
图像缩放与补全

周晓巍
www.cad.zju.edu.cn/home/xzhou/

Some slides borrowed from Guofeng Zhang (ZJU), Lingqi Yan (UCSB)

计算摄影学第五节

http://www.cad.zju.edu.cn/home/xzhou/

Outline
• Image resizing （图像缩放）

• Image completion （图像补全）

Image resizing

Change image size / resolution in Photoshop

像素尺寸

物理尺寸

Sampling

Reducing image size – down-sampling

��������� GUDZ�LR

FKURPH�H[WHQVLRQ���SHESSRPMIRFQRLJNHHSJEPFLIQQOQGOD�LQGH[�KWPO ���

��������� GUDZ�LR

FKURPH�H[WHQVLRQ���SHESSRPMIRFQRLJNHHSJEPFLIQQOQGOD�LQGH[�KWPO ���

Is sampling really so easy?

GAMES101 Lingqi Yan, UC Santa Barbara

Jaggies (Staircase Pattern)

 15

This is also an example of “aliasing” – a sampling error

Is sampling really so easy?

GAMES101 Lingqi Yan, UC Santa Barbara

Moiré Patterns in Imaging

 16

lystit.com

Skip odd rows and columns

[mwɑ:]

Is sampling really so easy?

GAMES101 Lingqi Yan, UC Santa Barbara

Wagon Wheel Illusion (False Motion)

 17

Aliasing（走样）

Aliasing - artifacts due to sampling
• Jaggies / Moire effect – undersampling in space
•Wagon wheel effect – undersampling in time

Why does aliasing happen?
• Signals are changing too fast (high frequency),

but sampled too slow

GAMES101 Lingqi Yan, UC Santa Barbara

Sines and Cosines

 28

cos 2⇡x

sin 2⇡x

GAMES101 Lingqi Yan, UC Santa Barbara

Frequencies

 29

cos 2⇡x

cos 2⇡fx

cos 4⇡x

f = 1

f = 2

f =
1

T

GAMES101 Lingqi Yan, UC Santa Barbara

Fourier Transform

Represent a function as a
weighted sum of sines and
cosines

 30

Joseph Fourier 1768 - 1830

f(x) =
A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·f(x) =

A

2
+

2A cos(t⇥)
�

� 2A cos(3t⇥)
3�

+
2A cos(5t⇥)

5�
� 2A cos(7t⇥)

7�
+ · · ·

GAMES101 Lingqi Yan, UC Santa Barbara

Fourier Transform Decomposes A Signal Into Frequencies

 31

spatial
domain

frequency
domain

F (�) =
⇥�

�⇥

f(x)e�i�xdx F (�) =
⇥�

�⇥

f(x)e�i�xdx

Inverse transform

f(x) =

Z 1

�1
F (!)e2⇡i!xd!

Fourier transform

F (!) =

Z 1

�1
f(x)e�2⇡i!xdx

eix = cosx+ i sinxRecall

GAMES101 Lingqi Yan, UC Santa Barbara

Higher Frequencies Need Faster Sampling

 32

x

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

f2(x)

f1(x)

f3(x)

f4(x)

f5(x)

Periodic sampling locations

Low-frequency signal:
sampled adequately
for reasonable
reconstruction

High-frequency signal
is insufficiently
sampled:
reconstruction
incorrectly appears to
be from a low
frequency signal

GAMES101 Lingqi Yan, UC Santa Barbara

Undersampling Creates Frequency Aliases

 33

High-frequency signal is insufficiently sampled: samples
erroneously appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling
rate are called “aliases”

GAMES101 Lingqi Yan, UC Santa Barbara

Sampling = Repeating Frequency Contents

 50

https://www.researchgate.net/figure/The-evolution-of-sampling-theorem-a-The-time-domain-of-the-band-limited-signal-and-b_fig5_301556095

GAMES101 Lingqi Yan, UC Santa Barbara

Aliasing = Mixed Frequency Contents

 51

Dense sampling:

Sparse sampling:

How can we reduce aliasing?

Option 1: Increasing sampling rate

Option 2: Anti-aliasing
Filtering out high frequendcies before sampling

GAMES101 Lingqi Yan, UC Santa Barbara

Antialiasing = Limiting, then repeating

 54

Filtering

Then sparse sampling

Filtering = Getting rid of
certain frequency contents

GAMES101 Lingqi Yan, UC Santa Barbara

Visualizing Image Frequency Content

 35

GAMES101 Lingqi Yan, UC Santa Barbara

Filter Out High Frequencies (Blur)

 37

Low-pass filter

GAMES101 Lingqi Yan, UC Santa Barbara

Filter Out Low Frequencies Only (Edges)

 36

High-pass filter

Filtering = Convolution
(= Averaging)

GAMES101 Lingqi Yan, UC Santa Barbara

Convolution

 41

Signal

Filter

1 3 5 3 7 1 3 8 6 4

1/4 1/2 1/4

Point-wise local averaging in a “sliding window”

GAMES101 Lingqi Yan, UC Santa Barbara

Convolution

 42

Signal

Filter

Result

1 3 5 3 7 1 3 8 6 4

3

1 x (1/4) + 3 x (1/2) + 5 x (1/4) = 3

1/4 1/2 1/4

GAMES101 Lingqi Yan, UC Santa Barbara

Convolution

 43

Signal

Filter

Result

1 3 5 3 7 1 3 8 6 4

3 4

3 x (1/4) + 5 x (1/2) + 3 x (1/4) = 4

1/4 1/2 1/4

GAMES101 Lingqi Yan, UC Santa Barbara

Convolution Theorem

 45

* =

x =

Spatial
Domain

Frequency
Domain

Fourier
Transform

Inv. Fourier
Transform

1 1 1
1 1 1
1 1 1

1

9

GAMES101 Lingqi Yan, UC Santa Barbara

Box Filter

 46

1 1 1

1 1 1

1 1 1

Example: 3x3 box filter

1

9

Box Filter

What is the Fourier transform of a rectangular function?

GAMES101 Lingqi Yan, UC Santa Barbara

Box Function = “Low Pass” Filter

 47

GAMES101 Lingqi Yan, UC Santa Barbara

Wider Filter Kernel = Lower Frequencies

 48

Gaussian filter

Guanssian filter

What is the Fourier transform of a Gaussian?

GAMES101 Lingqi Yan, UC Santa Barbara

Regular Sampling

 55

Sample

Note jaggies in rasterized triangle
where pixel values are pure red or white

Antialiasing

GAMES101 Lingqi Yan, UC Santa Barbara

Point Sampling

 22GAMES101 Lingqi Yan, UC Santa Barbara

Antialiasing

 23

Antialiasing

GAMES101 Lingqi Yan, UC Santa Barbara

Point Sampling Textures — Problem

 25

Jaggies

Moire

Point sampledReference

GAMES101 Lingqi Yan, UC Santa Barbara

Anisotropic Filtering

 43

Better than Mipmap!

Image magnificationBilinear

Image magnification

Inverse of down-sampling (up-sampling)

��������� GUDZ�LR

FKURPH�H[WHQVLRQ���SHESSRPMIRFQRLJNHHSJEPFLIQQOQGOD�LQGH[�KWPO ���

��������� GUDZ�LR

FKURPH�H[WHQVLRQ���SHESSRPMIRFQRLJNHHSJEPFLIQQOQGOD�LQGH[�KWPO ���

?

?

?

?

?

?

?

?

?

?

? ? ?

? ? ?

InterpolationInterpolation

What’s the value in between?

Nearest-neighbor interpolation

Not continuous
Not smooth

Nearest-Neighbor

! Just take the value from nearest sampling

Linear interpolation

Continous
Not smooth

Interpolation

Interpolate (linear here)

Cubic interpolation

Continous
Smooth

Interpolation

Can we do better?

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 17

Want to sample
texture value f(x,y) at
red point

Black points indicate
texture sample
locations

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 18

u00

u01 u11

u10

Take 4 nearest sample
locations, with texture
values as labeled.

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 19

u00

u01 u11

u10

t

s

And fractional offsets,
(s,t) as shown

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 21

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps (horizontal)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 22

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

Final vertical lerp, to get result:

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

Comparison

Generally bilinear is good enough

GAMES101 Lingqi Yan, UC Santa Barbara

Texture Magnification - Easy Case

Generally don’t want this — insufficient texture resolution

A pixel on a texture — a texel

 16

Nearest Bilinear Bicubic

(ᕖቘزᔰ̵ᕖᔰ)

How to change aspect ratio?

?

Simple Media Retargeting Operators

?

Letterboxing Scaling

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Challenge

Changing Aspect Ratio

Seam Carving

Scaling
Original

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Changing Aspect Ratio

Seam Carving

Scaling
Original

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Changing aspect ratio causes distortion

Changing Aspect Ratio

Seam Carving

Scaling
Original

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Cropping may remove important contents

Changing Aspect Ratio

Seam Carving

Scaling
Original

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Content-aware resizing

Seam Carving for Content-Aware Image Resizing

Shai Avidan
Mitsubishi Electric Research Labs

Ariel Shamir
The Interdisciplinary Center & MERL

Figure 1: A seam is a connected path of low energy pixels in an image. On the left is the original image with one horizontal and one vertical
seam. In the middle the energy function used in this example is shown (the magnitude of the gradient), along with the vertical and horizontal
path maps used to calculate the seams. By automatically carving out seams to reduce image size, and inserting seams to extend it, we achieve
content-aware resizing. The example on the top right shows our result of extending in one dimension and reducing in the other, compared to
standard scaling on the bottom right.

Abstract

Effective resizing of images should not only use geometric con-
straints, but consider the image content as well. We present a sim-
ple image operator called seam carving that supports content-aware
image resizing for both reduction and expansion. A seam is an op-
timal 8-connected path of pixels on a single image from top to bot-
tom, or left to right, where optimality is defined by an image energy
function. By repeatedly carving out or inserting seams in one direc-
tion we can change the aspect ratio of an image. By applying these
operators in both directions we can retarget the image to a new size.
The selection and order of seams protect the content of the image,
as defined by the energy function. Seam carving can also be used
for image content enhancement and object removal. We support
various visual saliency measures for defining the energy of an im-
age, and can also include user input to guide the process. By storing
the order of seams in an image we create multi-size images, that are
able to continuously change in real time to fit a given size.

CR Categories: I.3.0 [Computing Methodologies]: Computer
Graphics—General; I.4.10 [Computing Methodologies]: Image
Processing And Computer Vision —Image Representation

Keywords: Image resizing, Image retargeting, Image seams,
Content-aware image manipulation, Display devices

1 Introduction

The diversity and versatility of display devices today imposes new
demands on digital media. For instance, designers must create dif-
ferent alternatives for web-content and design different layouts for
different devices. Moreover, HTML, as well as other standards, can
support dynamic changes of page layout and text. Nevertheless, up
to date, images, although being one of the key elements in digital
media, typically remain rigid in size and cannot deform to fit differ-
ent layouts automatically. Other cases in which the size, or aspect
ratio of an image must change, are to fit into different displays such
as cell phones or PDAs, or to print on a given paper size or resolu-
tion.

Standard image scaling is not sufficient since it is oblivious to the
image content and typically can be applied only uniformly. Crop-
ping is limited since it can only remove pixels from the image pe-
riphery. More effective resizing can only be achieved by consider-
ing the image content and not only geometric constraints.

We propose a simple image operator, we term seam-carving, that
can change the size of an image by gracefully carving-out or in-
serting pixels in different parts of the image. Seam carving uses
an energy function defining the importance of pixels. A seam is a
connected path of low energy pixels crossing the image from top to
bottom, or from left to right. By successively removing or insert-
ing seams we can reduce, as well as enlarge, the size of an image
in both directions (see Figure 1). For image reduction, seam selec-
tion ensures that while preserving the image structure, we remove
more of the low energy pixels and fewer of the high energy ones.
For image enlarging, the order of seam insertion ensures a balance
between the original image content and the artificially inserted pix-
els. These operators produce, in effect, a content-aware resizing of
images.

We illustrate the application of seam carving and insertion for as-
pect ratio change, image retargeting, image content enhancement,
and object removal. Furthermore, by storing the order of seam re-
moval and insertion operations, and carefully interleaving seams in

Seam Carving for Content-Aware Image Resizing

Shai Avidan
Mitsubishi Electric Research Labs

Ariel Shamir
The Interdisciplinary Center & MERL

Figure 1: A seam is a connected path of low energy pixels in an image. On the left is the original image with one horizontal and one vertical
seam. In the middle the energy function used in this example is shown (the magnitude of the gradient), along with the vertical and horizontal
path maps used to calculate the seams. By automatically carving out seams to reduce image size, and inserting seams to extend it, we achieve
content-aware resizing. The example on the top right shows our result of extending in one dimension and reducing in the other, compared to
standard scaling on the bottom right.

Abstract

Effective resizing of images should not only use geometric con-
straints, but consider the image content as well. We present a sim-
ple image operator called seam carving that supports content-aware
image resizing for both reduction and expansion. A seam is an op-
timal 8-connected path of pixels on a single image from top to bot-
tom, or left to right, where optimality is defined by an image energy
function. By repeatedly carving out or inserting seams in one direc-
tion we can change the aspect ratio of an image. By applying these
operators in both directions we can retarget the image to a new size.
The selection and order of seams protect the content of the image,
as defined by the energy function. Seam carving can also be used
for image content enhancement and object removal. We support
various visual saliency measures for defining the energy of an im-
age, and can also include user input to guide the process. By storing
the order of seams in an image we create multi-size images, that are
able to continuously change in real time to fit a given size.

CR Categories: I.3.0 [Computing Methodologies]: Computer
Graphics—General; I.4.10 [Computing Methodologies]: Image
Processing And Computer Vision —Image Representation

Keywords: Image resizing, Image retargeting, Image seams,
Content-aware image manipulation, Display devices

1 Introduction

The diversity and versatility of display devices today imposes new
demands on digital media. For instance, designers must create dif-
ferent alternatives for web-content and design different layouts for
different devices. Moreover, HTML, as well as other standards, can
support dynamic changes of page layout and text. Nevertheless, up
to date, images, although being one of the key elements in digital
media, typically remain rigid in size and cannot deform to fit differ-
ent layouts automatically. Other cases in which the size, or aspect
ratio of an image must change, are to fit into different displays such
as cell phones or PDAs, or to print on a given paper size or resolu-
tion.

Standard image scaling is not sufficient since it is oblivious to the
image content and typically can be applied only uniformly. Crop-
ping is limited since it can only remove pixels from the image pe-
riphery. More effective resizing can only be achieved by consider-
ing the image content and not only geometric constraints.

We propose a simple image operator, we term seam-carving, that
can change the size of an image by gracefully carving-out or in-
serting pixels in different parts of the image. Seam carving uses
an energy function defining the importance of pixels. A seam is a
connected path of low energy pixels crossing the image from top to
bottom, or from left to right. By successively removing or insert-
ing seams we can reduce, as well as enlarge, the size of an image
in both directions (see Figure 1). For image reduction, seam selec-
tion ensures that while preserving the image structure, we remove
more of the low energy pixels and fewer of the high energy ones.
For image enlarging, the order of seam insertion ensures a balance
between the original image content and the artificially inserted pix-
els. These operators produce, in effect, a content-aware resizing of
images.

We illustrate the application of seam carving and insertion for as-
pect ratio change, image retargeting, image content enhancement,
and object removal. Furthermore, by storing the order of seam re-
moval and insertion operations, and carefully interleaving seams in

Seam Carving for Content-Aware Image Resizing

Shai Avidan
Mitsubishi Electric Research Labs

Ariel Shamir
The Interdisciplinary Center & MERL

Figure 1: A seam is a connected path of low energy pixels in an image. On the left is the original image with one horizontal and one vertical
seam. In the middle the energy function used in this example is shown (the magnitude of the gradient), along with the vertical and horizontal
path maps used to calculate the seams. By automatically carving out seams to reduce image size, and inserting seams to extend it, we achieve
content-aware resizing. The example on the top right shows our result of extending in one dimension and reducing in the other, compared to
standard scaling on the bottom right.

Abstract

Effective resizing of images should not only use geometric con-
straints, but consider the image content as well. We present a sim-
ple image operator called seam carving that supports content-aware
image resizing for both reduction and expansion. A seam is an op-
timal 8-connected path of pixels on a single image from top to bot-
tom, or left to right, where optimality is defined by an image energy
function. By repeatedly carving out or inserting seams in one direc-
tion we can change the aspect ratio of an image. By applying these
operators in both directions we can retarget the image to a new size.
The selection and order of seams protect the content of the image,
as defined by the energy function. Seam carving can also be used
for image content enhancement and object removal. We support
various visual saliency measures for defining the energy of an im-
age, and can also include user input to guide the process. By storing
the order of seams in an image we create multi-size images, that are
able to continuously change in real time to fit a given size.

CR Categories: I.3.0 [Computing Methodologies]: Computer
Graphics—General; I.4.10 [Computing Methodologies]: Image
Processing And Computer Vision —Image Representation

Keywords: Image resizing, Image retargeting, Image seams,
Content-aware image manipulation, Display devices

1 Introduction

The diversity and versatility of display devices today imposes new
demands on digital media. For instance, designers must create dif-
ferent alternatives for web-content and design different layouts for
different devices. Moreover, HTML, as well as other standards, can
support dynamic changes of page layout and text. Nevertheless, up
to date, images, although being one of the key elements in digital
media, typically remain rigid in size and cannot deform to fit differ-
ent layouts automatically. Other cases in which the size, or aspect
ratio of an image must change, are to fit into different displays such
as cell phones or PDAs, or to print on a given paper size or resolu-
tion.

Standard image scaling is not sufficient since it is oblivious to the
image content and typically can be applied only uniformly. Crop-
ping is limited since it can only remove pixels from the image pe-
riphery. More effective resizing can only be achieved by consider-
ing the image content and not only geometric constraints.

We propose a simple image operator, we term seam-carving, that
can change the size of an image by gracefully carving-out or in-
serting pixels in different parts of the image. Seam carving uses
an energy function defining the importance of pixels. A seam is a
connected path of low energy pixels crossing the image from top to
bottom, or from left to right. By successively removing or insert-
ing seams we can reduce, as well as enlarge, the size of an image
in both directions (see Figure 1). For image reduction, seam selec-
tion ensures that while preserving the image structure, we remove
more of the low energy pixels and fewer of the high energy ones.
For image enlarging, the order of seam insertion ensures a balance
between the original image content and the artificially inserted pix-
els. These operators produce, in effect, a content-aware resizing of
images.

We illustrate the application of seam carving and insertion for as-
pect ratio change, image retargeting, image content enhancement,
and object removal. Furthermore, by storing the order of seam re-
moval and insertion operations, and carefully interleaving seams in

Basic idea

Problem statement: we need to remove n pixels from each row

Basic idea: remove unimportant pixels

Content-awareness

! Remove less salient area
! Assign each pixel a cost

" Important pixel costs more if removed

Crop right Crop left

Scale

! Aspect ratio
"change it can be difficult

Importance of pixel

How to measure importance of a pixel?
• A simple idea – edges are important
• Edge energy:

Content-awareness

! Edges might be important
"Edge energy:

! Important objects
"Saliency energy

!

Crop right Crop left

Scale

! Aspect ratio
"change it can be difficult

Content-awareness

! Edges might be important
"Edge energy:

! Important objects
"Saliency energy

!

Greedy algorithm

Remove pixels or columns with the smallest energy?Pixel Removal

Optimal Least-energy pixels
(per row)

Least-energy columns
Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Pixel Removal

Optimal Least-energy pixels
(per row)

Least-energy columns
Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Seam carving

A better solution – seam carving
• Definition of seam: connected path of pixels from top to bottom (or

left to right). Exactly one in each row

A Seam

• A connected path of pixels from top to bottom (or left to
right). Exactly one in each row

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Finding the seam?

Finding the Seam?

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Finding the seam

The Optimal Seam

)(minarg* sEs
S

 ||||)(III
yx

E
w
w�

w
w

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Finding the seam
Going from top to bottom
• If M(i,j) = minimal cost of a seam going through (i,j)
• Then:

• Solved by dynamic programing

The Optimal Seam

• The recursion relation

• Can be solved efficiently using dynamic programming in

 (s=3 in the original algorithm)

� �)1,1(),,1(),1,1(min),(),(������ jijijijiEji MMMM

)(mnsO ��

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Dynamic Programming

• Invariant property:
– M(i,j) = minimal cost of a seam going through (i,j) (satisfying the seam

properties)

5 8 12 3

9 2 3 9

7 3 4 2

4 5 7 8

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Seam carving algorithm

• Starting with an image such as

Seam carving algorithm

• The weight/density/energy of each pixel is then calculated

Seam carving algorithm

• Seams can then be calculated and ranked via the dynamic
programming

Seam carving algorithm

• Then the seams are removed from the image

Results
Changing Aspect Ratio

Seam Carving

Scaling
Original

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

ResultsChanging Aspect ratio

Seams Scaling Cropping

Michael Rubinstein — MIT CSAIL – mrub@mit.edu

Seam insertion

Can we enlarge an image?
• Basic idea: reverse the seam carving process

Figure 6: Aspect ratio change of pictures of the Japanese master
Utagawa Hiroshige. In both examples the original image is widened
by seam insertion.

min
sx,sy,a

k

Â
i=1

E(ais
x

i
+(1�ai)s

y

i
) (5)

where k = r + c, r = (m�m
0), c = (n�n

0) and ai is used as a pa-
rameter that determine if at step i we remove a horizontal or vertical
seam: ai 2 {0,1} ,Âk

i=1 ai = r ,Âk

i=1(1�ai) = c

We find the optimal order using a transport map T that specifies,
for each desired target image size n

0 ⇥m
0, the cost of the optimal

sequence of horizontal and vertical seam removal operations. That
is, entry T (r,c) holds the minimal cost needed to obtain an image
of size n� r⇥m� c. We compute T using dynamic programming.
Starting at T(0,0) = 0 we fill each entry (r,c) choosing the best of
two options - either removing a horizontal seam from an image of
size n� r⇥m�c+1 or removing a vertical seam from an image of
size n� r +1⇥m� c:

T(r,c) = min(T(r�1,c)+E(sx(In�r�1⇥m�c)),
T(r,c�1)+E(sy(In�r⇥m�c�1)))

(6)

where In�r⇥m�c denotes an image of size n� r⇥m� c, E(sx(I))
and E(sy(I)) are the cost of the respective seam removal operation.

We store a simple n⇥m 1-bit map which indicates which of the
two options was chosen in each step of the dynamic programming.
Choosing a left neighbor corresponds to a vertical seam removal
while choosing the top neighbor corresponds to a horizontal seam
removal. Given a target size n

0⇥m
0 where n

0 = n�r and m
0 = m�c,

we backtrack from T(r,c) to T(0,0) and apply the corresponding
removal operations. Figure 7 shows an example of different retar-
geting strategies on an image.

4.3 Image Enlarging

The process of removing vertical and horizontal seams can be seen
as a time-evolution process. We denote I

(t) as the smaller image

Figure 7: Optimal order retargeting: On the top is the original im-
age and its transport map T. Given a target size, we follow the
optimal path (white path on T) to obtain the retargeted image (top
row, right). For comparison we show retargeting results by alter-
nating between horizontal and vertical seam removal (top row, left),
removing vertical seams first (bottom row, left), and removing hor-
izontal seams first (bottom row, right)

created after t seam have been removed from I. To enlarge an image
we approximate an ‘inversion’ of this time evolution and insert new
‘artificial’ seams to the image. Hence, to enlarge the size of an
image I by one we compute the optimal vertical (horizontal) seam
s on I and duplicate the pixels of s by averaging them with their left
and right neighbors (top and bottom in the horizontal case).

Using the time evolution notation, we denote the resulting image as
I
(�1). Unfortunately, repeating this process will most likely create

a stretching artifact by choosing the same seam (Figure 8(b)). To
achieve effective enlarging, it is important to balance between the
original image content and the artificially inserted parts. Therefore,
to enlarge an image by k, we find the first k seams for removal,
and duplicate them in order to arrive at I

(�k) (Figure 8(c)). This
can be viewed as the process of traversing back in time to recover
pixels from a larger image that would have been removed by seam
removals (although it is not guaranteed to be the case).

Duplicating all the seams in an image is equivalent to standard
scaling (see Figure 8 (e)). To continue in content-aware fashion
for excessive image enlarging (for instance, greater than 50%), we
break the process into several steps. Each step does not enlarge the
size of the image in more than a fraction of its size from the pre-
vious step, essentially guarding the important content from being
stretched. Nevertheless, extreme enlarging of an image would most
probably produce noticeable artifacts (Figure 8 (f)).

4.4 Content Amplification

Instead of enlarging the size of the image, seam carving can be used
to amplify the content of the image while preserving its size. This
can be achieved by combining seam carving and scaling. To pre-
serve the image content as much as possible, we first use standard

Seam insertion

Find k seams to insert
Then interpolate pixels

(a) (b) (c) (d)

(e) (f) (g)

Figure 8: Seam insertion: finding and inserting the optimum seam on an enlarged image will most likely insert the same seam again and again
as in (b). Inserting the seams in order of removal (c) achieves the desired 50% enlargement (d). Using two steps of seam insertions of 50% in
(f) achieves better results than scaling (e). In (g), a close view of the seams inserted to expand figure 6 is shown.

Figure 9: Content amplification. On the right: a combination of
seam carving and scaling amplifies the content of the original image
(left).

scaling to enlarge the image and only then apply seam carving on
the larger image to carve the image back to its original size (see
Figure 9). Note that the pixels removed are in effect sub-pixels of
the original image.

4.5 Seam Carving in the gradient domain

There are times when removing multiple seams from an image still
creates noticeable visual artifacts in the resized image. To over-
come this we can combine seam carving with Poisson reconstruc-
tion ([Perez et al. 2003]). Specifically, we compute the energy func-
tion image as before, but instead of removing the seams from the
original image we work in the gradient domain and remove the
seams from the x and y derivatives of the original image. At the
end of this process we use a poisson solver to reconstruct back the
image. Figure 10 shows an example of this technique.

4.6 Object Removal

We use a simple user interface for object removal. The user marks
the target object to be removed and then seams are removed from
the image until all marked pixels are gone. The system can auto-
matically calculate the smaller of the vertical or horizontal diame-
ters (in pixels) of the target removal region and perform vertical or
horizontal removals accordingly (Figure 11). Moreover, to regain
the original size of the image, seam insertion could be employed on
the resulting (smaller) image (see Figure 12). Note that, contrary

Figure 10: Seam Carving in the gradient domain. The original
image (top left) is retargeted using standard technique (top right)
and in the gradient domain (bottom right). Zoom in comparison is
shown on bottom left.

Figure 11: Simple object removal: the user marks a region for re-
moval (green), and possibly a region to protect (red), on the original
image (see inset in left image). On the right image, consecutive ver-
tical seam were removed until no ‘green’ pixels were left.

Super-Resolution

Results

Bicubic

Results

Single-Image SR

Results

Single-Image SR

Super-ResolutionBi-CubicOriginal

Super-Resolution
Goal
• Produce a detailed, realistic output image.
• Be faithful to the low resolution input image.

Basic idea
• Build some statistical model of image.
• Enforce an up-sampled image to obey those statistics.

Types of methods
• Exemplar based – a collection of examples as the “image model”
• Optimization based – mathematical image model
• Deep learning – learned using deep neural networks

Polygon-based representations of 3D
objects offer resolution independence

over a wide range of scales. With this approach, object
boundaries remain sharp when we zoom in on an object
until very close range, where faceting appears due to

finite polygon size (see Figure 1).
However, constructing polygon
models for complex, real-world
objects can be difficult. Image-
based rendering (IBR), a comple-
mentary approach for representing
and rendering objects, uses cameras
to obtain rich models directly from
real-world data. Unfortunately,
these representations no longer
have resolution independence.
When we enlarge a bitmapped
image, we get a blurry result. Figure
2 shows the problem for an IBR ver-
sion of a teapot image, rich with
real-world detail. Standard pixel
interpolation methods, such as
pixel replication (Figures 2b and 2c)
and cubic-spline interpolation (Fig-
ures 2d and 2e), introduce artifacts

or blur edges. For images enlarged three octaves (fac-
tors of two) such as these, sharpening the interpolated
result has little useful effect (Figures 2f and 2g).

We call methods for achieving high-resolution

enlargements of pixel-based images super-resolution
algorithms. Many applications in graphics or image pro-
cessing could benefit from such resolution indepen-
dence, including IBR, texture mapping, enlarging
consumer photographs, and converting NTSC video
content to high-definition television. We built on anoth-
er training-based super-resolution algorithm1 and devel-
oped a faster and simpler algorithm for one-pass
super-resolution. (The one-pass, example-based algo-
rithm gives the enlargements in Figures 2h and 2i.) Our
algorithm requires only a nearest-neighbor search in the
training set for a vector derived from each patch of local
image data. This one-pass super-resolution algorithm is
a step toward achieving resolution independence in
image-based representations. We don’t expect perfect
resolution independence—even the polygon represen-
tation doesn’t have that—but increasing the resolution
independence of pixel-based representations is an
important task for IBR.

Example-based approaches
Super-resolution relates to image interpolation—how

should we interpolate between the digital samples of a
photograph? Researchers have long studied this prob-
lem, although only recently with machine learning or
sampling approaches. (See the “Related Approaches”
sidebar for more details.)

Three complimentary ways exist for increasing an
image’s apparent resolution:

0272-1716/02/$17.00 © 2002 IEEE

Image-Based Modeling, Rendering, and Lighting

56 March/April 2002

To address the lack of

resolution independence in

most models, we developed

a fast and simple one-pass,

training-based super-

resolution algorithm for

creating plausible high-

frequency details in zoomed

images.

William T. Freeman, Thouis R. Jones, and
Egon C. Pasztor
Mitsubishi Electric Research Labs

Example-Based
Super-Resolution

1 (a) When we model an object
with traditional polygon
techniques, it lacks some of the
richness of real-world objects but
behaves properly under enlarge-
ment. (b) The teapot’s edge
remains sharp when we enlarge it.

(a) (b)

Basic idea
Replace low-res image patches in the input image
with high-res patches from a database

patch information alone is insufficient for super-
resolution, and we must take into account spatial neigh-
borhood effects.

We explored two different approaches to exploit neigh-
borhood relationships in super-resolution algorithms.
The first uses a Markov network to probabilistically model
the relationships between high- and low-resolution patch-
es, and between neighboring high-resolution patches.1-3

It uses an iterative algorithm, which usually converges
quickly. The second approach, which we describe in detail
in this article, is a one-pass algorithm that uses the same
local relationship information as the Markov network. It’s
a fast, approximate solution to the Markov network.

Markov network
We model the spatial relationships between patches

using a Markov network, which has many well-known
uses in image processing.9 In Figure 5, the circles rep-
resent network nodes, and the lines indicate statistical

dependencies between nodes. We let the low-resolution
image patches be observation nodes, y. We select the 16
or so closest examples to each input patch as the differ-
ent states of the hidden nodes, x, that we seek to esti-
mate. For this network, the probability of any given
high-resolution patch choice for each node is propor-
tional to the product of all sets of compatibility matri-
ces ψ relating the possible states of each pair of
neighboring hidden nodes, and vectors φ relating each
observation to the underlying hidden states:

(1)

Z is a normalization constant, and the first product is
over all neighboring pairs of nodes, i and j. yi and xi are
the observed low-resolution and estimated high-reso-
lution patches at node i, respectively.

To specify the Markov network’s ψij (xi, xj) functions,

P x y
Z

x x x yij

ij

i j i

i

i i| , ,() = () ()
()
∏ ∏1

ψ φ

IEEE Computer Graphics and Applications 59

Input patch

Closest image
patches from database

Corresponding
high-resolution

patches from database

(a)

(b)

y3

y2

y4

y1

x3

x2

x4

x1

Φ(xi, yi)

Ψ(xi, xj)

Low-resolution patches

High-resolution patches

5 Markov
network model
for the super-
resolution
problem. The
low-resolution
patches at each
node yi are the
observed input.
The high-
resolution patch
at each node xi

is the quantity
we want to
estimate.

4 (a) Estimated high frequencies
for the tiger image (Figure 3e
shows the true high frequencies)
formed by substituting the high
frequencies of the closest training
patch to Figure 3d. The lack of a
recognizable image indicates that
an algorithm using only local low-
resolution information is insuffi-
cient; we must also use spatial
context. (b) An input patch and
similar low-resolution (middle
rows) and paired high-resolution
(bottom rows) patches. For many of
these similar low-resolution patch-
es, the high-resolution patches are
different, reinforcing the lesson
from (a).

patch information alone is insufficient for super-
resolution, and we must take into account spatial neigh-
borhood effects.

We explored two different approaches to exploit neigh-
borhood relationships in super-resolution algorithms.
The first uses a Markov network to probabilistically model
the relationships between high- and low-resolution patch-
es, and between neighboring high-resolution patches.1-3

It uses an iterative algorithm, which usually converges
quickly. The second approach, which we describe in detail
in this article, is a one-pass algorithm that uses the same
local relationship information as the Markov network. It’s
a fast, approximate solution to the Markov network.

Markov network
We model the spatial relationships between patches

using a Markov network, which has many well-known
uses in image processing.9 In Figure 5, the circles rep-
resent network nodes, and the lines indicate statistical

dependencies between nodes. We let the low-resolution
image patches be observation nodes, y. We select the 16
or so closest examples to each input patch as the differ-
ent states of the hidden nodes, x, that we seek to esti-
mate. For this network, the probability of any given
high-resolution patch choice for each node is propor-
tional to the product of all sets of compatibility matri-
ces ψ relating the possible states of each pair of
neighboring hidden nodes, and vectors φ relating each
observation to the underlying hidden states:

(1)

Z is a normalization constant, and the first product is
over all neighboring pairs of nodes, i and j. yi and xi are
the observed low-resolution and estimated high-reso-
lution patches at node i, respectively.

To specify the Markov network’s ψij (xi, xj) functions,

P x y
Z

x x x yij

ij

i j i

i

i i| , ,() = () ()
()
∏ ∏1

ψ φ

IEEE Computer Graphics and Applications 59

Input patch

Closest image
patches from database

Corresponding
high-resolution

patches from database

(a)

(b)

y3

y2

y4

y1

x3

x2

x4

x1

Φ(xi, yi)

Ψ(xi, xj)

Low-resolution patches

High-resolution patches

5 Markov
network model
for the super-
resolution
problem. The
low-resolution
patches at each
node yi are the
observed input.
The high-
resolution patch
at each node xi

is the quantity
we want to
estimate.

4 (a) Estimated high frequencies
for the tiger image (Figure 3e
shows the true high frequencies)
formed by substituting the high
frequencies of the closest training
patch to Figure 3d. The lack of a
recognizable image indicates that
an algorithm using only local low-
resolution information is insuffi-
cient; we must also use spatial
context. (b) An input patch and
similar low-resolution (middle
rows) and paired high-resolution
(bottom rows) patches. For many of
these similar low-resolution patch-
es, the high-resolution patches are
different, reinforcing the lesson
from (a).MRF optimization

Modeling smoothness

patch information alone is insufficient for super-
resolution, and we must take into account spatial neigh-
borhood effects.

We explored two different approaches to exploit neigh-
borhood relationships in super-resolution algorithms.
The first uses a Markov network to probabilistically model
the relationships between high- and low-resolution patch-
es, and between neighboring high-resolution patches.1-3

It uses an iterative algorithm, which usually converges
quickly. The second approach, which we describe in detail
in this article, is a one-pass algorithm that uses the same
local relationship information as the Markov network. It’s
a fast, approximate solution to the Markov network.

Markov network
We model the spatial relationships between patches

using a Markov network, which has many well-known
uses in image processing.9 In Figure 5, the circles rep-
resent network nodes, and the lines indicate statistical

dependencies between nodes. We let the low-resolution
image patches be observation nodes, y. We select the 16
or so closest examples to each input patch as the differ-
ent states of the hidden nodes, x, that we seek to esti-
mate. For this network, the probability of any given
high-resolution patch choice for each node is propor-
tional to the product of all sets of compatibility matri-
ces ψ relating the possible states of each pair of
neighboring hidden nodes, and vectors φ relating each
observation to the underlying hidden states:

(1)

Z is a normalization constant, and the first product is
over all neighboring pairs of nodes, i and j. yi and xi are
the observed low-resolution and estimated high-reso-
lution patches at node i, respectively.

To specify the Markov network’s ψij (xi, xj) functions,

P x y
Z

x x x yij

ij

i j i

i

i i| , ,() = () ()
()
∏ ∏1

ψ φ

IEEE Computer Graphics and Applications 59

Input patch

Closest image
patches from database

Corresponding
high-resolution

patches from database

(a)

(b)

y3

y2

y4

y1

x3

x2

x4

x1

Φ(xi, yi)

Ψ(xi, xj)

Low-resolution patches

High-resolution patches

5 Markov
network model
for the super-
resolution
problem. The
low-resolution
patches at each
node yi are the
observed input.
The high-
resolution patch
at each node xi

is the quantity
we want to
estimate.

4 (a) Estimated high frequencies
for the tiger image (Figure 3e
shows the true high frequencies)
formed by substituting the high
frequencies of the closest training
patch to Figure 3d. The lack of a
recognizable image indicates that
an algorithm using only local low-
resolution information is insuffi-
cient; we must also use spatial
context. (b) An input patch and
similar low-resolution (middle
rows) and paired high-resolution
(bottom rows) patches. For many of
these similar low-resolution patch-
es, the high-resolution patches are
different, reinforcing the lesson
from (a).

Results

training set. This improves the match with negligible
cost. In all one-pass algorithm examples in this article,
we connect each patch pair to its 32 approximate near-
est neighbors, which we compute with a method simi-
lar to Nene and Nayar.12

Training set and parameters
We build training sets for the super-resolution algo-

rithm from band-pass and high-pass pairs taken from a
set of training images. Spatially corresponding M × M
low-frequency and N × N high-frequency patches are
taken from image pairs.

Patch pairs are contrast normalized, as we described
earlier. We create the search vector for a patch pair by
concatenating the low-frequency patch and the region
that will be overlapped in the high-frequency patch dur-
ing the prediction phase, adjusted by the weighting fac-
tor α (see Figure 9).

We used the same set of training images for all the
super-resolution examples in this article (see Figure 9).
We took them with a Nikon Coolpix 950 digital camera
at 640 × 480 resolution and used the highest quality

compression settings.
Paying attention to parameter set-

tings can improve image quality. For
both levels of zooming, we used 5 ×
5 pixel high-resolution patches (N =
5) with 7 × 7 pixel low-resolution
patches (M = 7). The overlap
between adjacent high-resolution
patches was 1 pixel. These patch
sizes capture small details well.

For a more conservative estimate
of the higher resolution detail (not
used here), we apply the algorithm
four times at staggered offsets rela-
tive to the patch sampling grid. This
gives four independent estimates of
the high frequencies, which we can
then average together, smoothing
some image details but potentially
reducing artifacts.

The parameter α controls the
trade-off between matching the low-
resolution patch data and finding a
high-resolution patch that is com-
patible with its neighbors. The value

gave good quality results in our
experiments. The fraction compen-
sates for the different relative areas
of the low-frequency patches and
overlapped high-frequency pixels as
a function of M and N.

Results
Figure 10 shows our algorithm

applied to a man’s face. The training
set is from the images in Figure 9.

The resulting zooms are significantly sharper than those
from cubic-spline interpolation, preserving sharp edges
and image details.

Figure 11 shows an example where our low-level train-
ing set alone isn’t enough to distinguish JPEG compres-
sion noise from correct image data. The algorithm
interprets the artifacts as image data and enhances them.
Extensions of specialized high-level models5 might prop-
erly handle images like this.

It might seem that to enlarge an image of one class—
for example, a flower—we would need a training set that
contained images of that same class—for example, other
flowers. However, this isn’t the case. Generic images can
be a good training set for other generic images. Figure
12 shows an image (blurred and down-sampled from
an original high-resolution image) zoomed with the
one-pass super-resolution algorithm along with the
same image zoomed with cubic spline and the original
high-resolution image. Figure 12c shows the images we
used from the training set in the super-resolution zoom.
Figure 12b shows the details of a few patches in the
zoomed image and their corresponding best matches in

α =

−
0 1

2 1

2

.
M
N

Image-Based Modeling, Rendering, and Lighting

62 March/April 2002

9 Training images we used for the
examples in this article (unless
otherwise stated). We sampled
patches at 1 pixel offsets over each
of these images and over their
synthetically generated low-resolu-
tion counterparts (after preprocess-
ing steps). These six 200 × 200
images yielded a training set of
slightly more than 200,000 high-
and low-resolution image patch
pairs.

10 (a) Original
image.
(b) Cubic-spline
interpolation.
(c) One-pass
super-
resolution
interpolation. (a) (b) (c)

11 Failure example. (a) Original
image. (b) Cubic-spline interpola-
tion by factor of 4 in each dimen-
sion. Note JPEG compression
artifacts are visible. (c) One-pass
super-resolution interpolation.
Without high-level information, the
algorithm treats the JPEG noise as a
signal and amplifies it. (a) (b) (c)

Restoration

Object
removal

Image completion

Problem statement

p

空洞的边界 已知的样本区域

Examplar-based methods

Examplar-based methods

“剥洋葱”

The order matters!

带有优先级的填充策略

Image Completion by
Example-Based Inpainting

A. Criminisi, P. Perez, and K. Toyama,
CVPR 2003

带有优先级的填充策略

1. 用户选择需要补全的区域
2. 确定目前空洞边缘的像素位置
3. 为每一个像素计算优先级权重
4. 查找到优先级权重最大的像素位置p, 并确定对应的块P
5. 从图像已知区域匹配出最相似的块S, 对P中不可见的像素进行补全
6. 更新优先级权重
7. 重复2-6步骤, 直到所有的像素被修复

算法概览

带有优先级的填充策略

• 优先级度量:

置信度项:待填充块中有多少已知像素

数据项:希望顺着边缘填充（保结构）

带有优先级的填充策略

a图显示置信度的分布, 绿色表示置信度高的区域
红色表示相对较低的取悦

b图显示数据项的分布, 绿色表示置信度高的区域

实验结果

实验结果

实验结果

实验结果

基本问题: 结构vs纹理

结构信息的补全比纹理信息的补全要困难的多, 能否通过添
加一些交互来解决这个问题?

third column shows the results of structure propagation, by
which the most salient structures are seamlessly propagated
from the known region into the unknown region. Completed
structures look natural. The right-most column shows the
final results which are visually pleasing.

For the sunset image (800×600) in the first row, the moun-
tain is occluded by a very large unknown region. The moun-
tain completion by structure propagation is well controlled
by a single curve. The patch size is set at 9 and arbitrary
rotation is allowed for the curve to generate sample patches.
For the jeep example (640×457) in the second row, arbitrary
rotation is also enabled for the top curve because there are
not enough samples in the known regions. For these two
examples, the process of structure propagation took fewer
than 3 seconds for each curve. Texture propagation took
about 2 to 20 seconds for each subregion.

The hawk example (800×505) in the third row contains two
X-junctions. Structure propagation took 6 seconds for opti-
mization, and the patch size is 27×31. We demonstrate the
intermediate optimization results at different iterations of
the belief propagation algorithm in our accompanying video.
The rider example (504×462) in the fourth row shows a more
complex structure (with a T-junction and five X-junctions)
to be completed. Structure propagation allows the user to
edit or control the completion result. For example, the short
vertical fence between two long vertical fences may not be
present in the original image but are added by the user in
the completed image. Note that belief propagation produces
good results despite a loop in the graph for this example. In
the fifth row, the ladder example (460×596) contains three
X-junctions. For the last three examples (hawk, rider, and
ladder), the belief propagation algorithm automatically finds
the junctions from the samples and copies them to the in-
tersection points. Note that the intensity or color of the
samples in the completed region might be slightly different
from the original samples due to photometric correction.

Previously developed automatic image completion algo-
rithms may not be able to generate good quality results for
the examples shown in Figure 9. Figure 7 shows unsatis-
factory completion results using our implementation of Cri-
minisi’s approach [Criminisi et al. 2003]. High-level human
knowledge is required to complete these images. In our ap-
proach, human knowledge is effectively integrated through a
simple curve-based interface.

Figure 8 shows completion results of two images from [Drori
et al. 2003]. For the painting example in the top row, our
result is similar to or slightly better than Drori’s. For the
train example in the bottom row, our result is visually more
pleasing although our approach cannot complete the missing
locomotive yet.

Our approach only encourages a coherent completion result
but has no ability to handle depth ambiguity. The visibility
order is determined by the samples that can be found. In
our method, we only treat it as a planar graph without con-
sideration of occlusions. Introducing the concept of layers
is one of the possible solutions to handle depth ambiguity,
as shown in Figure 10. We complete the missing region in
three separate layers: vertical trunk, horizontal trunk and
background layer. In the first two layers, the trunks are
completed by specifying two curves along the trunk bound-
aries and automatically extracted by the Bayesian matting
technique. The background layer is completed by texture
propagation. The final completion results are the composi-

Figure 7: Comparison with Criminisi’s approach. Our re-
sults are shown in Figure 9.

Figure 8: Comparison with Drori’s approach. From top to
bottom: input images, results from [Drori et al. 2003] and
our results.

tion of the three layers from back to front.

6 Discussion and Conclusion

In this paper, we have presented an interactive approach to
image completion. Through a curve-based interface, the user
indicates what important structures should be completed
before remaining unknown regions are filled in. Structure
propagation is formulated as a global optimization problem
that is solved efficiently by dynamic programming or belief
propagation. By using an intuitive interface and efficient
optimization algorithms, our system effectively integrates
human knowledge into the completion process to produce
good results even for many challenging images. Moreover,
our system allows the user to control the completion process

Image Completion with Structure
Propagation

J. Sun, L. Yuan, J. Jia, and H. Shum
SIGGRAPH 2005

带交互的补全算法

算法概览

带有优先级的填充策略

1. 用户输入：用户在空洞区域以及已知图像区域勾画结构线,
2. 结构补全：该算法在已知图像区域采样, 通过优化一个目标能量来决定
如何将样本填充被结构线覆盖的空洞区域

3. 纹理补全：补全剩余区域的纹理
4. 光测度修正

目标能量

1 2
(,)

() () (,),i i j
i v i j

E X E x E x x
eÎ Î

= +å å

1() () ().i s s i i I iE x k E x k E x= +

能量函数定义如下:

实验结果

实验结果

Criminisi等人的方法

实验结果

实验结果

Criminisi等人的方法

p

空洞的边界 已知的样本区域

Recap: examplar-based methods

How to solve patch match?

Many algorithms need to search the most similar patches

Matching Patches

• Nearest Neighbor Search

Patch p

Patch p with 25 dimensions

Which patch is most similar?

Patch match

A naïve searching algorithm

Matching Patches

• Naïve Approach

Patch p

Which patch is most similar?

Sample every possible patch
to find best match!

O(mM2)

PatchMatch: A randomized
correspondence algorithm for

structural image editing
Barnes, C., Shechtman, E., Finkelstein, A

SIGGRAPH 2009

Slides credit: Jiamin Bai
http://vis.berkeley.edu/courses/cs294-69-fa11/wiki/images/1/18/05-PatchMatch.pdf

快速的图像块匹配算法

http://vis.berkeley.edu/courses/cs294-69-fa11/wiki/images/1/18/05-PatchMatch.pdf

PatchMatch algorithm

Key ideas:
• Neighboring pixels have coherent matches
• Large number of random sampling will yield some good guesses.

Key idea

• Offset: dispalcement from source to targe
• Neighbors have similar offsets

Key Ideas

Coherent matches with neighbors

Key idea

Large number of random sampling will yield some good guesses

Key Ideas

Large numbers of guesses

M number of total pixels

Probability of correct random guess: 1/M

Probability of incorrect random guess: 1 - 1/M

Probability of all pixels with incorrect guess: (1 - 1/M)M [approximately 0.37]

�Probability of at least 1 pixel with correct guess : 1 - (1 - 1/M)M

�Probability of at least 1 pixel with good enough guess: 1 - (1 - C/M)M

Approximate nearest-neighbor
algorithm

11

Algorithm: 3 steps

Algorithm – Initialization

• Each pixel is given a random
patch offset as initialization

Step 1

Algorithm – Propagation

• Each pixels checks if the offsets
from neighboring patches give
a better matching patch. If so,
adopt neighbor’s patch offset.

Step 2

Algorithm – Search

• Each pixels searches for better
patch offsets within a
concentric radius around the
current offset.

• The search radius starts with
the size of the image and is
halved each time until it is 1.

Step 3

Algorithm
1. Initialize pixels with random patch

offsets

2. Check if neighbors have better patch
offsets

3. Search in concentric radius around the
current offset for better better patch
offsets

4. Go to Step 2 until converge.

O(mMlogM)

Full algorithm

Algorithm

Speed Improvements

Results

Using local pathces may be insufficient

Criminisi et al. result

Scene Completion Using
Millions of Photographs

James Hays and Alexei A. Efros
SIGGRAPH 2007

利用更多大数据

Scene Matching for Image Completion

Data
2.3 Million unique images from Flickr groups and keyword searches.

Scene Completion Result

The Algorithm

Input image Scene Descriptor Image Collection

200 matches20 completions
Context matching
+ blending

…

…

Scene Matching

Scene Descriptor

… 200 total

Context Matching

Optimization based super-resolution

Recover high-resolution image by solving an optimization problem

Equations

Xiaowei Zhou

March 2020

Iout = argmin
X

kIin �K ⌦Xk2 + �R(X) (1)

1

Likelihood Regularizer

Input low-res imageOutput high-res image Variable

Deep learning
– a more powerful data-driven approach

Deep learning based super-resolution

https://bigjpg.com/

https://bigjpg.com/

