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经典的“剥洋葱”式填充顺序



经典的“剥洋葱”式填充顺序

按照何种顺序进行填充是十分重要的



带有优先级的填充策略

Image Completion by 
Example-Based Inpainting

A. Criminisi, P. Perez, and K. Toyama, 
CVPR 2003



带有优先级的填充策略

1. 用户选择需要补全的区域
2. 确定目前空洞边缘的像素位置
3. 为每一个像素计算优先级权重
4. 查找到优先级权重最大的像素位置p, 并确定对应的块P
5. 从图像已知区域匹配出最相似的块S, 对P中不可见的像素进行补全
6. 更新优先级权重
7. 重复2-6步骤, 直到所有的像素被修复

算法概览



带有优先级的填充策略

• 优先级度量:

置信度项:

数据项:



带有优先级的填充策略

a图显示置信度的分布, 绿色表示置信度高的区域
红色表示相对较低的取悦

b图显示数据项的分布, 绿色表示置信度高的区域
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基本问题: 结构vs纹理

结构信息的补全比纹理信息的补全要困难的多, 能否通过添
加一些交互来解决这个问题?

third column shows the results of structure propagation, by
which the most salient structures are seamlessly propagated
from the known region into the unknown region. Completed
structures look natural. The right-most column shows the
final results which are visually pleasing.

For the sunset image (800×600) in the first row, the moun-
tain is occluded by a very large unknown region. The moun-
tain completion by structure propagation is well controlled
by a single curve. The patch size is set at 9 and arbitrary
rotation is allowed for the curve to generate sample patches.
For the jeep example (640×457) in the second row, arbitrary
rotation is also enabled for the top curve because there are
not enough samples in the known regions. For these two
examples, the process of structure propagation took fewer
than 3 seconds for each curve. Texture propagation took
about 2 to 20 seconds for each subregion.

The hawk example (800×505) in the third row contains two
X-junctions. Structure propagation took 6 seconds for opti-
mization, and the patch size is 27×31. We demonstrate the
intermediate optimization results at different iterations of
the belief propagation algorithm in our accompanying video.
The rider example (504×462) in the fourth row shows a more
complex structure (with a T-junction and five X-junctions)
to be completed. Structure propagation allows the user to
edit or control the completion result. For example, the short
vertical fence between two long vertical fences may not be
present in the original image but are added by the user in
the completed image. Note that belief propagation produces
good results despite a loop in the graph for this example. In
the fifth row, the ladder example (460×596) contains three
X-junctions. For the last three examples (hawk, rider, and
ladder), the belief propagation algorithm automatically finds
the junctions from the samples and copies them to the in-
tersection points. Note that the intensity or color of the
samples in the completed region might be slightly different
from the original samples due to photometric correction.

Previously developed automatic image completion algo-
rithms may not be able to generate good quality results for
the examples shown in Figure 9. Figure 7 shows unsatis-
factory completion results using our implementation of Cri-
minisi’s approach [Criminisi et al. 2003]. High-level human
knowledge is required to complete these images. In our ap-
proach, human knowledge is effectively integrated through a
simple curve-based interface.

Figure 8 shows completion results of two images from [Drori
et al. 2003]. For the painting example in the top row, our
result is similar to or slightly better than Drori’s. For the
train example in the bottom row, our result is visually more
pleasing although our approach cannot complete the missing
locomotive yet.

Our approach only encourages a coherent completion result
but has no ability to handle depth ambiguity. The visibility
order is determined by the samples that can be found. In
our method, we only treat it as a planar graph without con-
sideration of occlusions. Introducing the concept of layers
is one of the possible solutions to handle depth ambiguity,
as shown in Figure 10. We complete the missing region in
three separate layers: vertical trunk, horizontal trunk and
background layer. In the first two layers, the trunks are
completed by specifying two curves along the trunk bound-
aries and automatically extracted by the Bayesian matting
technique. The background layer is completed by texture
propagation. The final completion results are the composi-

Figure 7: Comparison with Criminisi’s approach. Our re-
sults are shown in Figure 9.

Figure 8: Comparison with Drori’s approach. From top to
bottom: input images, results from [Drori et al. 2003] and
our results.

tion of the three layers from back to front.

6 Discussion and Conclusion

In this paper, we have presented an interactive approach to
image completion. Through a curve-based interface, the user
indicates what important structures should be completed
before remaining unknown regions are filled in. Structure
propagation is formulated as a global optimization problem
that is solved efficiently by dynamic programming or belief
propagation. By using an intuitive interface and efficient
optimization algorithms, our system effectively integrates
human knowledge into the completion process to produce
good results even for many challenging images. Moreover,
our system allows the user to control the completion process
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带交互的补全算法



算法概览

带有优先级的填充策略

1. 用户输入：用户在空洞区域以及已知图像区域勾画结构线, 
2. 结构补全：该算法在已知图像区域采样, 通过优化一个目标能量来决定
如何将样本填充被结构线覆盖的空洞区域

3. 纹理补全：补全剩余区域的纹理
4. 光测度修正



采样策略
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结构约束



边界&一致性约束



目标能量优化

多结构线的优化需要,用Belief Propagation算法求解, 
详见作者原文

课后思考: 单结构线的优化如何用动态规划求解?



纹理补全

Image Completion with Structure Propagation

Jian Sun1 Lu Yuan2∗ Jiaya Jia3† Heung-Yeung Shum1

1Microsoft Research Asia 2Tsinghua University 3Chinese University of Hong Kong

(a) (b) (c) (d)

Figure 1: Image completion with structure propagation. (a) Input image, (b) unknown region (blue) after removing the pumpkin, with
two intersecting lines (green) specified by the user, (c) intermediate result after propagating structure and texture information along the
user-specified lines, and (d) final result after filling in the remaining unknown regions by texture propagation.

Abstract

In this paper, we introduce a novel approach to image com-
pletion, which we call structure propagation. In our system,
the user manually specifies important missing structure in-
formation by extending a few curves or line segments from
the known to the unknown regions. Our approach synthe-
sizes image patches along these user-specified curves in the
unknown region using patches selected around the curves in
the known region. Structure propagation is formulated as
a global optimization problem by enforcing structure and
consistency constraints. If only a single curve is specified,
structure propagation is solved using Dynamic Program-
ming. When multiple intersecting curves are specified, we
adopt the Belief Propagation algorithm to find the optimal
patches. After completing structure propagation, we fill in
the remaining unknown regions using patch-based texture
synthesis. We show that our approach works well on a num-
ber of examples that are challenging to state-of-the-art tech-
niques.

Keywords: Image Completion, Image Inpainting, Dy-
namic Programming, Belief Propagation, User Interaction

1 Introduction

Image completion, also known as image inpainting, is a chal-
lenging problem in computer graphics and computer vision.
Image completion aims at filling in missing pixels in a large
unknown region of an image in a visually plausible way.
Given an input image I with an unknown or missing region
Ω, the goal of image completion is to propagate structure

∗This work was done when Lu was an intern at MSR Asia.
†This work was done while visiting MSR Asia.

and texture information from the known or existing regions
I − Ω to Ω, where I is the image region of I . Image com-
pletion is inherently an under-constrained problem.

1.1 Related work

Image inpainting, introduced by Bertalmio et al. [2000], fills
in holes in an image by propagating image Laplacians in
the isophote direction continuously from the exterior. Their
method is PDE-based and has its root in the Navier-Stokes
equation in fluid dynamics [Bertalmio et al. 2001]. The in-
painting problem has also been formulated in a variational
framework [Ballester et al. 2001]. Chan and Shen [2001]
incorporate Euler’s elastica as a prior to handle curve struc-
tures. Levin et al. [2003] perform image inpainting in the
gradient domain using an image-specified prior. Image in-
painting techniques work at the pixel level, and have worked
well for small gaps, thin structures, and text overlays. How-
ever, for larger missing regions or textured regions, they may
generate blurring artifacts.

Example-based approaches [Igehy and Pereira 1997; Harri-
son 2001; Bornard et al. 2002; Barret and Cheney 2002]
have also been proposed for image completion by synthesiz-
ing pixels using texture synthesis techniques [Efros and Le-
ung 1999; Wei and Levoy 2000; Liang et al. 2001; Ashikhmin
2001; Efros and Freeman 2001; Hertzmann et al. 2001].
Recent example-based methods work at the image patch
level [Drori et al. 2003; Criminisi et al. 2003; Bertalmio et al.
2003; Jia and Tang 2003]. They fill in unknown regions more
effectively by augmenting texture synthesis with some au-
tomatic guidance. This guidance determines the synthesis
ordering, which significantly improves the quality of com-
pletion by preserving some salient structures.

For example, a fast smoothing approximation is constructed
in a coarse-to-fine manner to guide an iterative completion
process by adaptive example fragments [Drori et al. 2003].
A confidence map is computed to determine the synthesis
ordering. A priority order is proposed to perform the com-
pletion [Criminisi et al. 2003]. The priority of each patch
is determined from both the confidence map and the image
edges in the patch to encourage propagation of linear struc-
tures. Bertalmio et al. [2003] decompose the input image
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Figure 5: (a) Texture propagation. The labels of the
unknown and known subregions are determined by user-
specified curves. Each unknown subregion is completed only
using the samples in its corresponding known subregion. (b)
and (c) Photometric correction. The red, green and blue rec-
tangles are the first three patches copied into the unknown
region. Photometric correction removes the seam (indicated
in black) between overlapping patches from structure prop-
agation (b) and from texture propagation (c).

4 Implementations

4.1 Texture Propagation

After structure propagation, there still exist large unknown
regions that need to be filled. However, applying texture
synthesis directly may produce poor results, as the synthesis
process may sample irrelevant texture information from the
entire known region.

Note that the unknown/known regions have been partitioned
into several disjoint subregions by the user-specified curves,
and each unknown subregion is usually adjacent to one
known subregion. We can label each corresponding pair of
known/unknown subregions by the same number, as shown
in Figure 5(a). Afterwards, texture information can be re-
liably and efficiently propagated from corresponding subre-
gions using texture-by-numbers techniques [Ashikhmin 2001;
Hertzmann et al. 2001; Jia and Tang 2003]. The propaga-
tion order is computed by using a confidence map, similar to
[Drori et al. 2003] and [Criminisi et al. 2003]. Furthermore,
we also allow the user to interactively assign labels, in case
some subregions do not have a sufficient number of samples.

4.2 Photometric Correction

For an image with significant spatial variations in intensity
or color, the seams between overlapping patches may be vis-
ible, especially when the patch size is large. As observed by
Pérez et al. [2004], such seams cannot be easily removed by
simple blending or by graph-cut [Kwatra et al. 2003]. There-
fore, we propose a photometric correction method to reduce
the photometric seams in the gradient domain.

Figure 5(b) illustrates the photometric correction in struc-
ture propagation. Suppose that the red and green rectangles
are two patches that have already been synthesized, and the
blue rectangle is the place for the third patch. First, we
copy pixels to the blue region from the corresponding pixels
in the sample patch to get a new synthesized patch J in the
blue rectangle. Then we construct a binary mask patch BM

whose value is 0 in the green region and 1 in the blue region.
Finally, we reconstruct a new J∗ from its corrected gradi-
ent ∇J∗ by solving Poisson equations similar to [Pérez et al.
2003]. To remove the photometric seam (black line in Figure
5(b)) between overlapping regions, we correct gradient ∇J

Figure 6: Photometric correction in structure propagation.
Top: input image, unknown (blue) region and input curve
(green). Bottom: zoomed in views of structure propagation
results before (left) and after (right) photometric correction.

to obtain ∇J∗ as follows:

∇Jx(x, y)∗ =

{

∇Jx(x, y) BM (x, y) = BM (x + 1, y)
0 BM (x, y) ≠ BM (x + 1, y)

∇Jy(x, y)∗ is computed in a similar way. The Dirichlet
boundary condition is the interior boundary (yellow rectan-
gle in Figure 5(b)) of patch J . The red, green and blue chan-
nels are corrected independently. Photometric correction in
texture propagation performs in a similar way as shown in
Figure 5(c). Figure 6 shows a comparison before and after
photometric correction in structure propagation.

4.3 Sample transformation

Sometimes sample patches may not be sufficient for the pur-
pose of structure propagation. We provide two solutions
to enrich the sample set by transforming existing sample
patches. First, the user can rotate by a fixed angle (e.g.
90◦) or flip (horizontally or vertically) each source patch.
Second, the user is also allowed to rotate each source patch
P (xi) by an arbitrary rotation angle θ for each node i. We
could, for instance, rotate the patch to best align the curve
segment cxi

in the source patch to the curve segment ci in
the target rectangle by a rotation transformation R(cxi

; θ)
so that

θ∗ = arg min
θ

{d(R(cxi
; θ), ci) + d(ci, R(cxi

; θ))},

where d(·, ·) has the same definition as in Equation (3).

5 Results

In our experiments, we manually set the patch size to be
greater than the largest structure in the image. The weights
ks and ki are 50 and 2 respectively in all our experiments.
All experiments were run on a 2.8GHz PC.

Figure 9 shows the results produced by our image completion
method. The first two columns show the input images with
marked unknown regions and user-specified curves. The

用户输入的曲线已经对图像做了
分区，只从对应区域选取图像块
对未知区域进行填充



光测度修正

由于光照变化的影响, 容易产生色差缝



光测度修正



光测度修正
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Figure 5: (a) Texture propagation. The labels of the
unknown and known subregions are determined by user-
specified curves. Each unknown subregion is completed only
using the samples in its corresponding known subregion. (b)
and (c) Photometric correction. The red, green and blue rec-
tangles are the first three patches copied into the unknown
region. Photometric correction removes the seam (indicated
in black) between overlapping patches from structure prop-
agation (b) and from texture propagation (c).

4 Implementations

4.1 Texture Propagation

After structure propagation, there still exist large unknown
regions that need to be filled. However, applying texture
synthesis directly may produce poor results, as the synthesis
process may sample irrelevant texture information from the
entire known region.

Note that the unknown/known regions have been partitioned
into several disjoint subregions by the user-specified curves,
and each unknown subregion is usually adjacent to one
known subregion. We can label each corresponding pair of
known/unknown subregions by the same number, as shown
in Figure 5(a). Afterwards, texture information can be re-
liably and efficiently propagated from corresponding subre-
gions using texture-by-numbers techniques [Ashikhmin 2001;
Hertzmann et al. 2001; Jia and Tang 2003]. The propaga-
tion order is computed by using a confidence map, similar to
[Drori et al. 2003] and [Criminisi et al. 2003]. Furthermore,
we also allow the user to interactively assign labels, in case
some subregions do not have a sufficient number of samples.

4.2 Photometric Correction

For an image with significant spatial variations in intensity
or color, the seams between overlapping patches may be vis-
ible, especially when the patch size is large. As observed by
Pérez et al. [2004], such seams cannot be easily removed by
simple blending or by graph-cut [Kwatra et al. 2003]. There-
fore, we propose a photometric correction method to reduce
the photometric seams in the gradient domain.

Figure 5(b) illustrates the photometric correction in struc-
ture propagation. Suppose that the red and green rectangles
are two patches that have already been synthesized, and the
blue rectangle is the place for the third patch. First, we
copy pixels to the blue region from the corresponding pixels
in the sample patch to get a new synthesized patch J in the
blue rectangle. Then we construct a binary mask patch BM

whose value is 0 in the green region and 1 in the blue region.
Finally, we reconstruct a new J∗ from its corrected gradi-
ent ∇J∗ by solving Poisson equations similar to [Pérez et al.
2003]. To remove the photometric seam (black line in Figure
5(b)) between overlapping regions, we correct gradient ∇J

Figure 6: Photometric correction in structure propagation.
Top: input image, unknown (blue) region and input curve
(green). Bottom: zoomed in views of structure propagation
results before (left) and after (right) photometric correction.

to obtain ∇J∗ as follows:

∇Jx(x, y)∗ =

{

∇Jx(x, y) BM (x, y) = BM (x + 1, y)
0 BM (x, y) ≠ BM (x + 1, y)

∇Jy(x, y)∗ is computed in a similar way. The Dirichlet
boundary condition is the interior boundary (yellow rectan-
gle in Figure 5(b)) of patch J . The red, green and blue chan-
nels are corrected independently. Photometric correction in
texture propagation performs in a similar way as shown in
Figure 5(c). Figure 6 shows a comparison before and after
photometric correction in structure propagation.

4.3 Sample transformation

Sometimes sample patches may not be sufficient for the pur-
pose of structure propagation. We provide two solutions
to enrich the sample set by transforming existing sample
patches. First, the user can rotate by a fixed angle (e.g.
90◦) or flip (horizontally or vertically) each source patch.
Second, the user is also allowed to rotate each source patch
P (xi) by an arbitrary rotation angle θ for each node i. We
could, for instance, rotate the patch to best align the curve
segment cxi

in the source patch to the curve segment ci in
the target rectangle by a rotation transformation R(cxi

; θ)
so that

θ∗ = arg min
θ

{d(R(cxi
; θ), ci) + d(ci, R(cxi

; θ))},

where d(·, ·) has the same definition as in Equation (3).

5 Results

In our experiments, we manually set the patch size to be
greater than the largest structure in the image. The weights
ks and ki are 50 and 2 respectively in all our experiments.
All experiments were run on a 2.8GHz PC.

Figure 9 shows the results produced by our image completion
method. The first two columns show the input images with
marked unknown regions and user-specified curves. The
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Criminisi等人的方法
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Criminisi等人的方法
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PatchMatch: A randomized 
correspondence algorithm for 

structural image editing
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最近领域(Nearest-Neighbor Field)



基本思想

1.NNF的计算可以转换为offset场的计算
2.由于结构的重复性, 大部分的patch的offset
都是相同的

3.算法的开始可以为每个像素随机产生一个
offset, 产生一个正确的offset的概率是很大的



算法流程

Approximate nearest-neighbor 
algorithm

11



算法流程

迭代部分按照P1, S1, P2, S2,……..Pn, Sn进行,
其中P为扩散过程, 将周围好的offset扩散到当前像素
S为随机搜索过程, 在当前最好的匹配块的位置周围
多次随机寻找更优的匹配块



算法流程

扩散过程Pn:
1.当n为奇数的时候, 从左到右, 从上到下遍历所有
的patch, 将上面和左边相邻的patch的offset传递
到目前的patch, 选择最优的offset保留, 如图所示
2.当n为偶数的时候, 从下到上, 从右
到左遍历, 选择下面和右边相邻的
patch的offset传递到目前的patch



算法流程

随机搜索过程Sn:

其中v0为原始的offset,新的
offset ui 是以v0为中心, Ri
由 上均匀分布
产生的随机数, w为最大搜索
块半径, a为收缩系数





Scene Completion Using 
Millions of Photographs
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Criminisi et al. result



Criminisi et al. result





Scene Matching for Image 
Completion



Data
2.3 Million unique images from Flickr 
groups and keyword searches.



Scene Completion Result



The Algorithm

Input image Scene Descriptor Image Collection

200 matches20 completions
Context matching
+ blending

…

…



Scene Matching



Scene Descriptor



… 200 total



Context Matching







Result Ranking
We assign each of the 200 results a score 
which is the sum of:

The scene matching distance

The context matching distance 
(color + texture)

The graph cut cost



Top 20 Results





































Using CNNs?



Image Inpainting for Irregular Holes Using

Partial Convolutions

Guilin Liu Fitsum A. Reda Kevin J. Shih Ting-Chun Wang
Andrew Tao Bryan Catanzaro

NVIDIA Corporation

Fig. 1. Masked images and corresponding inpainted results using our partial-
convolution based network.

Abstract. Existing deep learning based image inpainting methods use
a standard convolutional network over the corrupted image, using con-
volutional filter responses conditioned on both valid pixels as well as the
substitute values in the masked holes (typically the mean value). This
often leads to artifacts such as color discrepancy and blurriness. Post-
processing is usually used to reduce such artifacts, but are expensive and
may fail. We propose the use of partial convolutions, where the convolu-
tion is masked and renormalized to be conditioned on only valid pixels.
We further include a mechanism to automatically generate an updated
mask for the next layer as part of the forward pass. Our model out-
performs other methods for irregular masks. We show qualitative and
quantitative comparisons with other methods to validate our approach.

Keywords: Partial Convolution, Image Inpainting

1 Introduction

Image inpainting, the task of filling in holes in an image, can be used in many
applications. For example, it can be used in image editing to remove unwanted
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Free-Form Image Inpainting with Gated Convolution

JIAHUI YU, University of Illinois at Urbana-Champaign
ZHE LIN, Adobe Research
JIMEI YANG, Adobe Research
XIAOHUI SHEN, Adobe Research
XIN LU, Adobe Research
THOMAS HUANG, University of Illinois at Urbana-Champaign

Fig. 1. Free-form image inpainting results by our system built on gated convolution. It can take free-form masks and inputs like sketch from users. Our
system helps users quickly remove distracting objects, modify image layouts, edit faces and interactively create novel objects in images.

We present a novel deep learning based image inpainting system to com-
plete images with free-form masks and inputs. �e system is based on gated
convolutions learned from millions of images without additional labelling ef-
forts. �e proposed gated convolution solves the issue of vanilla convolution
that treats all input pixels as valid ones, generalizes partial convolution by
providing a learnable dynamic feature selection mechanism for each channel
at each spatial location across all layers. Moreover, as free-form masks may
appear anywhere in images with any shapes, global and local GANs designed
for a single rectangular mask are not suitable. To this end, we also present
a novel GAN loss, named SN-PatchGAN, by applying spectral-normalized
discriminators on dense image patches. It is simple in formulation, fast and
stable in training. Results on automatic image inpainting and user-guided
extension demonstrate that our system generates higher-quality and more

�exible results than previous methods. We show that our system helps users
quickly remove distracting objects, modify image layouts, clear watermarks,
edit faces and interactively create novel objects in images. Furthermore,
visualization of learned feature representations reveals the e�ectiveness
of gated convolution and provides an interpretation of how the proposed
neural network �lls in missing regions. More high-resolution results and
video materials are available at h�p://jiahuiyu.com/deep�ll2.

CCS Concepts: •Computing methodologies! Image processing; Neu-
ral networks;
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