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Single View Modeling
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Breaking out of 2D

m ...now we are ready to break out of 2D




'_
on to 3D...

Enough of images!

We want more of the
plenoptic function

We want real 3D scene

walk-throughs:
Camera rotation
Camera translation

Can we do it from a single
photograph?




"
Camera rotations with homographies

Original image

St.Petersburg
photo by A. Tikhonov
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Camera translation

m Does it work? synthetic PP

PP1L |~

~.
//"b\\

~\.2

//\<:
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Yes, with planar scene (or far away)
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m PP3 Is a projection plane of both
centers of projection, so we are OK!
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So, what can we do here?

m Model the scene
as a set of
planes!

m Now, just need
to find the
orientations of
these planes.
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Some preliminaries: projective geometry

Ames Room


http://www.illusionworks.com/html/ames_room.html

Silly Eucl

277

Parallel lines
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The projective plane

m \Why do we need homogeneous coordinates?

represent points at infinity, homographies, perspective
projection, multi-view relationships

m \What is the geometric intuition?
a point in the image is a ray in projective space

"

(0,0,0) \
y X image plane
« Each point on the plane is represented by a ray
— all points on the ray are equivalent:
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Projective lines

m What does a line in the image correspond to in

projective space”?
7%/

* Aline is a plane of rays through origin
— all rays (x,y,z) satisfying: ax+by+cz=0

X
in vector notation: 0=[a b c]{y}
z

I p
« Aline is also represented as a homogeneous 3-vector |
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Point and line duality

A line | iIs a homogeneous 3-vector
It is L to every point (ray) p on the line: | p=0

/ P
%\ l,
What is the line | spanned by rays p, and p, ?

* lisltop,andp, = |=p;xp,
* | is the plane normal

What is the intersection of two lines |, and |, ?
e pisltol;andl, = p=1I;xl,
Points and lines are dual in projective space

« given any formula, can switch the meanings of points and lines to
get another formula
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ldeal points and lines

S
A

1 image plane

m |[deal point (“point at infinity”)
— parallel to image plane

It has infinite image coordinates
Ideal line

— parallel to image plane
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Vanishing points

image plane

~~

vanishing point

camera
center

ground plane

m Vanishing point
projection of a point at infinity
Caused by ideal line
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Vanishing points (2D)

image plane
\
_vanishing point

|

camera
line on ground plane
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Vanishing points

image plane

vanishing point V

'\

camera
center
C

line on ground plane

line on ground plane

m Properties
Any two parallel lines have the same vanishing point v
The ray from C through v is parallel to the lines
An image may have more than one vanishing point
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Vanishing lines

m  Multiple Vanishing Points
Any set of parallel lines on the plane define a vanishing point

The union of all of these vanishing points is the horizon line
m also called vanishing line

Note that different planes define different vanishing lines
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Vanishing lines

m  Multiple Vanishing Points
Any set of parallel lines on the plane define a vanishing point

The union of all of these vanishing points is the horizon line
m also called vanishing line

Note that different planes define different vanishing lines



Computing vanishing points

v

Py

\ \<\

P, +tD, | [P, /t+D, |
R, +tD, R /t+D,
"I P, +tD, P,/t+D,
1 1/t

-
I
112

m Properties v-np,

t >

P_ is a point at infinity, v is its projection

They depend only on line direction

Parallel lines P, + tD, P, + tD intersect at P_,
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Computing vanishing lines

4ﬂd plane
m Properties

| is intersection of horizontal plane through C with image plane
Compute | from two sets of parallel lines on ground plane

All points at same height as C project to |
m points higher than C project above |
Provides way of comparing height of objects in the scene
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“Tour into the Picture” (SIGGRAPH '97)

[ . ‘

mCreate a 3D “theatre stage” of five
billboards

mSpecify foreground objects through
bounding polygons

mUse camera transformations to
navigate through the scene
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The 1dea

m  Many scenes (especially paintings), can be represented as an
axis-aligned box volume (i.e. a stage)

m Key assumptions:
All walls of volume are orthogonal

Camera view plane is parallel to back of volume

Camera up is normal to volume bottom

m  How many vanishing points does the
Three, but two at infinity
Single-point perspective

m Can use the vanishing point
m to fit the box to the particular
m Scene!

box have?

Left wall

Ceiling

Rear wall

Floor

Right wall
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Fitting the box volume

Vanishing point

Corner points Inner rectangle
m User controls the inner box and the vanishing point
placement (# of DOF?7?)

m Q: What's the significance of the vanishing point
location?

m A:lt's at eye level: ray from COP to VP is
perpendicular to image plane.
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Example of user input: vanishing point and back face of
view volume are defined

High
Camera




Example of user input: vanishing point and back face of
view volume are defined

High
Camera
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Example of user input: vanishing point and back face of
view volume are defined

Low
Camera
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Example of user input: vanishing point and back face of
view volume are defined

Low
Camera
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Comparison of how image is subdivided based on two
different camera positions. You should see how moving
the vanishing point corresponds to moving the eyepoint in

the 3D world.

High Camera Low Camera
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Another example of user input: vanishing point and back
face of view volume are defined

Left
Camera
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Another example of user input: vanishing point and back
face of view volume are defined

Left
Camera
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Another example of user input: vanishing point and back
face of view volume are defined

Right
Camera
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Another example of user input: vanishing point and back
face of view volume are defined

Right
Camera
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Comparison of two camera placements — left and right.

Corresponding subdivisions match view you would see if
you looked down a hallway.

Left Camera Right Camera
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2D to 3D conversion

m First, we can get ratios

back —

plane

right

vanishing
point

7

A

top

bottom




2D to 3D conversion

 Size of user-defined back plane must equal
size of camera plane (orthogonal sides)

 Use top versus side ratio

to determine relative
height and width
dimensions of box

 Left/right and top/bot
ratios determine part of
3D camera placement

/ eft

right

top

camera
pos

/

bottom

)
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Depth of the box

m Can compute by similar triangles (CVA vs. CV'A’)
m Need to know focal length f (or FOV)

m Note: can compute position on any object on the
ground

Simple unprojection
What about things off the ground?



DEMO

m Now, we know the 3D geometry of the box

m \We can texture-map the box walls W|th texture

from the image

B2 /
e

|

ARBYE

T
DR NE
S

I 2 5 O




" J
Foreground Objects

mUse separate billboard e
for each

mFor this to work, three
separate images used:
Original image.
Mask to isolate desired
foreground images.

Background with objects
removed
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Foreground Objects

m Add vertical
rectangles for each
foreground object

m Can compute 3D
coordinates PO, P1
since they are on
known plane.

m P2, P3canbe
computed as before
(similar triangles)

(a) Specifying of a (b) Estimating the vertices of the
foreground object foreground object model

(c¢) Three foreground object models
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Foreground DEMO (and video)




Single View Modeling

using Learning
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Learning Depth from Single Still Image

FHEEME. @vaE, ZRENLS/RA
TR (MRF) FH BHEA 4 [

KM ARRHAIE, R A B 22 21, FH3DH X
2214255 B R AR FE AR R A Tl
%, ZJa RIS ADC R AU TR BEREAT T o

Depth (Scale 2)

pr Z ‘\ Depth (Scale 1)

Image
Features

Fig. 4 The multiscale MRF model for modeling relation between fea-
tures and depths, relation between depths at same scale, and relation
between depths at different scales. (Only 2 out of 3 scales, and a subset
of the edges, are shown)

3-D Depth Reconstruction from a Single Still Image,

Original Images(column 1),ground truth
Images(column 2),predicted depth
results(column 3,4),

Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng. International Journal of Computer Vision (IJCV), Aug 2007(BEST PAPER)
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Learning 3D Scene from Single Monocular

Images

FEEE: KEGR NREZ
AINPIIX S GEd BRI
BN X315 2 1 JE P AR AR,
Blang ., s, XX
FrNSuperpixels, —4 :
Superpixels— % f& 45 74 it — /)N o
%Iz/\ , 'WIJ ﬁu i%gigzﬁyﬁ E(J . Original Single Still Image

SR EE, BN AR A e
o G = AR AR 2060 ElMG
AT E (BEERE , BHE
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20001 , AR5 HIEIEE >
J7 TN IX e Super pixelsf)3D
AL E AT

Predicted 3-d model (mesh-view).

3-d flythrough (requires shockwave).

Snapshot of the predicted 3-d flythrough.

Learning 3-D Scene Structure from a Single Still Image,
Ashutosh Saxena, Min Sun, Andrew Y. Ng, In ICCV workshop on 3D Representation for Recognition (3dRR-07), 2007. (best paper)
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Learning with Convolutional Networks(CNNSs)

m Online courses: http://cs231n.stanford.edu/,
https://zh.coursera.org/learn/neural-networks

m Books: http://www.deeplearningbook.org/

m Papers: https://github.com/kjw0612/awesome-deep-
vision/tree/master

m Platforms: Pytorch, Tensorflow, MXNet, Caffe



http://cs231n.stanford.edu/
https://zh.coursera.org/learn/neural-networks
http://www.deeplearningbook.org/
https://github.com/kjw0612/awesome-deep-vision/tree/master
https://pytorch.org/
https://www.tensorflow.org/
https://mxnet.incubator.apache.org/
http://caffe.berkeleyvision.org/

"
Supervised Learning with Convolutional
Networks(CNNS)

m Modeled as a pixel

96

. 256 384" 384‘{1 256, 4096
Ievel regreSSIon 11x11 conv ] 5x3 conv E}Sx.'& convrl:l 3x3 conv‘l:l 3x3 conv E!full (fllll
4 stride 2x2 pool
2x2 pool
p ro b I e m o Coarse 1 Coarse2 Coarse 3 Coarse 4 Coarse 5 Coarse 6 Coarse 7
Frrmmemmmmmmmmmmmmmmmmmmmmmmmm
L]
634 E 64, 64
1
m The learned features - i . .
conv Concatenate 5x5 conv 5x5 conv
- - 2 stride
S|gn|flcant|y 2x2 pool Fine 1 Fine 2 Fine 3 Fine 4
Input
outperform ot o .
Layer input 1 2,34 5 6 7 1,234
h an d Crafted ones Size (NYUDepth) | 304x228 | 37x27 18x13  8x6  Ixl  74x55 | 74x55
Size (KITTI) 576x172 | 71x20 35x9 17x4  1x1 142x27 | 142x27
Ratio to input /1 /8 /16 132 - 4 /4

Figure 1: Model architecture.

m Can benefit from
other pixel level
tasks(e.g.
segmentation)

Depth map prediction from a single image using a multi-scale deep network.
D. Eigen, C. Puhrsch, and R. Fergus. In NIPS, 2014
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Supervised Learning with Convolutional
Networks(CNNS)

forward /inference

m Shared same
network structure
with other pixel level
tasks(e.g. semantic (A 2
segmentation) I & Py O

backward /learning

= An end-to-end
learning way

Fully convolutional networks for semantic segmentation.
J. Long, E. Shelhamer, and T. Darrell. In CVPR, 2015.
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Supervised Learning with Convolutional
Networks(CNNS)

m Works focus on
designing network  |..
structures

m Learn depth with
more powerful
features, consistent
with other advances
INn CNNs

Deeper depth prediction with fully convolutional residual networks.
Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. In 3D Vision (3DV), 2016.
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Supervised Learning with Convolutional
Networks(CNNS)

m Works focus on

designing loss ! | ’
functions Lieyn(D.D") = 3 df =505 (Z d“f)

+ % (V.di)* + (V,d;)?] (1)
m Constrain desired i

. Not only focus on depth information but also on
Frop?rty Into the loss corresponding gradients
unctions

Predicting depth, surface normals and semantic labels with a common multiscale convolutional architecture.
D. Eigen and R. Fergus. In Proc. Int. Conf. Computer Vision (ICCV), 2015
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Supervised Learning with Convolutional
Networks(CNNS)

m Works focus on post
processing methods

m Mainly relied on
Conditional Random
Fields (CRFs) to
recover more scene
detalls

Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation.
Xu, Dan and Ricci, Elisa and Ouyang, Wanli and Wang, Xiaogang and Sebe, Nicu. In CVPR, 2017.



Supervised Learning with Convolutional

Networks(CNNS)

m Works focus on
combining highly
related works to
boost each other

m The highly related
works have some
shared properties
that can be used

Depth Prediction
[Eigen et al. ICCV ‘15]

/i

Joint Refinement
— \ Network
Input Image /

Semantic Segmentation
[Long et al., CVPR ‘15]

Qur Depth
Prediction

Our Semantic

Ground Truth Segmentation

Fig. 1. Example processing flow of our joint refinement network. A single RGB image is first processed separately by two state-of-the-art neural
networks for depth estimation and semantic segmentation. The two resulting predictions contain information which can mutually improve each other: (1)
yellow arrow from depth to semantic segmentation means that a smooth depth map does not support an isolated region (cyan means furniture); (2) yellow
arrow from semantic segmentation to depth map means that the exact shape of the chair can improve the depth outline of the chair. (3) In most areas
the two modalities positively enforce each other (e.g. the vertical wall (dark blue) supports a smooth depth map. The cross-modality influences between
the two modalities are exploited by our joint refinement network, which fuses the features from the two input prediction maps and jointly processes both
modalities for an overall prediction improvement. (Best viewed in color.)

Analyzing Modular CNN Architectures for Joint Depth Prediction and Semantic Segmentation
Omid Hosseini Jafari, Oliver Groth, Alexander Kirillov, Michael Ying Yang, Carsten Rother. In ICRA, 2017
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Unsupervised Learning with Convolutional
Networks(CNNSs)

Depth CNN
m Learning without N .
ground-truth depth ‘ _’_"
information g T JI
) Project |

Tt—)t—l

m Modeling the learning
target with video
sequences

Unsupervised Learning of Depth and Ego-Motion from Video.
Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017



Unsupervised Learning with Convolutional

Networks(CNNS)

m The key supervision
signal is the view
synthesis

m synthesize a target
view given a per-pixel
depth in that image,
plus the pose and
visibility in a nearby
view

Unsupervised Learning of Depth and Ego-Motion from Video.

I t I s I s
Project tl _tr | Warp
i "‘"--..\p.g Pe L ——
A i ™
}'Jt‘ ol P or Pf.
’ Ps Ps ]

Figure 3. Illustration of the differentiable image warping process.
For each point p; in the target view, we first project it onto the
source view based on the predicted depth and camera pose, and
then use bilinear interpolation to obtain the value of the warped
image fs at location py.

Los=) Y |L(p) - L),

Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017
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Unsupervised Learning with Convolutional
Networks(CNNS)

m Those pixels at moving objects should not be taken into
consideration

m SO a cross-entropy loss with constant label 1 at each pixel
location is optimized to obtain the mask

Unsupervised Learning of Depth and Ego-Motion from Video.
Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017
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Unsupervised Learning with Convolutional
Networks(CNNS)

Ground-truth

Input

Eigen et al. (depth sup.)

Ours (unsupervised)

Garg et al. (pose sup.)

el
I ——

R

PR —_——

B 4. &

Promising results can be achieved with

carefully design

Unsupervised Learning of Depth and Ego-Motion from Video.
Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017

Method Seq. 09 Seq. 10
ORB-SLAM (full) 0.014 +0.008 0.012+0.011
ORB-SLAM (short) 0.064+0.141  0.064 £ 0.130
Mean Odom. 0.032 £ 0.026 0.028 £ 0.023
Ours 0.021 +0.017 0.020 +0.015
Table 3. Absolute Trajectory Error (ATE) on the KITTI odome-

try split averaged over all 5-frame snippets (lower is better). Our
method outperforms baselines with the same input setting, but falls
short of ORB-SLAM (full) that uses strictly more data.

01
E
5 0.08 -
= 3= Mean Odom.
w 0.06 - ORB-SLAM (full)
suve T 3= ORB-SLAM (short)
&
@ 0.04 |
o
=
© 002 %
§ v
Q
@ 0 . . . . )
o
< 0 0.1 0.2 0.3 0.4 0.5

Left/right turning magnitude (m)
Figure 9. Absolute Trajectory Error (ATE) at different left/right
turning magnitude (coordinate difference in the side-direction be-
tween the start and ending frame of a testing sequence). Our
method performs significantly better than ORB-SLAM (short)
when side rotation is small, and is comparable with ORB-SLAM
(£full) across the entire spectrum.
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Semi-supervised Learning with Convolutional
Networks(CNNS)

m Have been explored in a stereo setting, remains a topic for
single view modeling

m |t may further boost the performance of unsupervised depth
learning, sparse depth can be obtained with LIDAR sensors



Thank qyou!



