endpoint B is determined

with the same method. At last, the endpoints A and B are

projected in F and the projection line segment lL of L can be

obtained.

Fig. 3: Observation angle β of 3D line segment L (left). And

the calculation of the endpoints A, B of L (right).

Candidate matching line segments of lL in F is calculated

based on the line direction. In our system, the line segments

in current frame are divided into 36 sets according to their

directions. And the point features are processed with the same

method in ORB-SLAM, which divides the points into 64*48

sets based on their coordinates (see Fig. 4). The line segment

groups in which the lines have the similar direction with lL
are selected. All line segments in these groups are added into

the candidate matching line set SL of L.

Fig. 4: Classification of the features. Green dots represent the

point features and they are divided into 64*48 sets (left). Line

segments of the same color indicate one set and all lines are

classified into 36 groups (right).

Then the best matching line of L is calculated in SL based

on the nearest neighbor algorithm. Compared to point fea-

tures, the matching error of line segments is hard to defined

since it is multidimensional [20]. We comprehensively con-

sider the endpoint-line distance and endpoint-endpoint dis-

tance. The matching error of segments lL and l in our system

is defined as:

d1(lL, l) = α(d(lL, p1) + d(lL, p2)) (1)

d2(lL, l) = (1− α)(d′(p1, a) + d′(p2, b)) (2)

d(lL, l) = (d1(lL, l) + d2(lL, l))
l∗F
l∗L

(3)

Where p1, p2 are the endpoints of l and a, b are the end-

points of lL. d(lL, p1) represents the distances of p1 and lL.

d′(p1, a) is defined as the distance between p1 and a. l∗L is the

length of lL, and l∗F is the average length of lines in current

frame F . l∗F /l
∗
L can make the long line segments are more

easily matched. α is a constant weight coefficients and the

value is 0 ∼ 1. d(lL, l) is the final distance between lL and l.

3.2. Map Line Initialization

The line initialization algorithms use line segment matches

and camera poses to calculate new map lines. Due to possible

noise in the data, accurate and robust map line initialization

is a challenging task [21]. In order to solve this problem, we

utilize sample points triangulation and linear fitting to create

new map lines. The method contains two steps. First, 3D

points are obtained according to sampling point matches. The

second step is map lines fitting.

Fig. 5: Sampling points matching based on epipolar con-

straint (left) and map line fitting (right).

In order to get 3D sampling points, we first utilize the

epipolar geometry of point to obtain accurate point match-

ing pairs. The left image in Fig. 5 presents the calculation

procedure of point matches. At first, n equidistant points are

selected on line segments ab in frame F1. For one point a, the

epipolar line l′ for a is calculated in the other frame F2 [22].

Then the intersection point of l′ and the matching line seg-

ment a′b′ in F2 is the accuracy matching point of a.

Fig. 6 presents the accurate sampling point matches based

on the epipolar geometry, the blue lines are the line segments

extracted from images and the small purple circles in left im-

age are sample points equidistantly selected on the line seg-

ments (here n is set to 5). The purple circles in right image

are the intersection points of the matching lines and epipolar

lines. Notice that the line segment extracted from the edge

of paper in left image has different endpoints with the corre-

sponding line segment in right image. But the correct point

matches can still be obtained with our method.

Although above method is able to get accuracy point

matches in many cases, there still exist a degeneracy when the
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Fig. 6: Sampling points matching results based on epipolar

geometry.

matching line a′b′ is parallel with epipolar lines l′. In order to

settle this issue, sample points are selected on both matching

lines and the length difference of two line segments is used to

control the point matching. If the included angle of a′b′ and

l′ is greater than a threshold Hth and the length difference of

them is less than Lth. Equidistant sampling points of ab and

a′b′ are regarded as sampling point matches. After obtaining

the point match (a, a′), the 3D point A can be calculated.

Finally, map line which has the best fit to the set of 3D

points is obtained. The right image in Fig. 5 denotes the lin-

ear fitting process. (p1, p
′
1) is a sampling point match and

P1 is the corresponding 3D point. The map line is calculated

from (P1, P2, P3). During this process, we can find the out-

liers in input data through checking the fitting error and the

number of generated 3D points. The pseudocode of the map

line initialization is given in Algorithm 1.

4. COMBINED TREATMENT OF POINTS AND
LINES

4.1. Parallel Processing of Points and Lines

Parallel processing is an important method to build real-time

visual SLAM. Since PTAM [1] splits tracking and mapping

into two separate tasks and processes them in parallel threads,

most subsequent visual SLAM systems adopt parallel pro-

cessing algorithm and usually contain tracking, mapping and

loop closing tasks [2, 9]. In our system, we extend the tra-

ditional parallel processing framework with the feature level

parallel processing which further speeds up the multi-feature

based visual SLAM.

The feature level parallel processing modules are pre-

sented with red doted boxes in Fig.2. In the tracking thread,

line segments and points are extracted in two parallel threads.

Considering the speed difference of line detector and point

detector, the point detection and ORB descriptors extrac-

tion [16] are performed in one thread, and the line detection is

performed in the other. After initial pose estimation, the map

points projection and map lines projection are also performed

in two threads. In the local mapping thread, map lines and

map points are treated separately in features culling and new

features creation which are desirable for parallel processing.

Algorithm 1 Map Line Initialization

Input: Line segments match pairs (li, l
′
i)(i = 0, 1, . . . , n),

camera projection matrices M , M ′, fundamental matrix

F , number of sampling points sn.

Output: Map lines Li(i = 0, 1, . . . ,m).
1: for i = 0→ n do
2: Obtain equidistant sampling point sets G1 and G2

based on li and l
′
i respectively.

3: Get the length difference Ld of li and l
′
i.

4: for j = 0→ sn do
5: Compute the epipolar line le of the point G1[j].
6: Get the included angle h of le and l

′
i.

7: if h < Hth then
8: Calculate point p of the intersection of le and

l
′
i.

9: Generate 3D points X based on the 2D points

p, G1[j] and camera projection matrices M , M ′.
10: else if Ld < Lth

11: Generate 3D points X based on the point

G2[j] and G1[j].
12: end if
13: Add X into the set S. Pn indicates the size of S.

14: end for
15: if Pn > Pth then
16: Conduct linear fitting and the fitting error is ex-

pressed as E.

17: if E < Eth then
18: Obtain the new map line Li.

19: end if
20: end if
21: end for

4.2. Bundle Adjustment with Points and Lines

As stated before, the map in system is formed by the

keyframes, map lines and map points. Bundle adjustment is

adopted to optimize the poses of keyframes and the features

in map. For that, we define Tk as the SE(3) pose of the k-

th keyframe. Pi and Lj are the i-th map point and the j-th

map line. The 3D-2D point match and line match are repre-

sented as (Pi, pi) and (Lj , lj). Then, the cost function C in

the back-end optimization is:

dk,j =

∥∥∥∥
lj ∗ π(K, Tk, L

a
j )

lj ∗ π(K, Tk, L
b
j)

∥∥∥∥
2

(4)

d′k,i = ‖pi − π(K, Tk, Pi)‖2 (5)

C =
∑

k,i,j

ρ(dTk,iΩ
−1
k,idk,i + dTk,jΩ

−1
k,jdk,j) (6)

Where dk,j and d′k,i refer to the line reprojection er-

ror [23] and point reprojection error. K is the camera cal-

ibration matrix. La
j and Lb

j are the 3D endpoints of Lj .
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π(K, Tk, L
a
j ) represents the point projection. Ω−1

k,i and Ω−1
k,j

denote the inverse covariance matrices of points and lines, and

ρ is the Huber robust cost function.

5. EXPERIMENTAL RESULTS

The proposed SLAM system is tested in the TUM RGB-D

benchmark [17] which is widely used in monocular SLAM

experiments. We compared our system with current state-

of-the-art visual SLAM systems including ORB-SLAM [2],

PL-SLAM [9], LSD-SLAM [5], PTAM [1] and RGBD-

SLAM [24]. All experiments were implemented on an Intel

Core i7-3770 (4 cores @3.4GHz) processor with 4 GB RAM.

Because of the randomness in the systems, we conduct all ex-

periments five times and report the median from all runs.

5.1. Localization accuracy

Fig.7 indicates the comparison of trajectories generated by

our SLAM and ORB-SLAM. The results demonstrate that

combining points and line segments is able to improve the

accuracy of camera pose estimation. Table 1 shows the re-

sults generated from 11 sequences. The results of PTAM,

LSD-SLAM and RGBD-SLAM are obtained from [2] and

the results of PL-SLAM are obtained from [9] (we adopt the

best results of the two systems proposed in [9]). We use the

method in [2] to measure the absolute trajectory error. Our

proposed SLAM is able to process all sequences and has bet-

ter performance than ORB-SLAM in 9 sequences. Our al-

gorithm also gets more accurate results than PL-SLAM in 7

sequences. In all 11 sequences, PL-SLAM and PTAM have 4

and 2 best results respectively. However, PTAM lost track in

5 sequences. Only in 5 sequences PL-SLAM achieves higher

accuracy than ORB-SLAM. RGBD-SLAM lost track in 8 se-

quences and LSD-SLAM has higher error than other methods.

Fig. 7: Comparison of the trajectories obtained by ORB-

SLAM (blue solid line) and the SLAM proposed (red solid

line). The black dashed line represents the ground truth.

Table 1: Localization accuracy in the TUM RGB-D dataset.

TUM RGB-D

Sequence

Absolute KeyFrame Trajectory RMSE (cm)

Ours
PL-

SLAM

ORB-

SLAM
PTAM

LSD-

SLAM

RGBD-

SLAM

f1 xy 0.87 1.21 0.94 1.15 9 1.34

f2 xyz 0.25 0.43 0.23 0.2 2.15 1.42

f3 long office 1.10 1.97 1.68 - 38.53 -

f3 nstr tex near 1.40 1.58 1.43 2.74 7.54 -

f3 str tex far 0.97 0.89 1.05 0.93 7.95 -

f3 str tex near 1.16 1.25 1.19 1.04 - -

f2 desk person 0.64 1.99 0.72 - 31.73 2

f3 sit xyz 0.81 0.066 0.89 0.83 7.73 -

f3 sit halfsph 1.56 1.31 1.40 - 5.87 -

f3 walk xyz 1.17 1.54 1.56 - 12.44 -

f3 walk halfsph 1.68 1.6 1.93 - - -

5.2. Computation Time

The computation burden of multi-feature based Visual SLAM

is the main problem need to be settled. We test the running

time of our SLAM system in TUM RGB-D benchmark. The

time required for each task in the tracking and local mapping

threads presented in Table 2. Our system is compared with

PL-SLAM and ORB-SLAM. In addition, we also compare

the implementation of our SLAM system which utilizes the

feature level parallel processing framework (Ours-A) and the

implementation without the framework (Ours-B). The results

of PL-SLAM are obtained from [9].

Table 2: Running time of each operation (ms).

Thread Operation
Mean execution time (ms)

Ours-A Ours-B PL-SLAM ORB-SLAM

Local

Mapping

KeyFrame

Insertion
15.38 19.18 17.08 13.99

Map Feature

Culling
0.44 0.49 1.18 0.08

Map Feature

Creation
190.94 231.22 74.64 76.74

Local BA 154.06 179.68 218.25 107.95

KeyFrame

Culling
2.94 3.78 12.7 6.27

Total 363.76 434.35 323.85 205.03

Tracking

Features

extraction
14.94 24.37 31.32 12.36

Initial Pose

Estimation
4.82 4.75 7.16 3.27

Track Local

Map
9.22 9.41 12.58 6.93

Total 28.98 38.53 51.06 22.56

Since adding line features to the visual SLAM increases

the computational complexity. Our system and PL-SLAM

are slower than ORB-SLAM. But Compared with PL-SLAM,
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both implementations of our system have faster tracking

speed than PL-SLAM (even if the experimental platform of

PL-SLAM has better performance than ours), and our system

with the feature level parallel processing framework reaches

the real-time operation (30 Hz).

6. CONCLUSION

In this paper, we propose a real-time monocular SLAM sys-

tem using point features and line features based on ORB-

SLAM [2]. With the abundant structure information of scenes

provided by line segments, the system is more robust and

accuracy than traditional point-based SLAM. Multi-feature

based SLAM systems are usually more accuracy than point-

based SLAM, but the cost is slow running speed. In our sys-

tem, the potential of feature level parallel processing in multi-

feature based SLAM system is realized to improve the run-

ning speed. With the real time problem solved, SLAM sys-

tem with both points and lines could get accuracy result and

real-time performance at the same time. We have also pre-

sented a novel line initialization algorithm and a line match-

ing algorithm to fix the problems of line processing in visual

SLAM. We validate the system in TUM GRB-D benchmark,

confirming the robustness and the real-time performance of

the proposed system.
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