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Single View Modeling



Breaking out of 2D
 …now we are ready to break out of 2D

And enter the real world!



Enough of images!

We want more of the 

plenoptic function

We want real 3D scene

walk-throughs:

Camera rotation

Camera translation

Can we do it from a single 

photograph?

on to 3D…



Camera rotations with homographies

St.Petersburg

photo by A. Tikhonov

Virtual camera rotations

Original image



Camera translation
 Does it work? synthetic PP

PP1

PP2



Yes, with planar scene (or far away)

 PP3 is a projection plane of both 

centers of projection, so we are OK!

PP1

PP3

PP2



So, what can we do here?

 Model the scene 

as a set of 

planes!

 Now, just need 

to find the 

orientations of 

these planes.



Some preliminaries: projective geometry

Ames Room

http://www.illusionworks.com/html/ames_room.html


Silly Euclid

Parallel lines???



(0,0,0)

The projective plane
 Why do we need homogeneous coordinates?

 represent points at infinity, homographies, perspective 

projection, multi-view relationships

 What is the geometric intuition?

 a point in the image is a ray in projective space

(sx,sy,s)

• Each point (x,y) on the plane is represented by a ray (sx,sy,s)

– all points on the ray are equivalent:  (x, y, 1)  (sx, sy, s)

image plane

(x,y,1)

y

xz



Projective lines
 What does a line in the image correspond to in 

projective space?

• A line is a plane of rays through origin

– all rays (x,y,z) satisfying:  ax + by + cz = 0
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• A line is also represented as a homogeneous 3-vector l

l p



l

Point and line duality
 A line l is a homogeneous 3-vector

 It is  to every point (ray) p on the line:  l p=0

p1
p2

What is the intersection of two lines l1 and l2 ?

• p is  to l1 and l2  p = l1  l2

Points and lines are dual in projective space

• given any formula, can switch the meanings of points and lines to 

get another formula

l1

l2

p

What is the line l spanned by rays p1 and p2 ?

• l is  to p1 and p2  l = p1  p2 

• l is the plane normal



Ideal points and lines

 Ideal point (“point at infinity”)

p  (x, y, 0) – parallel to image plane

 It has infinite image coordinates

(sx,sy,0)y

x

z image plane

Ideal line

• l  (0, 0, 1) – parallel to image plane



Vanishing points

 Vanishing point

projection of a point at infinity

Caused by ideal line

image plane

camera
center

ground plane

vanishing point



Vanishing points (2D)

image plane

camera
center

line on ground plane

vanishing point



Vanishing points

 Properties

 Any two parallel lines have the same vanishing point v

 The ray from C through v is parallel to the lines

 An image may have more than one vanishing point

image plane

camera
center

C

line on ground plane

vanishing point V

line on ground plane



Vanishing lines

 Multiple Vanishing Points

 Any set of parallel lines on the plane define a vanishing point

 The union of all of these vanishing points is the horizon line

 also called vanishing line

 Note that different planes define different vanishing lines

v1 v2



Vanishing lines

 Multiple Vanishing Points

 Any set of parallel lines on the plane define a vanishing point

 The union of all of these vanishing points is the horizon line

 also called vanishing line

 Note that different planes define different vanishing lines



Computing vanishing points

 Properties
 P is a point at infinity, v is its projection

 They depend only on line direction

 Parallel lines P0 + tD, P1 + tD intersect at P

V
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Computing vanishing lines

 Properties
 l is intersection of horizontal plane through C with image plane

 Compute l from two sets of parallel lines on ground plane

 All points at same height as C project to l

 points higher than C project above l

 Provides way of comparing height of objects in the scene

ground plane

l
C





Fun with vanishing points



“Tour into the Picture” (SIGGRAPH ’97)

Create a 3D “theatre stage” of  five 

billboards

Specify foreground objects through 

bounding polygons

Use camera transformations to 

navigate through the scene



The idea
 Many scenes (especially paintings), can be represented as an 

axis-aligned box volume (i.e. a stage)

 Key assumptions:

 All walls of volume are orthogonal

 Camera view plane is parallel to back of volume

 Camera up is normal to volume bottom

 How many vanishing points does the box have?

 Three, but two at infinity

 Single-point perspective

 Can use the vanishing point

 to fit the box to the particular

 Scene! 



Fitting the box volume

 User controls the inner box and the vanishing point 

placement (# of DOF???)

 Q: What’s the significance of the vanishing point 

location?

 A: It’s at eye level: ray from COP to VP is 

perpendicular to image plane.



High 

Camera

Example of user input: vanishing point and back face of 

view volume are defined



High 

Camera

Example of user input: vanishing point and back face of 

view volume are defined



Low 

Camera

Example of user input: vanishing point and back face of 

view volume are defined



Low 

Camera

Example of user input: vanishing point and back face of 

view volume are defined



High Camera Low Camera

Comparison of how image is subdivided based on two 

different camera positions.  You should see how moving 

the vanishing point corresponds to moving the eyepoint in 

the 3D world.



Left 

Camera

Another example of user input: vanishing point and back 

face of view volume are defined



Left 

Camera

Another example of user input: vanishing point and back 

face of view volume are defined



Right

Camera

Another example of user input: vanishing point and back 

face of view volume are defined



Right

Camera

Another example of user input: vanishing point and back 

face of view volume are defined



Left Camera Right Camera

Comparison of two camera placements – left and right.  

Corresponding subdivisions match view you would see if 

you looked down a hallway.



2D to 3D conversion

 First, we can get ratios

left right

top

bottom

vanishing

point

back

plane



• Size of user-defined back plane must equal 

size of camera plane (orthogonal sides)

• Use top versus side ratio 

to determine relative 

height and width 

dimensions of box

• Left/right and top/bot

ratios determine part of 

3D camera placement

left right

top

bottom
camera

pos

2D to 3D conversion



Depth of the box

 Can compute by similar triangles (CVA vs. CV’A’)

 Need to know focal length f (or FOV)

 Note: can compute position on any object on the 
ground
 Simple unprojection

 What about things off the ground?



DEMO

 Now, we know the 3D geometry of the box

 We can texture-map the box walls with texture 

from the image



Foreground Objects
Use separate billboard 

for each

For this to work, three 

separate images used:

 Original image.

 Mask to isolate desired 

foreground images.

 Background with objects 

removed



Foreground Objects

 Add vertical 

rectangles for each 

foreground object

 Can compute 3D 

coordinates P0, P1 

since they are on 

known plane.  

 P2, P3 can be 

computed as before 

(similar triangles)



Foreground DEMO (and video)



Single View Modeling  

using Learning 



Learning Depth from Single Still Image

Original Images(column 1),ground truth 

Images(column 2),predicted depth 

results(column 3,4),

3-D Depth Reconstruction from a Single Still Image,

Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng. International Journal of Computer Vision (IJCV), Aug 2007(BEST PAPER)

主要思想：建立分层，多尺度的马尔可
夫场模型（MRF）利用局部和全局的
图像特征,采用监督学习，用3D扫描仪
得到的425对图片和深度对模型进行训
练，之后用模型对图像的深度进行预测。



主要思想：将图像划分为很多
小的区域（通过聚类算法），
每个区域的像素的属性相似，
例如纹理、颜色等，这个区域
称为Superpixels，一个
Superpixels一般是结构的一小

部分，例如墙壁或者平面的一
部分等，要做的工作就是先通
过分析像素的相似性去对图像
进行分割（或者聚类），将其
划分为多个结构区域（例如
2000个），然后再通过学习的
方法预测这些Super pixels的3D

位置和方向。

Learning 3-D Scene Structure from a Single Still Image,

Ashutosh Saxena, Min Sun, Andrew Y. Ng, In ICCV workshop on 3D Representation for Recognition (3dRR-07), 2007. (best paper)

Learning 3D Scene from Single Monocular 

Images



Learning with Convolutional Networks(CNNs)

 Online courses: http://cs231n.stanford.edu/，
https://zh.coursera.org/learn/neural-networks

 Books: http://www.deeplearningbook.org/

 Papers：https://github.com/kjw0612/awesome-deep-

vision/tree/master

 Platforms: Pytorch, Tensorflow, MXNet, Caffe

http://cs231n.stanford.edu/
https://zh.coursera.org/learn/neural-networks
http://www.deeplearningbook.org/
https://github.com/kjw0612/awesome-deep-vision/tree/master
https://pytorch.org/
https://www.tensorflow.org/
https://mxnet.incubator.apache.org/
http://caffe.berkeleyvision.org/


Depth map prediction from a single image using a multi-scale deep network. 

D. Eigen, C. Puhrsch, and R. Fergus. In NIPS, 2014

Supervised Learning with Convolutional 

Networks(CNNs)

 Modeled as a pixel 

level regression 

problem

 The learned features 

significantly 

outperform 

handcrafted ones

 Can benefit from 

other pixel level 

tasks(e.g. 

segmentation)



Fully convolutional networks for semantic segmentation. 

J. Long, E. Shelhamer, and T. Darrell. In CVPR, 2015.

Supervised Learning with Convolutional 

Networks(CNNs)

 Shared same 

network structure 

with other pixel level 

tasks(e.g. semantic 

segmentation)

 An end-to-end 

learning way



Deeper depth prediction with fully convolutional residual networks. 

Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab.  In 3D Vision (3DV), 2016.

Supervised Learning with Convolutional 

Networks(CNNs)

 Works focus on 

designing network 

structures

 Learn depth with 

more powerful 

features, consistent 

with other advances 

in CNNs



Predicting depth, surface normals and semantic labels with a common multiscale convolutional architecture. 

D. Eigen and R. Fergus.  In Proc. Int. Conf. Computer Vision (ICCV), 2015

Supervised Learning with Convolutional 

Networks(CNNs)

 Works focus on 

designing loss 

functions

 Constrain desired 

property into the loss 

functions

Not only focus on depth information but also on 

corresponding gradients



Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation.

Xu, Dan and Ricci, Elisa and Ouyang, Wanli and Wang, Xiaogang and Sebe, Nicu. In CVPR, 2017.

Supervised Learning with Convolutional 

Networks(CNNs)

 Works focus on post 

processing methods

 Mainly relied on 

Conditional Random 

Fields (CRFs) to 

recover more scene 

details



Analyzing Modular CNN Architectures for Joint Depth Prediction and Semantic Segmentation

Omid Hosseini Jafari, Oliver Groth, Alexander Kirillov, Michael Ying Yang, Carsten Rother. In ICRA, 2017

Supervised Learning with Convolutional 

Networks(CNNs)

 Works focus on 

combining highly 

related works to 

boost each other

 The highly related 

works have some 

shared properties 

that can be used



Unsupervised Learning of Depth and Ego-Motion from Video.

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017

Unsupervised Learning with Convolutional 

Networks(CNNs)

 Learning without 

ground-truth depth 

information

 Modeling the learning 

target with video 

sequences



Unsupervised Learning of Depth and Ego-Motion from Video.

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017

 The key supervision 

signal is the view 

synthesis

 synthesize a target 

view given a per-pixel 

depth in that image, 

plus the pose and 

visibility in a nearby 

view

Unsupervised Learning with Convolutional 

Networks(CNNs)



Unsupervised Learning of Depth and Ego-Motion from Video.

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017

 Those pixels at moving objects should not be taken into 

consideration

 So a cross-entropy loss with constant label 1 at each pixel 

location is optimized to obtain the mask 

Unsupervised Learning with Convolutional 

Networks(CNNs)



Unsupervised Learning of Depth and Ego-Motion from Video.

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017

Promising results can be achieved with 

carefully design

Unsupervised Learning with Convolutional 

Networks(CNNs)



Semi-supervised Learning with Convolutional 

Networks(CNNs)

 Have been explored in a stereo setting, remains a topic for 

single view modeling

 It may further boost the performance of unsupervised depth 

learning, sparse depth can be obtained with LiDAR sensors



Thank you!


