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Some slides adapted from Noah Snavely, Lingqi Yan
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How to combine two images?




How to combine two images?

What is image warping?
How to compute it?



Part |
Image Warping
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Image Warping

* image filtering: change intensity of image

Richard Szeliski Image Stitching



Parametric (global) warping

 Transformation T is a coordinate transformation:
P’ =T(p)

 Examples:

—

translation rotation

Richard Szeliski Image Stitching
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Scale Transform
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Scale Matrix
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Scale (Non-Uniform)
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Reflection Matrix

Horizontal reflection:

Lingqi Yan, UC Santa Barbara
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Shear Matrix

Hints:

Horizontal shift is 0 at y=0 ' . 1 a |z
Horizontal shift is a at y=1 y' 10 1 Y
Vertical shift is always O

GAMES101 16 Lingqi Yan, UC Santa Barbara



Rotate (about the origin (0, 0), CCW by default)
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Rotation Matrix

cosf —sin 9]

sin@® cosé6
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Linear Transforms = Matrices

(of the same dimension)

v =ax+by
v =cx+dy
| | a b x
y ] e d]ly
x =M x
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Translation

Ttx,ty

Lingqi Yan, UC Santa Barbara
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Translation??

Ttx,ty

T+ 1,
Y+ 1y

/
XL

y/

Lingqi Yan, UC Santa Barbara
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Why Homogeneous Coordinates

* Translation cannot be represented in matrix form

| |la bl |x N to
y | e d| |y ty
(So, translation is NOT linear transform!)

e But we don’t want translation to be a special case

* |s there a unified way to represent all transformations?
(and what’s the cost?)

GAMES101 24 Linggi Yan, UC Santa Barbara



Solution: Homogenous Coordinates

Add a third coordinate (w-coordinate)

® 2D point =(x,y, 1)T

® 2D vector = (x, y, O)T

Matrix representation of translations

2% 6

What if you translate a vector?

O = O

GAMES101 25
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Homogenous Coordinates

Valid operation if w-coordinate of resultis 1 or 0

® vector + vector = vector
® point - point = vector
® point + vector = point
® point + point =7??

In homogeneous coordinates,

T x /w
y | is the 2D point | y/w |, w #0
w 1
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2D Transformations

Scale 0

S 0
S(Sz,8y) = | 0 s, O
0O 0 1
Rotation
cosae —sina 0
R(a) = |sina  cosa O
0 0 1

Translation

GAMES101 28 Linggi Yan, UC Santa Barbara



Affine Transformations

Affine map = linear map + translation
N  (a b NEA to
vy )  \c d Y ty

Using homogenous coordinates:

x’ a b t, T
v | = lc d t,| |y
1 0O 0 1 1

any transformation represented by a 3x3 matrix with
last row [ 0 0 1 ] we call an affine transformation

GAMES101 27 Linggi Yan, UC Santa Barbara



Projective Transformation (Homography)




Change projection plane (pp)

Real synthetic
camera PP camera PP

Can generate any synthetic camera view
as long as it has the same center of projection!



Fun with homography

Original image

St.Petersburg
photo by A. Tikhonov




Projective Transformation (Homography)

, )
SU%- hoo ho1 hoo2 X;
y: | = | hio h11 hi2 Yi

1 hog ho1 hoo | | 1

Maybe nonzero
; _ hoo%i + ho1yi + hoo

! hoox; + ho1y; + hoo
hiox; + h11Y; + hi1o
hoox; + ho1y; + hoo

/
Yq

* We usually constrain the length of the vector [hyg hy; ... hy5] to be 1,
which means the degree of freedom is 8



Summary of 2D transformations

J" /“’__ mnlaim pr njecm &
translation
e

Eun:l.tdeaﬂ aﬂ"me

e X

Translation Affine Projective

2 unknowns 6 unknowns 8 unknowns



Inverse Transform
T—l

T~1 is the inverse of transform T in both a matrix
and geometric sense
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Implementing image warping

* Given a coordinate transform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute an
transformed image g(x’,y’) = f(T(x,y))?




Forward Warping

e Send each pixel f(x) to its corresponding
location (x’,y’) = T(x,y) in g(x’,y’)




Forward Warping

 What if pixel lands “between” pixels?

—




Inverse Warping

e Get each pixel g(x’,y’) from its corresponding
location (x,y) = T1(x,y) in f(x,y)




Inverse Warping

 What if pixel lands “between” pixels?

//\

Answer: interpolate color values from
neighboring pixels




Interpolation

Nearest neighbor

- Copies the color of the pixel with the closest integer coordinate

O—
O

O—O0—OQ0—0—
O—O0—O0—0—
7




Interpolation

Weighted sum of four neighboring pixels

O—O
O—O0—0—
7




Interpolation

* Possible interpolation filters:
— nearest neighbor
— bilinear
— bicubic
— sinc




Questions?



Part I
Image Stitching



How to compute transformation?

o

1. Image matching (each match gives an equation)
2. Solve T from the obtained matches



Affine transformations

a
d
0

e
0

C

f
1

ow many unknowns?

X

Y
1

OW many equations per match?
ow many matches do we need?

ar + by + c
dr + ey + f
1




Affine transformations

* For each match, we have

x' =ax+by+c
y' =dx+ey+f

e Matrix form

=0 5 0 % )
y' 0 0 0 x y 1

:\nms:..m @sz:s




Affine transformations

e For n matches

Cxy o oyr L0 0 07 X T
00 0 @ oy 1| v,
x2 y2 1 0 0 O b )
0 0 0 X9 Y 1 C o yé

g =
e
Tn Yo 1 0 0 0|~ J . T,
L 0 0 0 @, wyn 1._ Y

2nx 6 6x1 2nx 1



How to solve t?

e Least squares: find t that minimizes

|At — b]|*
* To solve, form the normal equations

A At =A"Db
t=(ATA) ATb



Projective transformations
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Solving for homographies

/
Yi

z; (hoow; -

112

2t | | hoo hor hoz |
! hio hi1 hi2
1 | hog ho1 hoo | |

Ly

Yi

1 -

hoox; + ho1y; + ho2

hoox; + ho1y; + hoo
hioz; + h11y; + h12

- ho19y;

- hoo)

hoo)

yi (hoox;

ho1y;

hoor;

hoox; + ho1y; + hoo

hio;

- ho1Y;

- hoo

h11y;



Solving for homographies

hoow; + ho1yi + hoo
hiox; + h11y; + hio

i (hoow; + ho1y; + hoo)
yi(hoox; + ho1y; + hoo)

hoo
ho1
hoo
hio

-
hio

hoo

ho1
hoo

/

z; y; 1 0 0 0 —zla; —axly; —=x
0 00 = v 1 —ya —yyi -y
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Solving for homographies

hoo
_ | ho1 o
1 y1 1 0 0 O —afjzy —2ly; —af hoo 0
0 0 0 z1 y1 1 —viz1 —viv1 —v; hi1o 0
: hll — :
Tn yn 1 0 0 O —alxp —ahyn —2, hio 0
O O O zn yn 1 —yézxn —y%yn —?J;z_ hoo _O_
ho1
| hoo |

2n X9

Defines a least squares problem:  minimize ||[Ah — 0||2

e Since h isonly defined up to scale, solve for unit vector h
e Solution: h = eigenvector of A’ A with smallest eigenvalue
e Works with 4 or more points




Outliers

outliers
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Robustness

* Let’s consider a simpler example... linear

regression

Problem: Fit a line to these datapoints

e How can we fix this?

Least squares fit




RANSAC




RANSAC

Inliers: 3



RANSAC

Inliers: 20



RANSAC for Translation




RANSAC for Translation

Select one match at random, count inliers




RANSAC for Translation

Select another match at random, count inliers




RANSAC for Translation
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Output the translation with the highest number of inliers




RANSAC

e |dea:

— All the inliers will agree with each other on the
translation vector;

— The outliers will disagree with each other
* RANSAC only has guarantees if there are < 50% outliers

— “All good matches are alike; every bad match is
bad in its own way.”

— Tolstoy via Alyosha Efros



RANSAC

e General version:

1. Randomly choose s samples
* Typically s = minimum sample size that lets you fit a

model
2. Fit a model (e.g., transformation matrix) to those
samples
3. Count the number of inliers that approximately
fit the model

4. Repeat N times

5. Choose the model that has the largest set of
inliers



Final step: least squares fit

DN magy o ,..: -
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Find average translation vector over all inliers
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To 4R

* Graphcut
* Poisson Image Editing
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Panoramas

* Now we know how to create panoramas!

1) Warp all images to a reference image; 2) merge them




Rotation about vertical axis

 What if our camera rotates on a tripod?
 What's the structure of H?

H = KRK™1



Do we have to project onto a plane?

TN mosaic PP



Full Panoramas

* What if you want a 360° field of view?

\ mosaic Projection Cylinder



Cylindrical projection

/ (X,Y,Z2)

‘/' \
\ / / yl
‘; —_— ‘ > xl
————————— ™ unwrapped cylinder
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unit cylinder

r = rtan_l(ﬁ)

/ Ty
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Cylindrical projection




Cylindrical panoramas

* Steps
— Reproject each image onto a cylinder
— Blend
— Output the resulting mosaic



Cylindrical image stitching

 What if you don’t know the camera rotation?

— Solve for the camera rotations

 Note that a rotation of the camera is a translation of the
cylinder!



Assembling the panorama

e Stitch pairs together, blend, then crop



Problem: Drift

* small (vertical) errors accumulate over time

* apply correction so that sum = 0 (for 360° pan.)



Full-view (360°) panoramas
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Questions?
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3D Navigation (Free Viewpoint)




3D Navigation (Free Viewpoint)

* Need 3D models
* Difficult to obtain high-quality models




(Free Viewpoint)

3D Navigation
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3D modeling from a photograph

- T -

St. Jerome in his Study, H. Steenwick



3D modeling from a photograph




Flagellation, Piero della Francesca



3D modeling from a photograph
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video by Antonio Criminisi



Some preliminaries: projective geometry
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3D to 2D: perspective projection

IR
Projection: P=|wy|=|* * *
W * ok ok
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Horizon Line

\Vanishing

Point

Vanishing point and line tell us a lot about camera position and orientation

Figure 23.4
A perspective view of a set of parallel lines in the plane. All of the lines converge to
a single vanishing point.



Ames Room




Vanishing points

image plane

~

vanishing point

camera
center

ground plane

* Vanishing point
* projection of a point at infinity



Vanishing points (2D)

image plane
\

/

_vanishing point

camera
center

\=

line on ground plane



Vanishing points

image plane
\
_vanishing point V

e

camera
center
C

v

line on ground plane

line on ground plane

* Properties
* Any two parallel lines have the same vanishing point v

* The ray from C through v is parallel to the lines
* v tells us the direction of the lines

* An image may have more than one vanishing point



Vanishing lines

e Multiple Vanishing Points

* Any set of parallel lines on the plane define a vanishing point
The union of all of these vanishing points is the horizon line
* also called vanishing line

* Note that different planes define different vanishing lines



Vanishing lines

e Multiple Vanishing Points

* Any set of parallel lines on the plane define a vanishing point
The union of all of these vanishing points is the horizon line
* also called vanishing line

* Note that different planes define different vanishing lines



Computing vanishing points

vV
e
@ >
P
/j— "0
% o P=P+/D
P, +tD,| |P,/t+D, | D, |
P, +tD P, /t+D D
P=| " V=7 ! t— o P =| "
P, +1tD, P, /t+D, D,
1 ] | 1/t ] 0

* Properties
* P, is a point at infinity, v is its projection V = HPOO
* They depend only on line direction (angle between the line and optical axis)
* Parallel lines Py + tD, P, + tD intersect at P,



Computing vanishing lines

ground plane

* Compute | from two sets of parallel lines on ground plane

* Properties
* | is intersection of horizontal plane through C with image plane
* | depends on the orientation of the camera

* All points at same height as C project to |
e points higher than C project above |, vice versa
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“Tour into the Picture” (SIGGRAPH '97)

*Create a 3D “theatre stage” of five
billboards

*Use camera transformations to navigate
through the scene




The idea

* Many scenes (especially paintings), can be represented as an axis-

aligned box volume (i.e. a stage)

* Key assumptions:
* All walls of volume are orthogonal

* Camera view plane is parallel to back of volume

* Camera up is normal to volume bottom

 How many vanishing points does the box have?

* Three, but two at infinity
* Single-point perspective

e Can use the vanishing point
* to fit the box to the particular
* Scene!

Left wall

Ceiling

Rear wall

Floor

Right wall




Fitting the box volume

Vanishing point

Corner points Inner rectangle
e User controls the inner box and the vanishing point
placement (# of DOF???)

* Q: What’s the significance of the vanishing point location?

* A: It’s at eye level: ray from COP to VP is perpendicular to
image plane.



Comparison of how image is subdivided based on two
different camera positions. You should see how moving
the vanishing point corresponds to moving the eyepoint in
the 3D world.

High Camera Low Camera




Comparison of two camera placements — left and right.
Corresponding subdivisions match view you would see if
you looked down a hallway.

Left Camera Right Camera




2D to 3D conversion

* First, we can get ratios

vanishing
point

5%

bottom




2D to 3D conversion

* Size of user-defined back plane must equal
size of camera plane (orthogonal sides)

» Use top versus side ratio
to determine relative
height and width
dimensions of box

 Left/right and top/bot
ratios determine part of
3D camera placement

/eft

right

top

camera
pos

/

bottom

)




Depth of the box

e Can compute by similar triangles (CVA vs. CV'A’)
* Need to know focal length f (or FOV)

* Note: can compute position on any object on the ground
e Simple unprojection
* What about things off the ground?



DEMO

* Now, we know the 3D geometry of the box

* We can texture-map the box walls with texture from
the image




DEMO

* Now, we know the 3D geometry of the box

* We can texture-map the box walls with texture from
the image




= & # main.py — tip
Dan [N sc [ H [y st e
index.htmi style.min.css homography.py

ers/owenjow/fa16/cs194/tip/index.ht

14 rom f Image
ivation E51D2S S ogi [ ambient [EEECEEESUITEEEETS
16 import sys

17 » tip rt
18 i rt numpy as np
19 from math import sin, cos
22 imname
23 f=
24
25y try
26 from wx import glcanvas
27 haveGLCanvas
except ortError:
29 haveGLCanvas
30
3y try:
32 from OpenGL. import
33 from OpenGL. import *
4 from OpenGL. import
35 from OpenGL.GL.shaders import

haveOpenGL =

except

haveOpenGL
4w class ( ):
v def init__( ):
42 wx.App.__init__ ( f, redirect=Fa )
43
44y def ( ):
45 frame = wx.Frame(N » yULEY =(9, @),
46 =WX o A RA YLE, = I t re')
47 menuBar = wx.MenuBar()
48 menu = wx.Menu()
item menu.Append (wx. I XIT, "E&xit\t e EXAtN]
.Bind(wx.EVT_MENU, .OnExitApp, item)

frame.SetMenuBar(menuBar)

53 frame.Show( )

54 frame.Bind(wx. - .OnCloseFrame)
56 window = MainPanel(frame)

57 frame.SetSize( (200, )))

58 window.SetFocus()

59 .window = window

60 .SetTopWindow/( frame)

61 . frame frame
returr r




Foreground Objects

* Add vertical rectangles
for each foreground
object

* Can compute 3D
coordinates PO, P1 since
they are on known plane.

Z
(a) Specifying of a (b) Estimating the vertices of the
foreground object foreground object model

* P2, P3 can be computed
as before (similar
triangles)

(c¢) Three foreground object models



Foreground DEMO (and video

4

s SESEEE w







Sing

U

e View Moc

sing Learnir

eling



Depth estimation using CNNs

9% v Coarse
2562 3844 384@ 256 4096
11x11 conv ) 5x5 con\‘? D 3x3 conv |:| 3x3 conv 3x3conv full full -
4 stride 2x2 pool '
2x2 pool :
Coarse 1 Coarse 2  Coarse 3 Coarse4 Coarse 5 Coarse 6 Coarse 7 '
________________________________________ 4
'.
. .
1
63 ! 64 4 64,2
L]
e B _ i
9x9 conv Concatenate 5x5 conv 5x5 conv
2 stride :
2x2 pool Fine 1 Fine 2 Fine 3
Coarse Fine
Layer input 1 234 5 6 7 12,34
Size (NYUDepth) | 304x228 | 37x27 18x13 8x6 1x1 74x55 74x55
Size (KITTTI) 576x172 | 71x20 35x9 17x4  1x1
Ratio to input /1 /8 /16 /32 -
input coarse L2 scale-inv  ground truth

.

~ SN N

Figure 3: Qualitative comparison of Make3D, our method trained with /2 loss (A = 0), and our
method trained with both /5 and scale-invariant loss (A = 0.5).

Depth Map Prediction from a Single Image using a Multi-Scale Deep. David Eigen, Christian Puhrsch, Rob Fergus.
NIPS 2014. Cited by 1482



3D-R2N?2

i1 Encoder-3DLSTM-Decoder [1] %% 457 # 37.2D images -to -3D voxel model [T

v

single view

WEHE <
| J=0 =

LT-1

W3S

Tr 3D Convolutional LSTM T views

Ve

(a) Images of objects we wish to reconstruct (b) Overview of the network

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction. Christopher B. Choy, Danfei Xu, JunYoung
Gwak, Kevin Chen, Silvio Savarese. ECCV 2016. Cited by 584.



Point Set Generation Network
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Figure 6. Visual comparison to 3D-R2N2. Our method better

preserves thin structures of the objects.

A Point Set Generation Network for 3D Object Reconstruction from a Single Image,
Haogiang Fan, Hao Su, Leonidas Guibas. CVPR 2017. Cited by 476.)



Pixel2Mesh
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3x3 conv, 64
3x3 cony, 128
3x3 cony, 128
Pooling, 2x2
512

>
x

Pooli
Pooli

3x3 conv, 256

3x3 con
Pooling, 2x2
3x3 cony, 512

Input Image Perceptual Feature Pooling

il
4

AN
N

)

c
S
2
[
E
S
[}
(=]

=
S
2
[
E
S
[
o

Ellipsoid Mesh 156 vertices

628 vertices 2466 veces

Fig. 2. The cascaded mesh deformation network. Our full model contains three mesh deformation
blocks in a row. Each block increases mesh resolution and estimates vertex locations, which are
then used to extract perceptual image features from the 2D CNN for the next block.

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images, Nanyang Wang, Yinda Zhang, Zhuwen Li et.al.
ECCV 2018, cited by 184.



Mesh R-CNN

Mesh R-CNN/& 3
FMask R-CNNF3
sRMZE, AN —E
B, Al R A i
AXG, It A
X RIRAIRES, 2
FAE. o FHERD L S
=R =ML .

Input Image

3

3D Meshes 3D Voxels

Figure 1. Mesh R-CNN takes an input image, predicts object
instances in that image and infers their 3D shape. To capture di-
versity in geometries and topologies, it first predicts coarse voxels
which are refined for accurate mesh predictions.

Mesh R-CNN. Georgia Gkioxari, Jitendra Malik, Justin Johnson. 2020



Learning-based SFM

Depth CNN

Learning without
ground-truth depth

information
Pose CNN | . HEOIECY :
. . Tt—)t—l I
Modeling the learning |
target with video Tyt :
sequences i sl

Unsupervised Learning of Depth and Ego-Motion from Video.
Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017



Single Image Pop-Up from Discriminatively Learned Parts

Menglong Zhu* Xiaowei Zhou™ Kostas Daniilidis
Computer and Information Science, University of Pennsylvania

{menglong, xiaowz, kostas}@cis.upenn.edu

3D Shape Constrained Individual Part _ |
Discriminative Parts + 3D Shape Space + Detection Hypotheses = Pop-Up !







Learning to Estimate 3D Human Pose and Shape from a Single Color Image

Georgios Pavlakos!, Luyang Zhu?, Xiaowei Zhou?, Kostas Daniilidis'
! University of Pennsylvania 2 Peking University ® Zhejiang University
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Questions?



