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Camera Model and Multi-view Geometry

« Camera Models (AHMLERY)

— What's the geometric relation between image
and world coordinates?

Multi-View Geometry (ZH8JL{)

— What's the geometric relation between images
taken from different viewpoints?

e 3D Reconstruction (=4EE)

— How can we recover 3D geometry of the world
from two or multiple images?

it



Image formation

cbject filrn
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* Let’s design a camera
— ldea 1: put a piece of film in front of an object
— Do we get a reasonable image?
— No. This is a bad camera (not one-to-one).




Pinhole camera

cbject barrier filrm
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* Add a barrier to block off most of the rays
— The opening known as the aperture



Pinhole camera

Solis delignivm Ao Ch‘m\f tI544

Dxe 24 gamm Y Agpani =

Gemma Frisius, 1558

e Basic principle known
to Mozi (470-390 BC),
Aristotle (384-322 BC)

Source: A. Efros



Shrinking the aperture

0.6mm 0.35 mm

 Why not make the aperture as small as possible?



Shrinking the aperture

().6mm 0.35 mm
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0.15 mm 0.07 mm

 Why not make the aperture as small as possible?
e Less light gets through
e Diffraction effects...



Adding a lens

cbject lens filrn

Y~—_“circle of
confusion”

* Alens focuses light onto the film

— There is a specific distance at which objects are “in focus”
— other points project to a “circle of confusion” in the image

* Lens equation (thinlens) 1 1 1
+ o
d, d.f







Lenses

aperture

optical axis /

focal point

* Alens focuses parallel rays onto a single focal point

— Focal length (££17): focal point at a distance f beyond the
plane of the lens (f is a function of the shape and index of

refraction of the lens)
— Aperture (JG8): restricts the range of rays
— Optical axis (JG%H)



Conjunctiva
Iris

Cornea

Aqueous

Choroid

Sclera

The human eye is a camera
— Lens (&&fRAE)

— Iris CHTFE)

— Pupil (L)

— Retina (FLPIHE)



Math for Pin-hole camera:
3D world coordinates = 2D image coordinates
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Camera Center

u
P= LJ How does focal length affect image?



Focal length

e Can think of as “zoom”

24mm

200mm
e Also related to field of view




Focal length in practice

24mm

50mm

Fredo Durand



Focal length vs. viewpoint

* Telephoto makes it easier to
select background (a small
change in viewpoint is a big
change in background.

Grand-angulaire 24 mm

Normal 50 mm

Loague focale 135 mm Fredo Durand



Perspective Projection:
3D world coordinates = 2D image coordinates

Is this a linear transformation?




Homogeneous coordinates

Converting to homogeneous coordinates

X
(z,y) = | vy (z,y,2) =
1

=N 8

Converting from homogeneous coordinates

y | = (@/w,y/w) | = @/, y/w, 2/ w)

Homogeneous coordinates are invariant to scaling



Perspective Projection
iIn homogeneous coordinates

* Projection is a matrix multiplication using homogeneous

coordinates
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Camera parameters

Assumptions

* Optical center at (0,0)
* Unit aspect ratio
* No skew

o __x_
W1 [f 0 0 0
wvl=lo £ o0 of”
___0010_?

Slide Credit: Saverese



Camera parameters

Assumptions

*»Optical-center-at{6,0}

* Unit aspect ratio

* No skew
o __x_
u f 0 u O
wvili=0 f v, O Y

Z

1) Loo 1o

Slide Credit: Saverese



Camera parameters

Assumptions

+Opticateenterat(6;0}

. .

~No-skew
. __X_
u a s u, 0
wvi =0 f v, Oy

z

1] {0 0 1 O_1

Slide Credit: Saverese



Dimensionality Reduction Machine (3D to 2D)

3D world

[

Point of observation

—

2D image

O

S=—=

Figures © Stephen E. Palmer, 2002



Slide source: Seitz

Projection can be tricky...

-
CoolOPtica””usions.com




Slide source: Seitz

Projection can be tricky...

Making of 3D sidewalk art: http://www.youtube.com/watch?v=3SNYtd0Ayt0




infinite number of
possible shapes

image




Perspective effect




Projective Geometry

What is preserved?
* Straight lines are still straight




Projective Geometry

What is lost?
* Length
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Which is closer?

L




Projective Geometry

What is lost?
* Length
* Angles

Perpendicular?




Projection properties

e Parallel lines converge at vanishing point (°K /i)
— Each direction in space has its own vanishing point
— But parallels parallel to the image plane remain parallel




Perspective distortion

e Problem for architectural photography:
converging verticals

e The distortion is not due to lens flaws

Source: F. Durand



Perspective distortion
e Problem for architectural photography:

converging verticals

L = | L =
Tilting the camera Keeping the camera level,
upwards results in with an ordinary lens,
converging verticals captures only the bottom

portion of the building

eSolution: view camera (lens shifted w.r.t. film)

S i

Shifting the lens
upwards results in a
picture of the entire
subject

http://en.wikipedia.org/wiki/Perspective correction lens Source: F. Durand




Perspective distortion

e What does a sphere project to?




Perspective distortion

e The exterior columns appear bigger

e Problem pointed out by Da Vinci




Perspective distortion: People




Radial distortion

T 1 = |
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No distortion Pin cushion Barrel

* Radial distortion of the image
— Caused by imperfect lenses

— Deviations are most noticeable for rays that
pass through the edge of the lens
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Wide angle Standard Telephoto




http://petapixel.com/2013/01/11/how-focal-length-affects-your-subjects-apparent-weight-as-seen-with-a-cat/

Fredo Durand
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Modeling distortion




Correcting radial distortion

from Helmut Dersch




Camera coordinates

* How can we model the viewpoint of a
camera?

Camera

W

Two important coordinate systems: |
1. World coordinate system 7 “The World”
2. Camera coordinate system



Extrinsic parameters

* How do we align two coordinate systems?

Step 1: Translate by -c
Yy

0
X c Y




Extrinsic parameters

* How do we align two coordinate systems?

Step 1: Translate by -c

How do we represent
translation as a matrix
multiplication?

S - Isx3 —c
000 1




Extrinsic parameters

* How do we align two coordinate systems?

Step 1: Translate by -c
Step 2: Rotate by R

Z \ _ u _
« u R: VT
T

“ /LW

3x3 rotation matrix



Extrinsic parameters

* How do we align two coordinate systems?

Step 1: Translate by -c
Yy

Step 2: Rotate by R
/ R

R = vl

X (with extra row/column of [0 0 0 1])



Extrinsic parameters

* Rigid transformation in 3D
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Camera parameters

How to project a point (x,y,z) in world coordinates into a camera?

* First transform (x,y,z) into camera coordinates

— Need to know camera extrinsic parameters (¥hZ)

* Then project into the image plane to get a pixel coordinate

— Need to know camera intrinsic parameters ([N Z)



Perspective Projection Matrix

Camera

z “The World”

4 N
2D Perspective World to 5 3D
point| = projection matrix || ©@Meracoord. — tinoint
(3X1) (3X4) trans. matrix (4X1)

(4x4)

Camera intrincis Camera extrinsics



Perspective Projection Matrix

Camera

z “The World”
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U a s u,|n,
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x: Image Coordinates: (u,v,1)
K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)



Camera calibration: how to obtain the
camera parameters?

x=K[R t|X

o ¢
Wi * %k %k %

Y
wy =% * * =

/
W * %k %k % 1




Calibrating the Camera

Use an object with known geometry
(calibration grid)

Known 2d image Known 3d
coordinates locations

I X
wu my, m, m; Ny y
WV =My My, M,y My, 7

W [ My My, My Ty i

Unknown Camera Parameters



Known 2d

image coords

Unknown Camera Parameters
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Known 3d
locations

0=m X +m,Y +m Z+m, —myuX —myuuY —myuZ —my,u
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Can we factorize M backto K[R | T]?

* Yesl!

* You can use RQ factorization
— (note — not the more familiar QR factorization).

* R (right diagonal) is K, and Q (orthogonal basis) is
R. T, the last column of [R | T], is inv(K) * last
column of M.

— Need post-processing to make sure that the matrices
are valid.

— See http://ksimek.github.io/2012/08/14/decompose/

Slide credit: J. Hays



Orthographic projection

* Special case of perspective projection
— Distance from the COP to the PP is infinite

1
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Questions?



Epipolar Geometry

Left view Right view



Two-View Geometry

* Epipolar geometry

— Relates two images taken from two positions

e Two-view reconstruction



Last class: Image Stitching

* Two images with rotation/zoom but no translation




Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line I".

Potential matches for x” have to lie on the corresponding line /.



Epipolar geomatry: notation

7

J e ec
%)
e Baseline (FZR) - line connecting the two camera centers

e Epipoles (#Zr)
= intersections of baseline with image planes
= projections of the other camera center

e Epipolar Plane (#%~FT) - plane containing baseline (1D family)




Epipolar geomatry: notation

/
g e e@
0
e Baseline — line connecting the two camera centers
e Epipoles
= intersections of baseline with image planes
= projections of the other camera center

e Epipolar Plane — plane containing baseline (1D family)

e Epipolar Lines (1}¢Z%) - intersections of epipolar plane with image
planes (always come in corresponding pairs)




Examp@: Converging/cameras




Example: Motion parallel to image
plane

e at / / e’ at
/ e / . . e,
infinity _,/_,_ eveememeeeneee e e, ////, infinity




Example: Forward motion

What would the epipolar lines look like if the
camera moves directly forward?



Epipole has same coordinates in both images.
Points move along lines radiating from e:
“Focus of expansion”




Epipolar constraint: Calibrated case

X

~— L~

Given the intrinsic parameters of the cameras:

1. Convert to normalized coordinates by pre-multiplying all points with the
inverse of the calibration matrix

A —1 A Y r—1 .1
P x=K X\ x'=K""x
Normalized coordinate Image coordinate

(3D ray towards X) (pixel location)



Epipolar constraint: Calibrated case

X

e e’
O \ P 0;
Given the intrinsic parameters of the cameras:

1. Convert to normalized coordinates by pre-multiplying all points with the
inverse of the calibration matrix

2. Define some R and t that relate x to x’ as below
A —] A —
X :K X X’:K' ]xr
N\ o
/N /\,
xX=Rx +t¢




Epipolar constraint: Calibrated case

X=RX'+t W)  F-[tx(R¥)]=0

(because X, RX’, and t are co-planar)



Essential matrix

X

[ I

N

e’l

O e O
o O’

$-Ix(R#H]=0 ®m) 3'Ex'=0 with E=[t| R

3

Essential Matrix
(Longuet-Higgins, 1981)




X

Properties of the Essential matrix

X

~—

e

¢ [tx(RE)]=0 mE) R'EX'=0 with E=[t] R
Drop " below to simplify notation \
E x” is the epipolar line associated with x’ (/ = E x’) Skew-
E'x is the epipolar line associated with x (I = E'x) symmetric
Ee’=0 and E'e=0 matrix

E is singular (rank two)

E has five degrees of freedom
— (3 for R, 2 for t because it’s up to a scale)



The Fundamental Matrix

Without knowing K and K’, we can define a similar
relation using image coordinates

AT Y
x Ex =0
m) x' Fx'=0 with F=K'EK'

.%ZK_IX l

)2" — Kr—lxr

Fundamental Matrix
(Faugeras and Luong, 1992)

e Fissingular (rank two): det(F)=0
e F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0



Properties of the Fundamental
matrix

X

xFx'=0 with F=K'EK'"'

F x’ is the epipolar line associated with x’ (/ =F X’)

F'x is the epipolar line associated with x (/’ = FTX)

Fe’=0 and Fle=0

F is singular (rank two): det(F)=0

F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0



How to solve F?

Write down the system of equations

T /
x Fx =0
uu'fi1 +uv'fi; +ufiz +vu'fo Vo +Ufo3 FU'f3 +V f3 + f33 =0

f11]

/ ! l; ! / ! 1 f12

— : : : : : : : : . 13 |-
Af = : : : : : : : : : f =0

un u'I’) un vn ’ uTl le uTl , le vn , vn uTl , vn ’ 1 2: 1

-f33-

How many equations are needed?



8-point algorithm

1. Solve a system of homogeneous linear
equations
a. Write down the system of equations
b. Solve f from Af=0 using SVD

2. Resolve det(F) = O constraint by SVD

Notes:
 Use RANSAC to deal with outliers (sample 8 points)

—  How to test for outliers? |x'F x| < threshold?



Triangulation

Image 2



Triangulation: Linear Solution

X * Generally, rays C=>x and
C’—>x’ will not exactly
intersect

H
x
\
\
o \
o) >
’
/
N\ 7
x -

e Solve via SVD:
A least squares solution
to a system of equations

/
\

x = PX x =P'X
up; —p,
T T
ax=0 A= 7P
up; —p,
RS

Further reading: HZ p. 312-313



Triangulation: Non-linear Solution
 Minimize projected error while satisfying

S T N
x' Fx=0

cost(X) = dist(x,%)? + dist(x’,x")?

Figure source: Robertson and Cipolla (Chpt 13 of Practical Image Processing and Computer Vision)



Questions?



Structure from Motion




Structure
3D Point Cloud of the Scene

Motion

Camera Location and Orientation

Structure from Motion (SfM)

Get the Point Cloud from Moving
Cameras



SfM Applications — 3D Modeling




SfM Applications — Surveying
cultural heritage structure analysis

Guidi et al. High-accuracy 3D modeling of cultural heritage, 2004



SfM Applications —
localization and mapping (SLAM)

https://www.youtube.com/watch?v=1HhOmF220YA



Structure from motion

e Given: m images of n fixed 3D points
xl-j:Pl.Xj, i=1,....,m j=1,..,n

* Problem: estimate m projection matrices P, and n 3D points
X; from the mn corresponding 2D points x;

Slides from Lana Lazebnik 2



Sequential structure from motion

e|nitialize motion (calibration) from

two images using fundamental matrix

e|nitialize structure by triangulation

eFor each additional view:

— Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration/resectioning

cameras

points
® ® o ® & & & o
® ® & & & & 0o 0
® ® & & & o 0 0o
® & & & & & 0 o
® & ® o & & ® 0o
® ® & & & & o 0
® ® & & & & 0 0
® ® & & & & & o >




Sequential structure from motion

e|nitialize motion from two images
using fundamental matrix

e|nitialize structure by triangulation

eFor each additional view:

— Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

— Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

cameras

points

® ——e

v



Sequential structure from motion

e|nitialize motion from two images
using fundamental matrix

e|nitialize structure by triangulation points

eFor each additional view:

— Determine projection matrix of
new camera using all the known
3D points that are visible in its
image — calibration

cameras
® o000 0 00

— Refine and extend structure:
compute new 3D points,
re-optimize existing points that
are also seen by this camera —
triangulation

eRefine structure and motion: bundle
adjustment

v



Bundle adjustment

e Non-linear method for refining structure and motion

e Minimizing reprojection error ,

E(P X) = ZZD(XU,PX )

* Theory:
The Levenberg—Marquardt
algorithm

* Practice:
4 \ The Ceres-Solver from Google
P,X vxz},

AN
M >




3D from multiple images
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Building Rome in a Day: Agarwal et al. 2009



3D from multiple images

Building Rome in a Day: Agarwal et al. 2009



Steps

Images = Points: Structure from Motion
Points = More points:  Multiple View Stereo
Points = Meshes: Model Fitting

Meshes =2 Models: Texture Mapping

Images 2 Models: Image-based Modeling

Slide credit: J. Xiao



Steps

Images = Points: Structure from Motion
Points = More points:  Multiple View Stereo
Points = Meshes: Model Fitting

Meshes = Models: Texture Mapping

Images 2 Models: Image-based Modeling

Slide credit: J. Xiao



Steps

Images = Points: Structure from Motion
Points = Meshes: Model Fitting
Meshes = Models: Texture Mapping

Images 2 Models: Image-based Modeling

Slide credit: J. Xiao



Steps

Images > Points: Structure from Motion
Points = More points:  Multiple View Stereo

+ Points = Meshes: Model Fitting

Meshes = Models: Texture Mapping

Images 2 Models: Image-based Modeling

Slide credit: J. Xiao



Steps

Images = Points: Structure from Motion

Points = More points:  Multiple View Stereo
+ Points = Meshes: Model Fitting

Meshes =2 Models: Texture Mapping

Images 2 Models: Image-based Modeling

Slide credit: J. Xiao



Steps

Images > Points: Structure from Motion

Points = More points:  Multiple View Stereo
+ Points = Meshes: Model Fitting

Meshes = Models: Texture Mapping

Example: https://photosynth.net/

Slide credit: J. Xiao



Multi-view stereo




Moving on to stereo...

Compute a depth image

image 1

Dense depth map

Many of these slides adapted from
Steve Seitz and Lana Lazebnik




Basic stereo matching algorithm
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e For each pixel in the first image
— Find corresponding epipolar line in the right image
— Search along epipolar line and pick the best match
— Triangulate the matches to get depth information

e Simplest case: epipolar lines are scanlines
— When does this happen?



Simplest Case: Parallel images

Image planes of cameras are
parallel to each other and to
the baseline

Camera centers are at same
height
Focal lengths are the same

Then, epipolar lines fall along
the horizontal scan lines of the
images



Depth frorxn disparity

O Baseline o’
B

B-f

Z

disparity =x—x' =

Disparity is inversely proportional to depth.



Stereo image rectific




Stereo image rectificatio
e Reproject image planes
onto a common plane
parallel to the line

between camera centers \ A
.\ \\\

e Two homographies (3x3
transform), one for each
Input image reprojection

» C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. IEEE Conf. Computer Vision

and Pattern Recognition, 1999.




Rectification example

By
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Correspondence search

Left Right

scanline

Matching cost h
/\/\{ disparity

e Slide a window along the right scanline and
compare contents of that window with the
reference window in the left image

e Matching cost: SSD or normalized correlation




Multi-view stereo: Basic idea

v ™
2 gy~
RS

E i
i

Source: Y. Furukawa



NMultioviow gtereo: Basic idea

error |\/'\/\/\

v -'
depth —
_fm,i[f 1]

E i
i

Source: Y. Furukawa



NMultioviow gtereo: Basic idea

depth

Source: Y. Furukawa



NMultioviow gtereo: Basic idea

- |\/\/\/\

depth

Source: Y. Furukawa



input image

reference camera

e Sweep family of planes at different depths w.r.t. a reference camera

— For each depth, project each input image onto that plane

— This is equivalent to a homography warping each input image into the reference
view

e  What can we say about the scene points that are at the right depth?

R. Collins. A space-sweep approach to true multi-image matching. CVPR 1996.




Plane Sweep Stereo

Scene surface

Sweeping
— plane

——

Image 2
Image 1



e For each depth plane
— For each pixel in the composite image stack, compute the variance
e For each pixel, select the depth that gives the lowest variance

 (Can be accelerated using graphics hardware

R. Yang and M. Pollefeys. Multi-Resolution Real-Time Stereo on Commodity Graphics
Hardware, CVPR 2003




Stereo from community photo collections

e Need structure from motion to recover unknown camera
parameters

e Need view selection to find good groups of images on
which to run dense stereo

flickr:. voco

Home You Organize & Create Contacts Groups Explore Upload
Search Photos Groups People
Full Text
|Everyone's Uploads v] [statueoflibetty ] SEARCH [Ryymyssiion
Sort: Relevant  Recent  Interesting View. Small  Medium = Detail = Slideshow

=

SER From rafaj
[ ]

- From michaun
From EdZa From lepublicnme From Jesus...

TS
TR

From alabs From Bighs Take From laurenbou..

PR X ) SR L B | I

From laverrue

From dmp0309

A D

From laurenbou... From StephiGra... From Mojumbo22...



Towards Internet-Scale Multi-View Stereo

llllll

---------

= A -
o) . P N
AV -

. o L
Dubrovnik ———"—— Piazza San Marco —

e vl i
Trevi Fountain

St. Peter’s Basilica Colosseum

Yasutaka Furukawa, Brian Curless, Steven M. Seitz and Richard Szeliski, Towards Internet-
scale Multi-view Stereo,CVPR 2010.




Internet-Scale Multi-View Stereo




Applications: SLAM
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Applications — Hyperlapse

First-person
Hyperlapse Videos

Johannes Kopf Michel F. Cohen Richard Szeliski
Microsoft Research

research.microsoft.com/hyperlapse




Applications: Visual Reality & Augmented Reality




Questions?



