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Image Blending

© NASA _
cs195g: Computational Photography

James Hays, Brown, Fall 2008



"
Image Composition




Compositing Procedure

1. Extract Sprites (e.g using Intelligent Scissors in Photoshop)

Composite by
David Dewey
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sources destinations cloning seamless cloning
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seamless cloning

sources/destinations



source/destination cloning seamless cloning
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m Poisson image editing
Patrick Péerez, Michel Gangnet, Andrew Blake

SIGGRAPH 2003

Using generic interpolation machinery based on
solving Poisson equations, a variety of novel
tools are introduced for seamless editing

of Image regions.
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% i FH iIPDE(Partial Differential

Equation)
Wave Equation \Vaa— ad—; — 8%23 == 5—22
0*u
2v72 ~
5 = & v U—Ff(t,x;y,w)
ot
Heat Equation
ou
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Poisson Equation, Steady State of Wave

Equation and Heat Equation

Vou = f(z,y,2)

Laplace’s Equation




21 7 44 Boundary Condition

m Dirichlet Boundary Conditions
Specify the value of the function on a surface

m Neumann Boundary Condition

Specify the normal derivative of the function
on a surface
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Figure 1: Guided interpolation notations. Unknown function f
interpolates in domain Q the destination function f*, under guid-

ance of vector field v, which might be or not the gradient field of a
source function g.



Ta1 B 4f{EH Simple Interpolation

Maximize the Smoothness

"111111 [ IV 117
f‘(m F*loa

Solution: Laplace Equation with Dirichlet

<

Boundary Conditions
[ VEf=0

<
L f‘ff)Q — f*|aQ




S 1m4fi{E Guided Interpolation

Interpolation-> minimization

{115111 [ IV f — VH2

Floa = o

Solution: Poisson Equation with Dirichlet
Boundary Conditions

(Vf=V-v
\f‘em = f*‘e-m

Relationship with Laplace case?

4
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Discretize the Minimization Directly

1min E (f, — f, — vpy)” with f, = f,, for Vp € 082
19
d <p.g>N0F#£D

Partial Derivative

forVp e Q, [N,| f, — Z == Z fo + Z Upq

qeEN,NE qeEN NI qeN,
Partial Dernivative for Interior Points I'I. +|.:F.+|. +I.:II:.

‘A'iu‘ f P fr; + Upq I'+++++
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Linear System of Equations

Gauss-Seidel Method with Successive
Overrelaxation

V-cycle Multigrid

Discretize Laplacian with Discrete Laplacian of

(Gaussian

Taucs
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(Seamless Cloning)

Importing Gradients from a Source Image
§
V=Vg

Discretize

for all (p,q), vpy = 8&p — &4
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Seamless Cloning Results
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Horror Photo

© david dmartin (Boston College)
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© Chris Cameron




'_
Texture Transfer

swapped textures
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Seamless Cloning: Mixing
Gradients

Two Proposals

Detine v as Linear Combination of Source and

Destination Gradients

Select Stronger one trom Source and Destination

Gradients (not conservativel)

o _J VfAx) VX)) > [Vg(x)
forall x € Q, v(x) = { Vg(x) otherwise.

Discretization

D { f;_ﬁ; iﬂﬁ?_ﬁ:}k‘>‘8p—§q‘
Pg =

gp —8q Otherwise,
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Mixing Gradients Results

(c) seamless cloning and destination av-
eraged

(d) mixed seamless cloning
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Mixing Gradients Results
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Mixing Gradients Results

source/destination seamless cloning mixed seamless cloning
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Texture Flattening

Remain Only Salient Gradients
forallx € Q, v(x) =M(x)Vf"(x)

Discretization

fp fq 1f an edge lies between p and ¢
otherwise,

Vpg =
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Texture Flattening

Edge mask



Local lllumination Changes

Fattal Transformation

v=al VP







Local Color Changes

m Mix two different colored version of original
Image
One provide f" outside
One provide g inside
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Local Color Changes

Figure 11: Local color changes. Left: original image showing
selection Q surrounding loosely an object of interest; center: back-
ground decolorization done by setting g to the original color image
and f* to the luminance of g; right: recoloring the object of interest
by multiplying the RGB channels of the original image by 1.5, 0.5,
and 0.5 respectively to form the source image.
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Seamless Tiling

m Select original image as g
m Boundary condition:

1:*north:f*southzo-5(gnorth+gsouth)
Similarly for the east and west
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Seamless Tiling
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Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva
Maneesh Agrawala, Steven Drucker, Alex Colburn
Brian Curless, David Salesin, Michael Cohen







The Photomontage Framework

m begins with a set of source images( image
stack ).
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Image stack

-

Source
C oor

v Max Lumnance
Min Luminance
Max Lksivhood
Min Likehtood
Max Cortrast

Mz Differance

o« »

» Source Images Current
Painted Composite
Image Objective | Labeling




Brush

m User brushes a specific label onto each
Image.

m The user goes through an iterative
refinement process to create a composite.
Associated with the composite is a
labeling.



Brush and Refine

v A

Graph-cut
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Graph Cuts

m Definition & Notation
SHF— MR G=(V,E), EfVv
AHEES, BFEHE S L,
DL HAE Z e REEV, E
NIRRT I, RESR IR
ﬁ%\?ic (u, v) o223 H Ul i
/T\ ﬁﬂlumﬁ 5VFﬁHU¥<xE’JBXjWJIL

Graph cutsf’ H El’]f?&‘?ﬂl@ﬁ’]
Mln cut, Cutl V' 5 E NP

iTﬁﬁﬁbLHﬁ%ﬁr@l T
E%?*ﬁ‘%ﬁﬂ%sﬁt*ﬁﬁéﬁ, iii]
Min-cut/2 Frf cut i ff R BB e
A&

D, @)

= a cut

N=2D,5,)+ Z7,4(,.1,)

peP P.geN
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Graph Cuts

m Recommended Paper

Yuri Boykov, Olga Veksler, Ramin Zabih. Fast
Approximate Energy Minimization via Graph
Cuts. IEEE Trans. Pattern Anal. Mach. Intell.
23(11): 1222-1239, 2001.

m Graph Cuts Home Page
http://www.cs.cornell.edu/~rdz/graphcuts.html

m Source code:

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html


http://www.cs.cornell.edu/~rdz/graphcuts.html
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An Introduction to Graph-Cut

m Graph-cut Is an algorithm that finds a
globally optimal

m Segmentation solution.
m Also know as Min-cut.
m Equivalent to Max-flow. [1]

For any network having a single origin and single destination node, the
maximum possible flow from origin to destination equals the minimum
cut value for all cuts in the network.

[1] Wu and Leahy: An Optimal Graph Theoretic Approach to Data Clustering:...



What is a “cut”?

A graph G = (V,E) can be partitioned into two disjoint
sets, 4 B,AUBEV,AnB=0
by simply removing edges connecting the two parts.

The degree of dissimilarity between these two pieces
can be computed as total weight of the edges that have

been removed. In graph theoretic language it is called
the cut:

cut(A, B) = Z w(u,v) [2

ueA.veB

[2] Shi and Malik: Normalized cuts and image segmentation.



Example cut
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Finding the Minimum-cut

A source node and a sink node

Directed edge (Arc) <i,j> from node i to node |
Each arc <i,j> has a nonnegative capacity cap(i,j)
cap(i, j) =0 for non-exist arcs




Finding the Minimum-cut

= Flow is a real value function f that assign a real
value 7(i.j) to each arc <i,j> under :
— Capacity constraint : /(7. j) = cap(i. )
— Mass balance constraint:
C 0 i€V -—{st}
> f@)- > fle={|f] i=35

<i,j>eE <k.i»eE l_ f i=t

| f | is the value of flow f



Finding the Minimum-cut

f(. 1) cap(i. j)
i J

An example of flow

= maximum flow is the flow has maximum value among
all possible flow functions



Finding the Minimum-cut

m A cut is a partition of nhode set VV which has two
subsets Sand T

m Acutisas-tcutiif seS.teT

not a s-t cut



Finding the Minimum-cut

" cap([S.T]) = > cap(i.))

<i _j=eE ie§ jeT

= Minimum cut is the s-t cut whose capacity is minimum
among all possible s-t cuts
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Finding the Minimum-cut

= f@S.1D= > fG@H- 2 fG.D)

f{.i'__h,;"::-EE,vaS._vJ-ET -'{J',f::-EE,‘FfES._‘Ir‘J-ET

f([S, Th=2+1-1=2



Pixel labeling problem

Given Find

S={1,---,n} NCSxS |Labelingf=(f,...f)

O—O

W
O—®
£ —_— {31, ..,E?n}. .
o Such that the sum of the

Assignment cost for giving a assignment costs and separation
particular label to a particular costs (the energy E) is small

node. Written as D.

Separation cost for assigning a
particular pair of labels to
neighboring nodes. Written as V.



Energy Minimization

Optimizing the labeling problem can be thought
of as minimizing some energy function.

E(f)=2 D, )+ 27,1, 1,)

peP pP.gqeN

D, (fp) measure of image discrepancy

4 ( f ) measure of smoothness or
Z r.g fp"~ q _ _
p.geN other visual constraints
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The Labeling Problem

EEEENRETO
EECEEEN
BEECO NN
ERC[NE
BECOOCOON
EEEEENEN

(a) An image (b) A labeling

Common idea behind many Computer Vision problems
Assign labels to pixels based on noisy measurements (input images)

In the presence of uncertainties, find the best Labeling !

(Stereo, 3D Reconstruction, Segmentation, Image Restoration)
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Multi-Label Graph-Cuts

m o— fSwap

Semi-metric

Vie,3) =V(F,a) 20 and V(a,8) =0 & a=[.

m o —expansion
Metric

If V' also satisfies the triangle inequality

Via,3) < Via,vy) 4+ V(v, )
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o — [ Swap

1. Start with an arbitrary labeling f
Set success := 0
3. For each pair of labels {a,3} C L
3.1. Find fzzzwgrnﬁLE(fﬂ among f’ within
one a-3 swap of f

N

3.2. If E(f)< E(f), set f := f

and success := 1

4. If success = 1 goto 2
5. Return f

N




Minimize the objective

m For the task of image composition. The
goal of the refinement is to minimize a
penalty function.

In our case, we define the cost function C of a pixel labeling L as
the sum of two terms: a data penalty C, over all pixels p and an
interaction penalty C; over all pairs of neighboring pixels p,g:

C(L) = X.Cup.L(p)) + 2 Cip.q.L(p). L(g)) (1)
P P-4



Data Penalty

m For the task of image composition, the
data penalty is:

0 L(p) = u
Ca(p L(p)) = {large penalty  otherwise



Interactional Penalty

(X if matching “colors”
B Y if matching “gradients”
Ci(p, ¢, L(p), L(q)) = X +Y if matching “colors & gradients”
. X/Z if matching “colors & edges”
where
X = HSL (p) _SL (p)H + HSL (Q) _SL (Q)H
(p) (9) (p) (9)
Y = HVSL(p) (p) _VSL(Q) (p)H + HVSL(p)(Q) o VSL(Q) (Q)H
Z = E\(p.q+E,(pq)

and VS, (p) is a 6-component color gradient (in R, G, and B) of
image z at pixel p, and E;(p, q) is the scalar edge potential between
two neighboring pixels p and g of image z, computed using a Sobel

filter.



m [ntuitively, this is equvalent to finding a
best seam between the neighboring pixels

p,q if L(p) # L(q)
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Minimize the penalty?
Graph Cut Optimization

m To minimize this penalty, we use Graph
Cut.

C(L) ZC{; p, L(p)) + D, Ci(p.q, L(p), L(g)) (1)
P.q
m Boykov et al. [2001] have developed
graph-cut technigues to optimize pixel
labeling problems



Graph Cut

m Designed to solve labeling problem in
MRF.

A standard form of the energy function is

E(f) — ZDp(fp) + Z V}),q(fpa fq)a
peP p.qeEN
m IS the label of a Markov Random Field. Dp
Is the data term of pixel p. V, . Is the
smootheness term.
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Graph Cut

m "Binary" problems can be solved exactly
using this approach; problems where
pixels can be labeled with more than two
different labels cannot be solved exactly,
but solutions produced are usually near
the global optimum.

m Alpha-expansion, alpha-beta swap
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Graph Cut

m The interested readers can refer to these
papers.

Kolmogorov V, Zabin R. What energy functions can
be minimized via graph cuts?[J]. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 2004,
26(2): 147-159.
Boykov Y, Veksler O, Zabih R. Fast approximate
energy minimization via graph cuts[J]. Pattern

Analysis and Machine Intelligence, IEEE Transactions
on, 2001, 23(11): 1222-1239.



Graph Cut Library

m Libraries implemented by the authors of
the papers:

maxflow algorithm by Vladimir Kolmogorov:
http://pub.ist.ac.at/~vnk/software.html

GCO by Yuri Boykov:
http://vision.csd.uwo.ca/code/



http://pub.ist.ac.at/~vnk/software.html
http://vision.csd.uwo.ca/code/

Gradient-domain fusion

m For many applications the source images
are too dissimilar for a graph-cut alone to
result in visually seamless composites

m [N these cases, it's useful to fuse in the
gradient domain.
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Gradient-domain fusion

For a single color channel, we seek to solve for the pixel values
I(x,y). We re-order these values into a vector v, but, for convenience
here, we still refer to each element v,y based on its corresponding

(x,y) pixel coordinates. An input gradient VI(x,y) specifies two lin-
ear equations, each involving two variables:

Vitl,y = Yy = Vii(x,y) (2)
Veyrl — Voy = Vh(x.y) (3)

m This Is In some way similar to poisson
Image composition.
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Source
Color

v Max Luminance
Min Luminance
Max Likelyhood
Min Likelyhood
Max Contrast
Max Difference

Iterative

I I Ian n er = Source Images Current
Painted Composite
Image Objective | Labeling
v A
Graph-cut
¥

> (User Selection
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Application besides Image
Composition

m For other applications, the data penalty
can be modified accordingly.

m Application includes:
Extended depth of field
Relighting
Stroboscopic visualization of movement
Time-lapse mosaics
Panoramic stitching
Clean-plate production






w A : Relighting







M : Stroboscopic
visualization of movement

WA g

- ,;-'....»4
SR



. Selective composites




. Selective composites




M H: Clean-plate production

Figure 9 Three of a series of nine images of a scene that were captured
by moving the camera to the left, right, up. and down in increments of
a few feet. The images were registered manually to align the background
mountains. A minimum contrast image objective was then used globally to
remove the wires.
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Comparison

m \WWhat are the pros and cons of the gradient
domain fusion scheme and the graph cut
scheme?



G
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Sparse Matrix

m A sparse matrix is a matrix in which most
of the elements are zero

m Example of sparse matrix

1020 0 0 0 0
0 30 0 40 0 0
0 0 50 60 70 0
o o0 0 0 0 &0



Sparse Matrix

m Many of the above problems require
solving a large sparse linear system( for
example, the poisson equation in the
Image setting Is a large sparse system)
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How to represent Sparse Matrix

iIn Computer?

m List of lists (LIL)

LIL stores one list per row, with each entry
containing the column index and the value.
Typically, these entries are kept sorted by

column index for faster lookup.

m Coordinate list (COO)
stores a list of (row, column, value) tuples.
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How to represent Sparse Matrix
iIn Computer?

m Compressed Row Storage (CRS or CSR)

m three vectors: one for floating point numbers (val) and
the other two for integers (col_ind, row_ptr).

m As an example:

0 000 -2 0]

3900 0 3

4_| 0787 0 0

1 308 7 5 0

08 09 9 13

0400 2 -1|
1][10]-2][3]}s][3][7][s][7s_--- o13]a|z]-1] | |
Lind| 1] 5[[1][2][6]2][3]¢][x --- 5] s][2]s] e] | |

rou_ptr[1][3][6][9][13][17][20

=]
o+
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How to represent Sparse Matrix
iIn Computer?

m Other representations include:
Compressed column Storage
Yale

Please refer to Wikipedia for more detailed
description.
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Libraries that supports
Sparse Matrix

m Eigen Library
m [aucs
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Solving linear system

m Direct Methods

Gaussian Elimination
Matrix factorization, LU
LDLT, Cholesky

m [terative Methods

Gauss-Seidel
Jacobi

Conjugate Gradient



Gauss-Seidel

m The Gauss—Seidel method is an iterative
technique for solving a square system of n
linear equations with unknown Xx:

Ax =D



Gauss-Seidel

m [t's defined by the following iteration:
Lx®tD) = p — yx®)

where the matrix A Is decomposed Into a
lower triangular component L., and a strictly
upper triangular component U

A=L.+U



Gauss-Seidel

m |n more detall:

11 i - -

flo1 dge - -~
A=
fln1 (I o e

m The decomposition of Ainto L, and U:

A=L,+ U, where

11 []
(a1 oy - - -

L, =

(1 Op2 -

n
lon

H‘il'l-'il'i!-

0

0

E"i-‘]-‘il'l-
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Gauss-Seidel

m The iteration L .x**D = p — Ux® can be
rewritten as:

iﬁ_'_l (b — Eﬂ*zj {Fb+ Zﬂijiﬂ?ﬂ) ; l,j — 1,2, ceay T
(L4

j<i j=i



Gauss-Seidel

m Convergence:

The procedure is known to converge if
either:

A is symmetric positive-definite, or

A is strictly or irreducibly diagonally dominant.

The Gauss—Seidel method sometimes
converges even if these conditions are not
satisfied



Gauss-Seidel Algorithm

Inputs: 4, b
OQutput: qb

Choose an initial guess ¢;t0 the solution

repeat until convergence
for 7 from 1 until » do

g+ 0

for 7 from 1 until » do
if 7 #* 7 then

F <— g_’_a‘.]'qb.]'

end if

end (7loop)

| 1
¢H'+— —ff(bi-— Uﬂ
11
end (7-loop)
check if convergence is reached

end (repeat)



Examples

m Suppose:
SRS N BT
= We want to use the equation L,x**1 =
b — Ux™ in the form
x K+ = Tx(0) 4 C,
where
T=L"'UC=L.""h



Examples

m By decomposing A, we have:

6 0 o 3
Lo = {7 —11] a”“"[o 0]

m [he inverse of L, Is:

[ — 16 0 _1_ 0.0625 0.0000
L B AR § ~[0.0398 —0.0909|
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Examples

m Now we have:
i _lo.oms o.oooo] [o 3] _ [o.ooo —0.1875]

0.0398 —0.0909| * [0 0 0.000 —0.1193
~_ [0.0625 0.0000] [11] _ [ 0.6875
"= 10,0398 —0.0909] ~* |13| T |-0.7443]"

m Then we choose a initial value x(9):

~ 1.0
A0)
= |13
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Examples
D =T7x® 4

00

e

NG

24

NG

0.000

0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000

0.000

—0.1875
~0.1193,

—0.1875
—0.1193;

—0.1875]
~0.1193

—0.1875]
~0.1193

—0.1875’
—0.1193

—0.1875]
~0.1193

—0.1875]
~0.1193

X

[ 0.5000
|—0.8636

[0.8494
|—0.6413
[ 0.8077 ]
—0.6678
[0.8127 ]
|—0.6646

[0.8121
—0.6650

[ 0.8122 |

|—0.6650

+

+

1.0 [06875] _
1.0 T |-0.7443 T

[ 0.6875 |
—0.7443
[ 0.6875 |
—0.7443)
[ 0.6875 |
—0.7443
[ 0.6875 |
—0.7443
[ 0.6875 |
—0.7443|
[ 0.6875 |

|—0.7443,

0.5000
—0.8636|

0.8494 ]
—0.6413]"
[ 0.8077 ]
—0.6678]"
0.8127 ]
—0.6646]

[0.8121 ]
—0.6650]

0.8122 |
—0.6650°

[ 0.8122 ]

—0.6650]



Jacobl

m Given a square system of n linear
equations Ax = b

(11 12 -+ din X1 bl

(lg1 Q23 -+ (2n L9 bz
A-.l — . . 2 . ' X = . ) b —

i1 (2 . » Upn Ln bn

m A can be decomposed into a diagonal
component D, and the remainder R:



Jacobl
0 A=D+R
-011 0 0 I I 0 ap am-
0 a9 --- 0 21 0 A2n
b= . o . landR=| .
O 0 S Upn p1 Apo2 - 0

m The solution is then obtained iteratively
via:
x 1) = p=1(p — Rx ()

Iikﬂ] = - ( Zau j“) , 1=1,2,...,n.
?1

j#i
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Jacobi Algorithm

Choose an 1nitial guess 1}”3 to the solution

k=20

while convergence not reached do

for 1 := 1 step until n do
og=10
for jJ := 1 step until n do

if j &= 1 then
_ k)
g =0+ ﬂ,‘_jl-j
end 1f
end (j—loop)
(k+1) _ (bi —0)
I; = -
iy
end (i—loop)
check 1f convergence 1s reached

k=k+1

loop (while convergence condition not reached)
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Jacobl

m Convergence:

when the spectral radius of the iteration
matrix is less than 1:

p(D71R) < 1
The method is guaranteed to converge if the

matrix A is strictly or irreducibly diagonally
dominant.



Examples

m Suppose:

. 12 1 |11 o |1
A= [5 'F']’ b= [13] and z%' = [1]

m we rewrite the equation in a more
convenient form:

x(K+1) — D‘l(b — Rx(k)) =Tx® +C



"
Examples

m \WWe can easily see that:

e Y LR 8 Py P |
e= 6" w1 = L1s3)
m \We have:

=L VI - -



Examples

o _ [ 0 —1/2][50] | [11/2] _[69/14] [ 4.929
T s/ 0 |87 T |13s7| T | —12/7| T | -1.714

m This process is repeated until
convergence( the 25t iteration):

711
Y= 13229



Conjugate Gradient

m The conjugate gradient method Is an
algorithm for the numerical solution of
particular systems of linear equations
whose matrix Is symmetric and positive-
definite.



Conjugate Gradient

m [wo vectors u, v are said to be conjugate
(with respect to A) if:
ulAv =0
m Suppose P = {p; } is a basis of R". Within

P, we can expand the solution x, of Ax =
b:

n

Xy = Z d;Di

l



Conjugate Gradient

m And we can see that:
n
b =Ax, = Z a; Ap;

l
m For any p;, € P, we have:

pib=prAx, = ) ;p; Ap; = oxp; Apy.
=1
(because W1 75 k.qp_i‘p& are mutually conjugate)
b (peb) _ (pib)
PrAP:  (Pe,Pr)a IPella

Qi =
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Conjugate Gradient as an
iterative method

m [f we choose the conjugate
vectors p, carefully, then we may not need
all of them to obtain a good approximation
to the solution x,

m S0, we want to regard the conjugate
gradient method as an iterative method

m In each iteration we need a metric to tell us
whether we are closer to the solution x,



Conjugate Gradient

m [he metricis

.1 _
f(x) = 3XTAX —x'b, xeR"™

m [he residue r;, at step k, which is also the
negative of the gradient of f(x;), Is:
T, = b — Axk
m S0 the gradient descent method would be
to move in the direction of ry,



Conjugate Gradient

m But we also insist that the direction p;, be
conjugate to each other.

m This gives the following expression:

Xk+1 = X + QG Pk

with




Conjugate Gradient Algorithm

ro .= b — Axy
Po ‘= Tp
ki=0
repeat
 TET
e P: Apy

Xi+1 = Xg + P
Tp41 = T — QAP

if 141 1s sufficiently small then exit loop

‘T .
; Fpi1Th+1
||3k :: .T .
r, Ty
Pi+1 = Trt1 + FkPr
k=k+1
end repeat

The result is X;41
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Libraries/Software that can
solve linear systems
m Eigen Library

m LAPACK
m Matlab



Assignment

m Write a Sparse Matrix version of Gauss-
Seidel solver.



