
深度学习概述

周晓巍

Slides adapted from Fei-Fei Li, Justin Johnson, Serena Yeung, Noah Snavely, Jia-Bin Huang



Today’s	class

• Supervised	Learning	and	Image	Classification
• Linear	Classifier
• Neural	Networks
• Convolutional	Neural	Networks
• Training	CNNs
• History	and	Recent	Advances



Part	I

Supervised	Learning	
and	Image	Classification



Machine	Learning
Traditional	Programming

Computer
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Slide adapted from Pedro Domingos
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Supervised	Learning

Input x Predicted y𝒇𝑾

y can be

• A real number (regression)

• A discrete label (classification)

Training data

Learning algorithm



Image	Classification:	
A	core	task	in	Computer	Vision

• Assume	given	set	of	discrete	labels,	e.g.								
{cat,	dog,	cow,	apple,	tomato,	truck,	…	}



Image	classification	demo

https://cloud.google.com/vision/
See also: 
https://aws.amazon.com/rekognition/
https://www.clarifai.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

…



Image	Classification

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



Image	Classification:	Problem



Slide credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Data-driven	approach

• Collect	a	database	of	images	with	labels
• Use	ML	to	train	an	image	classifier

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/







Image	features

SIFT [Loewe IJCV 04] HOG [Dalal and Triggs CVPR 05]

SPM [Lazebnik et al. CVPR 06] DPM [Felzenszwalb et al. PAMI 10]

Color Descriptor [Van De Sande et al. PAMI 10]



Why	use features?
Why	not pixels?



Classifiers
• Nearest	Neighbor
• kNN (“k-Nearest	Neighbors”)
• Linear	Classifier
• Decision Tree…



Part	II

Linear	Classifier



Linear	classifiers



Score	function

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



Score	function:	f



Score	function:	f



Parametric	approach:	Linear	classifier



Parametric	approach:	Linear	classifier





Training:	how	to	find	good	W	based	on	
training	data?

Output scores





How	to	define	a	loss	function	for	
predicted	scores?
1. Convert	scores	to	probabilities
2. Compute	cross	entropy	between	predicted	and	

true	probabilities



Covert	scores	to	probabilities

Image credit: Sung Kim

Softmax function:



Cross	entropy	as	loss	function

Image credit: Ritchie Ng



Part	III

Neural	Networks



Neural	networks
• Perceptron

𝑥$

𝑤$ 𝑤& 𝑤' 𝑤( 𝑤) 𝑤* 𝑤+

𝑥& 𝑥' 𝑥( 𝑥) 𝑥* 𝑥+

𝒇(𝒙)

𝒇 𝒙 = 𝝈(𝑾𝒙 + 𝒃)





Neural	networks
• Extend	to	multiple	outputs



Biological	neuron	and	Perceptrons

A biological neuron An artificial neuron (Perceptron) 
- a linear classifier



Hubel/Wiesel	Architecture	and	Multi-layer	Neural	Network

Hubel and Weisel’s architecture Multi-layer Neural Network
- A non-linear classifier



Neural	networks



Neural	networks



Neural	networks



Neural	networks

• Very	coarse	generalization:
– Linear	functions	chained	together	and	separated	
by	non-linearities	(activation	functions),	e.g.	“max”

– Why	separate	linear	functions	with	non-linear	
activation	functions?



Neural	network	architecture

• Computation	graph	for	a	2-layer	neural	
network	

Neuron or unit







• Deep	networks	typically	have	many	layers	and	
potentially	millions	of	parameters

• How	to	reduce	number	of	parameters?



Part	IV

Convolutional	Neural	Networks



Convolutional	neural	networks



Local	features	are	important





Local	Connectivity

• #	input	units	(neurons):	7
• #	hidden	units:	3
• Number	of	parameters

– Global	connectivity:	3	x	7	=	21
– Local	connectivity:			3	x	3	=	9

Input layer

Hidden layer

Global connectivity Local connectivity



Weight	Sharing

Input layer

Hidden layer

• #	input	units	(neurons):	7
• #	hidden	units:	3
• Number	of	parameters

– Without	weight	sharing:	3	x	3	=	9
– With	weight	sharing	:						3	x	1	=	3

w1

w2

w3

w4

w5
w6

w7

w8

w9

Without weight sharing With weight sharing

w1

w2

w3 w1

w2

w3

w1

w2

w3



Convolution	layer
Local	connectivity	+	weight	sharing	
=	convolution!







Number of weights: 5 x 5 x 3 + 1 = 76
(vs. 3072 for a fully-connected layer)







(total number of parameters: 6 x (75 + 1) = 456)











• Pooling	layer



Input	Image

Convolution	
(Learned)

Non-linearity

Spatial	pooling

Normalization

Feature	maps

Input Feature	Map

.

.

.

Convolutional	Neural	Networks

slide credit: S. Lazebnik



Input	Image

Convolution	
(Learned)

Non-linearity

Spatial	pooling

Normalization

Feature	maps

Convolutional	Neural	Networks

Rectified Linear Unit (ReLU)

slide credit: S. Lazebnik



Input	Image

Convolution	
(Learned)

Non-linearity

Spatial	pooling

Normalization

Feature	maps

Max	pooling

Convolutional	Neural	Networks

slide credit: S. Lazebnik

Max-pooling: a non-linear down-sampling

Provide translation invariance



Input	Image

Convolution	
(Learned)

Non-linearity

Spatial	pooling

Normalization

Feature	maps

Feature	Maps Feature	Maps
After	Contrast	
Normalization

Convolutional	Neural	Networks

slide credit: S. Lazebnik



Input	Image

Convolution	
(Learned)

Non-linearity

Spatial	pooling

Normalization

Feature	maps

Convolutional	Neural	Networks

slide credit: S. Lazebnik
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Case Study: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55



70

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of parameters in this layer?
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)



What	do	the	filters	look	like?



Summary
• Multi-layer	neural	network	is	a	non-linear	
classifier

• CNN	=	a	multi-layer	neural	network	with
Local	connectivity
Weight	sharing

• Layer	types:
– Fully-connected	layer
– Convolutional	layer
– Pooling	layer



Part	V

Training	CNNs



Multi-layer	Neural	Network
• A	non-linear	classifier
• Training:	find	network	weights	w	to	minimize	the	error	

between	true	training	labels	𝑦4	and	estimated	labels	
𝑓𝒘	 𝒙𝒊 ,	

𝐿 𝒘 =	
1
𝑛
<𝑙(𝑦4, 𝑓𝒘(𝒙𝒊))
�

4
For	example:	
– L2	loss	for	regression
– Cross-entropy	loss	for	classification

• Minimization	can	be	done	by	gradient	descent	provided	𝑓 is	
differentiable

• This	training	method	is	called	
back-propagation



Training	CNN	with	gradient	descent
• A	CNN	as	composition	of	functions

𝑓𝒘 𝒙 = 𝑓@(…	(𝑓& 𝑓$ 𝒙;𝒘$ ;𝒘& … ;𝒘@)
• Parameters

𝒘 = (𝒘𝟏,𝒘𝟐, …𝒘𝑳)
• Empirical	loss	function

𝐿 𝒘 =	
1
𝑛
<𝑙(𝑦4, 𝑓𝒘(𝒙𝒊))
�

4

• Gradient	descent

𝒘𝒕G𝟏 = 𝒘𝒕 	−	𝜂J
𝜕𝒇
𝜕𝒘

(𝒘𝒕)

Learning rate GradientOld weight

New weight



Backpropagation	(recursive	chain	rule)

𝑞

𝑤$

𝑤&

𝑤M

𝜕𝑓
𝜕𝑞

𝜕𝑓
𝜕𝑤4

=
𝜕𝑞
𝜕𝑤4

𝜕𝑓
𝜕𝑞

Gate gradientLocal gradient

The gate receives this during backpropCan be computed during forward pass
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Stochastic Gradient Descent (SGD)

Loop:
1. Sample a batch of data
2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient
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Image credits: Alec Radford



Architecture	and	hyper-parameters
• How	many	layers	to	use?
• How	many	filters	in	each	layer?
• What	are	the	best	batch	size	and	learning	
rate?

• How	do	we	set	them?
– One	option:	try	them	all	and	see	what	works	best



Bad: you can always decrease 
training loss by using a larger network

Bad: no idea how it will perform 
on new data

Best!

Data	split



Overfitting



Recap:	How	to	pick	hyperparameters?

• Train	for	original	model
• Validate	to	find	hyperparameters
• Test	to	understand	generalizability



Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Main Idea: approximately 
combining exponentially many 
different neural network 
architectures efficiently



Data	Augmentation	(Jittering)
• Create	virtual training	samples

– Horizontal	flip
– Random	crop
– Color	casting
– Geometric	distortion

Deep Image [Wu et al. 2015]



Part	VI

History	and	Recent	Advances







LeNet [LeCun	et	al.	1998]

Gradient-based	learning	applied	to	document	
recognition	[LeCun,	Bottou,	Bengio,	Haffner 1998] LeNet-1 from 1993



But	neural	networks	were	not	that	
successful	before
• Why?

– Small	training	datasets	lead	to	overfitting
– Hard	to	train	a	deep	neural	network	due	to	limited	
computational	power



ImageNet	dataset





Imagenet Classification with Deep Convolutional Neural 
Networks, Krizhevsky, Sutskever, and Hinton, NIPS 2012

Gradient-Based Learning Applied to Document 
Recognition, LeCun, Bottou, Bengio and Haffner, Proc. of 
the IEEE, 1998

Slide Credit: L. Zitnick





Progress on	ImageNet

2012 
AlexNet

2013 
ZF

2014 
VGG

2014 
GoogLeNet

2015 
ResNet

2016 
GoogLeNet-v4

15

10

5

ImageNet Image Classification Top5 
Error



ResNet
• Can	we	just	increase	the	#layer?



ResNet
• How	can	we	train	very	deep	network?
- Residual	learning

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201682

Case Study: ResNet [He et al., 2015]



ResNet

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201680

Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He’s recent presentation)

2-3 weeks of training 
on 8 GPU machine

at runtime: faster 
than a VGGNet! 
(even though it has 
8x more layers)



ResNet

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)



DenseNet

• Shorter	connections	(like	ResNet)	help
• Why	not	just	connect	them	all?









Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201676

Fast-forward to today: ConvNets are everywhere
[Taigman et al. 2014]

[Simonyan et al. 2014] [Goodfellow 2014]





Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201678

Fast-forward to today: ConvNets are everywhere

[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]



Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201680

Whale recognition, Kaggle Challenge Mnih and Hinton, 2010



Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201681

[Vinyals et al., 2015]

Image 
Captioning





Summary



Recap:	Life	Before	Deep Learning

Input  
Pixels

Extract  
Hand-Crafted 

Features

Figure: Karpathy 2016

Concatenate into  
a vector x

SVM

Linear  
Classifier

Ans



Why	deep	learning	is	powerful?

Image

Convolution/pool

Convolution/pool

Convolution/pool

Convolution/pool

Convolution/pool

Dense

Dense

Dense

Label
Convolutional filters are trained in a 
supervised manner by back-propagating 
classification error

Filters are learned from data
instead of hand-crafted!

Image

Feature	extraction

Pooling

Classifier

Label





Deep	learning	library
• TensorFlow

– Research	+	Production

• PyTorch
– Research

• Caffe2
– Production



Resources
• http://deeplearning.net/

– Hub	to	many	other	deep	learning	resources

• https://github.com/ChristosChristofidis/awesome-deep-learning
– A	resource	collection	deep	learning

• https://github.com/kjw0612/awesome-deep-vision
– A	resource	collection	deep	learning	for	computer	vision

• http://cs231n.stanford.edu/syllabus.html
– Nice	course	on	CNN	for	visual	recognition



Things	to	remember
• Supervised	learning

– Linear	classifier,	softmax,	cross-entropy	loss	

• Neural	network
– Linear	functions	chained	together	and	separated	with	non-
linear	activation	functions

• Convolutional	neural	network	(CNN)
– Neural	network	with	local	connectivity	and	weight	sharing
– Convolution,	nonlinearity,	max	pooling

• Training	CNN
– Back	propagation,	data	split,	dropout,	data	augmentation



2019 Turing Awards

Yann LeCun Geoffrey Hinton Yoshua Bengio


