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Panorama (全景图)



360度VR



GoPro odyssey
全景相机

图像拼接

Huawei
VR眼镜

360度VR



How to combine two images?



How to combine two images?

What is image warping?
How to compute it?



Part I
Image Warping
图像变形



Richard Szeliski Image Stitching 8

Image Warping

• image filtering: change intensity of image

• image warping: change shape of image

f
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Richard Szeliski Image Stitching 9

Parametric (global) warping

translation rotation aspect

• Transformation T is a coordinate transformation:
p’ = T(p)

• Examples:

T

p = (x,y)
p’ = (x’,y’)
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Linear Transforms = Matrices

x0 = a x+ b y

y0 = c x+ d y


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(of the same dimension)
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Why Homogeneous Coordinates

• Translation cannot be represented in matrix form
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(So, translation is NOT linear transform!)

• But we don’t want translation to be a special case


• Is there a unified way to represent all transformations? 
(and what’s the cost?)
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Solution: Homogenous Coordinates

Add a third coordinate  (w-coordinate) 

• 2D point   = (x, y, 1)T 

• 2D vector = (x, y, 0)T 

Matrix representation of translations
�

⇤
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⇥

⌅ =

�

⇤
1 0 tx
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0 0 1
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⌅ ·
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1
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What if you translate a vector?
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0 

• vector + vector = vector 

• point – point  = vector 

• point + vector = point 

• point + point  = ??

In homogeneous coordinates, 
0

@
x
y
w

1

A is the 2D point

0

@
x/w
y/w
1

1

A , w 6= 0
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2D Transformations

Scale 

Rotation 

Translation

T(tx, ty) =

�

⇤
1 0 tx
0 1 ty
0 0 1

⇥

⌅

S(sx, sy) =

�

⇤
sx 0 0
0 sy 0
0 0 1

⇥

⌅

R(�) =

�

⇤
cos � � sin � 0
sin� cos � 0

0 0 1

⇥

⌅
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Affine Transformations

Affine map = linear map + translation 

Using homogenous coordinates:
�
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any transformation represented by a 3x3 matrix with 
last row [ 0 0 1 ] we call an affine transformation



Projective Transformation (Homography)



Change projection plane (pp)

Real
camera PP

synthetic
camera PP

Can generate any synthetic camera view
as long as it has the same center of projection!



Fun with homography

St.Petersburg
photo by A. Tikhonov

Virtual camera rotations

Original image



Projective Transformation (Homography)

• We usually constrain the length of the vector [h00 h01 … h22] to be 1, 
which means the degree of freedom is 8

Maybe nonzero



Summary of 2D transformations

Translation

2 unknowns

Affine

6 unknowns

Projective

8 unknowns



𝑇

𝑇!"

𝑇!"
𝑇!"

𝑇



Implementing image warping

• Given a coordinate transform (x’,y’) = T(x,y) and a 
source image f(x,y), how do we compute an 
transformed image g(x’,y’) = f(T(x,y))?

f(x,y) g(x’,y’)
x x’

y y’



Forward Warping

• Send each pixel f(x) to its corresponding 
location (x’,y’) = T(x,y) in g(x’,y’)

f(x,y) g(x’,y’)
x x’

T(x,y)y y’



Forward Warping

• What if pixel lands “between” pixels?



Inverse Warping

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x,y) in f(x,y)

f(x,y) g(x’,y’)
x x’

T-1(x,y)y y’



Inverse Warping

• What if pixel lands “between” pixels?

Answer: interpolate color values from 
neighboring pixels



Interpolation

Nearest neighbor
- Copies the color of the pixel with the closest integer coordinate 



Interpolation

Weighted sum of four neighboring pixels



Interpolation

• Possible interpolation filters:
– nearest neighbor
– bilinear
– bicubic
– sinc



Questions?



Part II
Image Stitching



How to compute transformation?
𝑥′
𝑦′
1

≅ 𝑇
𝑥
𝑦
1

1. Image matching (each match gives an equation)
2. Solve T from the obtained matches



Affine transformations

• How many unknowns?
• How many equations per match?
• How many matches do we need?



Affine transformations

• For each match, we have

• Matrix form

𝑥# = 𝑎𝑥 + 𝑏𝑦 + 𝑐
𝑦# = 𝑑𝑥 + 𝑒𝑦 + 𝑓

𝑥′
𝑦′ =

𝑥 𝑦 1
0 0 0

0 0 0
𝑥 𝑦 1

a
𝑏
𝑐
𝑑
𝑒
𝑓



Affine transformations
• For n matches

2n x 6 6 x 1 2n x 1



How to solve t?

• Least squares: find t that minimizes 

• To solve, form the normal equations



Projective transformations
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Solving for homographies



Solving for homographies



Solving for homographies

Defines a least squares problem:
• Since        is only defined up to scale, solve for unit vector
• Solution:        = eigenvector of with smallest eigenvalue
• Works with 4 or more points

2n × 9 9 2n



Outliers
outliers

inliers



Robustness
• Let’s consider a simpler example… linear 

regression

• How can we fix this?
Problem: Fit a line to these datapoints Least squares fit



RANSAC



RANSAC

Inliers: 3



RANSAC

Inliers: 20



RANSAC for Translation



RANSAC for Translation

Select one match at random, count inliers



RANSAC for Translation

Select another match at random, count inliers



RANSAC for Translation

Output the translation with the highest number of inliers



RANSAC

• Idea:
– All the inliers will agree with each other on the 

translation vector; 
– The outliers will disagree with each other

• RANSAC only has guarantees if there are < 50% outliers

– “All good matches are alike; every bad match is 
bad in its own way.”

– Tolstoy via Alyosha Efros



RANSAC

• General version:
1. Randomly choose s samples

• Typically s = minimum sample size that lets you fit a 
model

2. Fit a model (e.g., transformation matrix) to those 
samples

3. Count the number of inliers that approximately 
fit the model

4. Repeat N times
5. Choose the model that has the largest set of 

inliers



Final step: least squares fit

Find average translation vector over all inliers



输入图像

图像拼接



特征匹配

图像拼接



RANSAC计算变换矩阵

图像拼接



固定第一幅图，变换第二幅图

图像拼接



• Graphcut
• Poisson Image Editing

无缝融合



最小化颜色差的接缝

重叠的图像 简单的接缝

_ =
2

颜色差

无缝融合



n-links

s

t a cut

最大流最小割算法

多项式时间

无缝融合



Panoramas

• Now we know how to create panoramas!
1) Warp all images to a reference image; 2) merge them



Rotation about vertical axis

• What if our camera rotates on a tripod?
• What’s the structure of H?

𝐻 = 𝐾𝑅𝐾!"



mosaic PP

Do we have to project onto a plane? 



Full Panoramas

• What if you want a 360° field of view?

mosaic Projection Cylinder



Cylindrical projection

unit cylinder

unwrapped cylinder

𝑥′
𝑦′
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Cylindrical projection

y

x 𝑥′

𝑦′



Cylindrical panoramas

• Steps
– Reproject each image onto a cylinder
– Blend 
– Output the resulting mosaic



Cylindrical image stitching

• What if you don’t know the camera rotation?
– Solve for the camera rotations

• Note that a rotation of the camera is a translation of the 
cylinder!



Assembling the panorama

• Stitch pairs together, blend, then crop



Problem:  Drift

• small (vertical) errors accumulate over time
• apply correction so that sum = 0 (for 360° pan.)



Full-view (360°) panoramas







Questions？



基于单视图的三维重建

周晓巍



3D Navigation (Free Viewpoint)



3D Navigation (Free Viewpoint)

• Need 3D models
• Difficult to obtain high-quality models



3D Navigation (Free Viewpoint)

Can we do it from a single 
photograph?



3D modeling from a photograph

St. Jerome in his Study, H. Steenwick



3D modeling from a photograph



3D modeling from a photograph

Flagellation, Piero della Francesca



3D modeling from a photograph

video by Antonio Criminisi



Some preliminaries: projective geometry



3D to 2D:  perspective projection
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Vanishing point and line tell us a lot about camera position and orientation



Ames Room



Vanishing points

• Vanishing point
• projection of a point at infinity

image plane

camera
center

ground plane

vanishing point



Vanishing points (2D)

image plane

camera
center

line on ground plane

vanishing point



Vanishing points

• Properties
• Any two parallel lines have the same vanishing point v
• The ray from C through v is parallel to the lines

• v tells us the direction of the lines
• An image may have more than one vanishing point

image plane

camera
center
C

line on ground plane

vanishing point V

line on ground plane



Vanishing lines

• Multiple Vanishing Points
• Any set of parallel lines on the plane define a vanishing point

The union of all of these vanishing points is the horizon line
• also called vanishing line

• Note that different planes define different vanishing lines

v1 v2



Vanishing lines

• Multiple Vanishing Points
• Any set of parallel lines on the plane define a vanishing point

The union of all of these vanishing points is the horizon line
• also called vanishing line

• Note that different planes define different vanishing lines



Computing vanishing points

• Properties
• P¥ is a point at infinity, v is its projection
• They depend only on line direction (angle between the line and optical axis)
• Parallel lines P0 + tD, P1 + tD intersect at P¥
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Computing vanishing lines

• Compute l from two sets of parallel lines on ground plane
• Properties

• l is intersection of horizontal plane through C with image plane
• l depends on the orientation of the camera
• All points at same height as C project to l

• points higher than C project above l, vice versa

ground plane

lC





Fun with vanishing points



“Tour into the Picture” (SIGGRAPH ’97)

•Create a 3D “theatre stage” of  five 
billboards

•Use camera transformations to navigate 
through the scene



The idea
• Many scenes (especially paintings), can be represented as an axis-

aligned box volume (i.e. a stage)
• Key assumptions:

• All walls of volume are orthogonal
• Camera view plane is parallel to back of volume
• Camera up is normal to volume bottom

• How many vanishing points does the box have?
• Three, but two at infinity
• Single-point perspective

• Can use the vanishing point
• to fit the box to the particular
• Scene! 



Fitting the box volume

• User controls the inner box and the vanishing point 
placement (# of DOF???)

• Q: What’s the significance of the vanishing point location?
• A: It’s at eye level: ray from COP to VP is perpendicular to 

image plane.



High Camera Low Camera

Comparison of how image is subdivided based on two 
different camera positions.  You should see how moving 
the vanishing point corresponds to moving the eyepoint in 
the 3D world.



Left Camera Right Camera

Comparison of two camera placements – left and right.  
Corresponding subdivisions match view you would see if 
you looked down a hallway.



2D to 3D conversion
• First, we can get ratios

left right

top

bottom

vanishing
point

back
plane



• Size of user-defined back plane must equal 
size of camera plane (orthogonal sides)

• Use top versus side ratio 
to determine relative 
height and width 
dimensions of box

• Left/right and top/bot
ratios determine part of 
3D camera placement

left right

top

bottomcamera
pos

2D to 3D conversion



Depth of the box

• Can compute by similar triangles (CVA vs. CV’A’)
• Need to know focal length f (or FOV)

• Note: can compute position on any object on the ground
• Simple unprojection
• What about things off the ground?



DEMO

•Now, we know the 3D geometry of the box
•We can texture-map the box walls with texture from 

the image



DEMO

•Now, we know the 3D geometry of the box
•We can texture-map the box walls with texture from 

the image



DEMO



Foreground Objects

• Add vertical rectangles 
for each foreground 
object

• Can compute 3D 
coordinates P0, P1 since 
they are on known plane.  

• P2, P3 can be computed 
as before (similar 
triangles)



Foreground DEMO (and video)





Single View Modeling  
using Learning 



Depth estimation using CNNs

Depth Map Prediction from a Single Image using a Multi-Scale Deep. David Eigen, Christian Puhrsch, Rob Fergus. 
NIPS 2014. Cited by 1482



3D-R2N2

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction. Christopher B. Choy, Danfei Xu, JunYoung 
Gwak, Kevin Chen, Silvio Savarese. ECCV 2016. Cited by 584.

通过Encoder-3DLSTM-Decoder 的网络结构建立2D images -to -3D voxel model 的映射。



Point Set Generation Network

A Point Set Generation Network for 3D Object Reconstruction from a Single Image, 
Haoqiang Fan, Hao Su, Leonidas Guibas. CVPR 2017. Cited by 476.)

主要思想：

利用深度网络通过单张图
像直接生成点云，解决了
基于单个图片对象生成3D
几何的问题。



Pixel2Mesh

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images，Nanyang Wang,   Yinda Zhang,   Zhuwen Li et.al. 
ECCV 2018, cited by 184.

主要思想：用一个椭球作为任意物体的初始形状，然后逐渐将这个形状变
成目标物体。不借助点云、深度或者其他更加信息丰富的数据，而是直接
从单张彩色图片直接得到 3D mesh



Mesh R-CNN. Georgia Gkioxari, Jitendra Malik, Justin Johnson. 2020

Mesh R-CNN

Mesh R-CNN是基

于Mask  R-CNN的增

强网络，输入一个图

像，检测图像中的所

有对象，并输出所有

对象的类别标签，边

界框、分割掩码以及

三维三角形网格。



Unsupervised Learning of Depth and Ego-Motion from Video.
Tinghui Zhou, Matthew Brown, Noah Snavely, David Lowe. In CVPR 2017

Learning-based SFM

n Learning without 
ground-truth depth 
information

n Modeling the learning 
target with video 
sequences



+ =3D Shape Constrained 
Discriminative Parts

Individual Part 
Detection Hypotheses Pop-Up !+3D Shape Space

Figure 1: Illustrative summary of our approach: 3D Landmarks on a 3D model are associated with discriminatively learned
part descriptors (left). Intra-class shape variation is captured with linear combinations of a sparse shape basis (2nd left).
Learned part descriptors produce multiple maximum responses for each part in a testing image (3rd from left). The selection
of the part hypotheses, 3D pose and 3D shape are simultaneously estimated and the result is illustrated through a popup
(right).

tion method of multipliers (ADMM).
Figure 1 illustrates the outline of our approach. In sum-

mary, the major technical contributions are:

• A convex optimization framework for joint landmark
localization, fine grained 3D shape and continuous
pose estimation from a single image.

• Our convex objective does not require viewpoint or de-
tection initialization.

• An automatic landmark selection method considering
both discriminative power in appearance and spatial
coverage in geometry.

2. Related Work
The most related work includes the family of methods

that estimate an object shape by aligning a deformable
shape model to image features. This idea originated from
the active shape model (ASM) [4], which was originally
proposed for segmentation and tracking based on low-level
image features. Cristinacce and Cootes [5] proposed the
constrained local models (CLM), which combined ASM
with local appearance models for 2D feature localization
in face images. Gu and Kanade [16] presented a method
to align 3D deformable models to 2D images for 3D face
alignment. The similar methods were also proposed for 3D
car modeling [18, 40, 19, 27] and human pose estimation
[31, 38]. Our method differs in that we use a data-driven ap-
proach for discriminative landmark selection and we solve
landmark localization and shape reconstruction in a single
convex framework, which enables a global solution.

The representation of our model is inspired by recent ad-
vances in part-based modeling [8, 33, 17, 22], which models
the appearance of object classes with a collection of mid-

sized discriminative parts. Our optimization approach is re-
lated to the previous work on using convex relaxation tech-
niques for object matching [28, 21, 24]. These methods fo-
cused on finding the point-to-point correspondence between
an object template and an image in 2D, while our method
considers 3D to 2D matching as well as shape variability.

Our paper is also related to recent work on 3D pose es-
timation which encodes the geometric relations among lo-
cal parts and achieved continuous pose estimation. Several
work leveraged 3D models to warp features or parts into
their canonical view [32, 37, 36]. Other work rendered local
appearances and depth from 3D models and subsequently
encoded in a 3D voting scheme [34, 13, 25]. DPM was
further lifted to 3D deformable models [9, 29] to predict
continuous viewpoint. Instance models were also used to
recover 3D pose of an object [26, 1]. But this line of work
focused on pose estimation and either used generic class
models or instance-based models. Our approach differs in
that we not only provide a detailed shape representation but
also consider intra-class variability.

3. Shape Constrained Discriminative Parts
Our proposed method models both 2D appearance vari-

ation and 3D shape deformation of an object class. The 2D
appearance is modeled as a collection of discriminatively
trained parts. Each part is associated with a 3D landmark
point on a deformable 3D shape.

Unlike the previous works that manually define land-
marks on the shape model, we propose an automatic se-
lection scheme: we first learn the appearance models for
all points on the 3D model, evaluate their detection perfor-
mance, and select a subset of them as our part models based
on their detection performance in 2D and the spatial cover-
age in 3D.
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