图像缩放与补全

www.cad.zju.edu.cn/home/xzhou/

Some slides borrowed from Guofeng Zhang (ZJU), Lingqi Yan (UCSB)

Outline

• Image resizing (图像缩放)

• Image completion (图像补全)

Image resizing

Change image size / resolution in Photoshop

	Image Size	
Adobe Photoshop CS3 - [Untitled-1 @ 33.3% (wikihow, RGB/8)] File Edit Image Layer Select Filter View Window T • 4 <u>T</u> , Mode • TT 128 p	Pixel Dimensions: 14.6M <mark>像素尺寸</mark> Width: 2608 pixels ‡	OK Cancel
Adjustments Adjustments Adjustments Duplicate Apply Image Calculations	Height: 1952 pixels 💠 🔳 🖤	Auto
Image Size Alt+Ctrl+I Canvas Size Alt+Ctrl+C Pixel Aspect Ratio Image Size	Document Size: 物理尺寸 Width: 10.867	
Image: Strain	Height: 8.133 inches 🗘 🖉	
Image: Constraint of the second se	Resolution: 240 pixels/inch ‡	
Trap wiki How to Resize	Constrain Proportions	
	🗹 Resample Image:	
	Bicubic (best for smooth gradients)	

Sampling

Reducing image size – down-sampling

Is sampling really so easy?

Jaggies (Staircase Pattern)

Is sampling really so easy?

Moiré Patterns in Imaging

Skip odd rows and columns

Is sampling really so easy?

Wagon Wheel Illusion (False Motion)

Aliasing (走样)

Aliasing - artifacts due to sampling

- Jaggies / Moire effect undersampling in space
- Wagon wheel effect undersampling in time

Why does aliasing happen?

• Signals are changing too fast (high frequency), but sampled too slow

Sines and Cosines

Frequencies $\cos 2\pi f x$

Fourier Transform

Represent a function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830

 $f(x) = \frac{A}{2} + \frac{2A\cos(t\omega)}{\pi} - \frac{2A\cos(3t\omega)}{3\pi} + \frac{2A\cos(5t\omega)}{5\pi} - \frac{2A\cos(7t\omega)}{7\pi} + \cdots$

Fourier Transform Decomposes A Signal Into Frequencies

$$f(x) F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i\omega x} dx F(\omega)$$
spatial frequency domain
Inverse transform
$$f(x) = \int_{-\infty}^{\infty} F(\omega)e^{2\pi i\omega x} d\omega$$

Recall
$$e^{ix} = \cos x + i \sin x$$

Higher Frequencies Need Faster Sampling

Undersampling Creates Frequency Aliases

High-frequency signal is insufficiently sampled: samples erroneously appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called "aliases"

Sampling = Repeating Frequency Contents

https://www.researchgate.net/figure/The-evolution-of-sampling-theorem-a-The-time-domain-of-the-band-limited-signal-and-b_fig5_301556095

Aliasing = Mixed Frequency Contents

How can we reduce aliasing?

Option I: Increasing sampling rate

Option 2: Anti-aliasing

Filtering out high frequendcies before sampling

Antialiasing = Limiting, then repeating

Filtering = Getting rid of certain frequency contents

Visualizing Image Frequency Content

Filter Out High Frequencies (Blur)

Low-pass filter

Filter Out Low Frequencies Only (Edges)

High-pass filter

Filtering = Convolution (= Averaging)

Convolution

Point-wise local averaging in a "sliding window"

Convolution

 Signal
 1
 3
 5
 3
 7
 1
 3
 8
 6
 4

Filter

 $1 \times (1/4) + 3 \times (1/2) + 5 \times (1/4) = 3$

Convolution

Signal

1 3 5 3 7 1 3 8 6 4

Filter

 $3 \times (1/4) + 5 \times (1/2) + 3 \times (1/4) = 4$

Result

Convolution Theorem

Spatial Domain

Box Filter

Example: 3x3 box filter

Box Filter

What is the Fourier transform of a rectangular function?

Box Function = "Low Pass" Filter

Wider Filter Kernel = Lower Frequencies

Gaussian filter

$$f(x,y)=A\exp{\left(-\left(rac{(x-x_o)^2}{2\sigma_X^2}+rac{(y-y_o)^2}{2\sigma_Y^2}
ight)
ight)}.$$

Guanssian filter

What is the Fourier transform of a Gaussian?

Regular Sampling

Note jaggies in rasterized triangle where pixel values are pure red or white

Antialiased Sampling

Pre-Filter (remove frequencies above Nyquist) Sample

Note antialiased edges in rasterized triangle where pixel values take intermediate values

Antialiasing

Antialiasing

Image magnification

Image magnification

Inverse of down-sampling (up-sampling)

Interpolation

Nearest-neighbor interpolation

Not continuous Not smooth

Linear interpolation

Continous Not smooth

Cubic interpolation

Continous Smooth

Want to sample texture value f(x,y) at red point

Black points indicate texture sample locations

Take 4 nearest sample locations, with texture values as labeled.

And fractional offsets, (s,t) as shown

Linear interpolation (1D)

$$\operatorname{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0)$$

Two helper lerps (horizontal) $u_0 = \operatorname{lerp}(s, u_{00}, u_{10})$ $u_1 = \operatorname{lerp}(s, u_{01}, u_{11})$

Linear interpolation (1D)

$$\operatorname{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0)$$

Two helper lerps

$$u_0 = \operatorname{lerp}(s, u_{00}, u_{10})$$

 $u_1 = \operatorname{lerp}(s, u_{01}, u_{11})$

Final vertical lerp, to get result: $f(x,y) = \operatorname{lerp}(t,u_0,u_1)$

Comparison

Generally bilinear is good enough

Nearest

Bilinear

Bicubic

Challenge

Changing aspect ratio causes distortion

Cropping may remove important contents

Content-aware resizing

Seam Carving for Content-Aware Image Resizing

Shai Avidan Mitsubishi Electric Research Labs Ariel Shamir The Interdisciplinary Center & MERL

Basic idea

Problem statement: we need to remove n pixels from each row

Basic idea: remove unimportant pixels

Importance of pixel

How to measure importance of a pixel?

- A simple idea edges are important
- Edge energy:

$$E(I) = \left|\frac{\partial I}{\partial x}\right| + \left|\frac{\partial I}{\partial y}\right|$$

east-energy columns

A better solution – seam carving

• Definition of seam: connected path of pixels from top to bottom (or left to right). Exactly one in each row

Finding the seam?

Finding the seam

$E(\mathbf{I}) = \left|\frac{\partial}{\partial x}\mathbf{I}\right| + \left|\frac{\partial}{\partial y}\mathbf{I}\right| \Longrightarrow s^* = \arg\min_{S} E(s)$

Finding the seam

CSAIL; from top to bottom

- If M(i,j) = minimal cost of a seam going through (i,j)
- Then:

 $\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$

Solved by dynamic programing

 $O(s \cdot n \cdot m)$

5	8	12	3
9	2	З	9
7	3	4	2
4	5	7	8

• Starting with an image such as

• The weight/density/energy of each pixel is then calculated

• Seams can then be calculated and ranked via the dynamic programming

• Then the seams are removed from the image

Original

Seam Carving

Seams

Scaling

Seam insertion

Can we enlarge an image?

• Basic idea: reverse the seam carving process

Seam insertion

Find k seams to insert Then interpolate pixels

Shai Avidan Mitsubishi Electric Research Lab Ariel Shamir The interdisciplinary Center & MERL

Super-Resolution

Original

Bi-Cubic

Super-Resolution

Super-Resolution

Goal

- Produce a detailed, realistic output image.
- Be faithful to the low resolution input image.

Basic idea

- Build some statistical model of image.
- Enforce an up-sampled image to obey those statistics.

Types of methods

- Exemplar based a collection of examples as the "image model"
- Optimization based mathematical image model
- Deep learning learned using deep neural networks

Image-Based Modeling, Rendering, and Lighting

Example-Based Super-Resolution

William T. Freeman, Thouis R. Jones, and Egon C. Pasztor *Mitsubishi Electric Research Labs*

Basic idea

Replace low-res ima with high-res patche

Input patch

Closest image patches from database

Corresponding high-resolution patches from database

#17: Range [-2.03, 1.82] #18: Range [-1.87, 3.14] Dime [7, 7] Dime [7, 7]

MRF optimization high-resolution patches from database Modeling smoothness

#20: Range [-2.46, 2.26] Dims [7, 7]

Dims [7, 7]

Range [-2.26, 2.25] Dims [7, 7]

Dims [7, 7]

Dims 17.7

Image completion

Restoration

Object removal

Problem statement

I代表待修复图像,I中深色区域 Ω 代表受损区域,也就是需要修补的区域,其余部分 $\overline{\Omega} = I - \Omega$ 为已知区域。Completion 即根据已知区域 $\overline{\Omega}$ 修复未知区域,得到重建区域 Ω' , 使得修复后的图像 $I' = \Omega' \cup \Omega$ 在视觉上自然

Examplar-based methods

空洞的边界

已知的样本区域

Examplar-based methods

"剥洋葱"

The order matters!

带有优先级的填充策略

Image Completion by Example-Based Inpainting

A. Criminisi, P. Perez, and K. Toyama, CVPR 2003

带有优先级的填充策略

算法概览

- 1. 用户选择需要补全的区域
- 2. 确定目前空洞边缘的像素位置
- 3. 为每一个像素计算优先级权重
- 4. 查找到优先级权重最大的像素位置p,并确定对应的块P
- 5. 从图像已知区域匹配出最相似的块S,对P中不可见的像素进行补全
- 6. 更新优先级权重
- 7. 重复2-6步骤, 直到所有的像素被修复

带有优先级的填充策略
 · 优先级度量:

 $P(\mathbf{p}) = C(\mathbf{p})D(\mathbf{p})$

置信度项:待填充块中有多少已知像素

$$C(\mathbf{p}) = \frac{\sum_{\mathbf{q} \in \Psi_{\mathbf{p}} \cap \bar{\Omega}} C(\mathbf{q})}{|\Psi_{\mathbf{p}}|}$$

数据项:希望顺着边缘填充(保结构)

$$D(\mathbf{p}) = \frac{|\boldsymbol{\nabla} I_{\mathbf{p}}^{\perp} \cdot \mathbf{n}_{\mathbf{p}}|}{\alpha}$$

带有优先级的填充策略

a图显示置信度的分布,绿色表示置信度高的区域 红色表示相对较低的取悦

a

b

b图显示数据项的分布,绿色表示置信度高的区域

a

d

f

b

a

С

d

a

基本问题:结构vs纹理

结构信息的补全比纹理信息的补全要困难的多,能否通过添加一些交互来解决这个问题?

Image Completion with Structure Propagation

J. Sun, L. Yuan, J. Jia, and H. Shum SIGGRAPH 2005

带有优先级的填充策略 ^{算法概览}

- 1. 用户输入: 用户在空洞区域以及已知图像区域勾画结构线,
- 结构补全:该算法在已知图像区域采样,通过优化一个目标能量来决定 如何将样本填充被结构线覆盖的空洞区域
- 3. 纹理补全: 补全剩余区域的纹理
- 4. 光测度修正

目标能量

对于每一个锚点 p_i 我们找到一个标签 $x_i \in \{1, 2, ..., N\}$ 对应于其中的一个样本块, 将样本块 $P(x_i)$ 复制到 p_i 的位置如下图所示。

 $E_s(x_i)$, $E_I(x_i)$ 和 $E_2(x_i, x_i)$ 分别表示结构, 边界和一致性约束。

Criminisi等人的方法

实验结果

Criminisi等人的方法

Recap: examplar-based methods

空洞的边界

已知的样本区域

How to solve patch match?

Many algorithms need to search the most similar patches

Patch match

A naïve searching algorithm

Sample every possible patch to find best match! O(mM²)

Which patch is most similar?

快速的图像块匹配算法

PatchMatch: A randomized correspondence algorithm for structural image editing

Barnes, C., Shechtman, E., Finkelstein, A SIGGRAPH 2009

> Slides credit: Jiamin Bai http://vis.berkeley.edu/courses/cs294-69-fa11/wiki/images/1/18/05-PatchMatch.pdf

PatchMatch algorithm

Key ideas:

- Neighboring pixels have coherent matches
- Large number of random sampling will yield some good guesses.

Key idea

- Offset: dispalcement from source to targe
- Neighbors have similar offsets

Coherent matches with neighbors

Key idea

Large number of random sampling will yield some good guesses

M number of total pixels

Probability of correct random guess: 1/M

Probability of incorrect random guess: 1 - 1/M

Probability of all pixels with incorrect guess: $(1 - 1/M)^{M}$ [approximately 0.37]

 \Rightarrow Probability of at least 1 pixel with correct guess : 1 - $(1 - 1/M)^M$

 \Rightarrow Probability of at least 1 pixel with good enough guess: 1 - (1 - C/M)^M

Algorithm: 3 steps

Step I

• Each pixel is given a random patch offset as initialization

Step 2

 Each pixels checks if the offsets from neighboring patches give a better matching patch. If so, adopt neighbor's patch offset.

Step 3

- Each pixels searches for better patch offsets within a concentric radius around the current offset.
- The search radius starts with the size of the image and is halved each time until it is 1.

Full algorithm

- 1. Initialize pixels with random patch offsets
- 2. Check if neighbors have better patch offsets
- 3. Search in concentric radius around the current offset for better better patch offsets
- 4. Go to Step 2 until converge.

O(mMlogM)

Results

	Time [s]		Memory [MB]	
Megapixels	Ours	kd-tree	Ours	kd-tree
0.1	0.68	15.2	1.7	33.9
0.2	1.54	37.2	3.4	68.9
0.35	2.65	87.7	5.6	118.3
Using local pathces may be insufficient

Criminisi et al. result

Scene Completion Using Millions of Photographs

James Hays and Alexei A. Efros SIGGRAPH 2007

Scene Matching for Image Completion

Data

2.3 Million unique images from Flickr groups and keyword searches.

Scene Completion Result

The Algorithm

Input image

Scene Descriptor

Image Collection

20 completions

Context matching + blending

200 matches

Scene Matching

Scene Descriptor

... 200 total

Context Matching

Optimization based super-resolution

Recover high-resolution image by solving an optimization problem

Deep learning – a more powerful data-driven approach

Deep learning based super-resolution

https://bigjpg.com/