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Mobile3DScanner: An Online 3D Scanner for High-quality Object

Reconstruction with a Mobile Device

Xiaojun Xiang, Hanging Jiang, Guofeng Zhang, Member, IEEE, Yihao Yu, Chenchen Li, Xingbin Yang
Danpeng Chen, and Hujun Bao, Member, IEEE

Fig. 1. Examplar 3D models with mapped textures are shown on the left and right columns, which are scanned and reconstructed
online on iPad Pro 2020 using our Mobile3DScanner system. A representative keyframe image is given for each case. As shown in
the middle column, our 3D scanning pipeline is capable of scanning a large immovable object such as a “Lion” statue.

Abstract—We present a novel online 3D scanning system for high-quality object reconstruction with a mobile device, called Mo-
bile3DScanner. Using a mobile device equipped with an embedded RGBD camera, our system provides online 3D object reconstruc-
tion capability for users to acquire high-quality textured 3D object models. Starting with a simultaneous pose tracking and TSDF fusion
module, our system allows users to scan an object with a mobile device to get a 3D model for real-time preview. After the real-time
scanning process is completed, the scanned 3D model is globally optimized and mapped with multi-view textures as an efficient post-
process to get the final textured 3D model on the mobile device. Unlike most existing state-of-the-art systems which can only scan
homeware objects such as toys with small dimensions due to the limited computation and memory resources of mobile platforms, our
system can reconstruct objects with large dimensions such as statues. We propose a novel visual-inertial ICP approach to achieve
real-time accurate 6DoF pose tracking of each incoming frame on the front end, while maintaining a keyframe pool on the back end
where the keyframe poses are optimized by local BA. Simultaneously, the keyframe depth maps are fused by the optimized poses to
a TSDF model in real-time. Especially, we propose a novel adaptive voxel resizing strategy to solve the out-of-memory problem of
large dimension TSDF fusion on mobile platforms. In the post-process, the keyframe poses are globally optimized and the keyframe
depth maps are optimized and fused to obtain a final object model with more accurate geometry. The experiments with quantitative
and qualitative evaluation demonstrate the effectiveness of the proposed 3D scanning system based on a mobile device, which can
successfully achieve online high-quality 3D reconstruction of natural objects with larger dimensions for efficient AR content creation.

Index Terms—Object scanning, 3D reconstruction, visual-inertial pose tracking, adaptive voxel resizing
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INTRODUCTION

3D object scanning is one of the core technologies of digital content
creation in a wide range of graphics and augmented reality (AR) ap-
plications, where the reconstruction quality of 3D object models is
of primary concern. Commercial digital 3D scanners are currently

* Xiaojun Xiang, Yihao Yu, Xingbin Yang, and Danpeng Chen are with
SenseTime Research and Tetras.Al. E-mails:
{xiangxiaojun,yuyihao,yangxingbin,chendanpeng} @tetras.ai.

* Hanging Jiang and Chenchen Li are with SenseTime Research. E-mails:

{jianghanging,lichenchen} @sensetime.com.

Guofeng Zhang and Hujun Bao are with the State Key Lab of CAD&CG,

Zhejiang University. E-mails: {bao,zhangguofeng} @cad.zju.edu.cn.

Corresponding Author: Hujun Bao.

Xiaojun Xiang, Hanging Jiang, and Guofeng Zhang assert equal

contribution and joint first authorship.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

able to acquire accurate 3D models of natural objects, but rely on
high accuracy depth sensors such as structure-light and expensive hard-
ware for high-quality reconstruction computation. Due to the dis-
tance limitation of structure-light, most 3D scanners are more suitable
for small object reconstruction. Recently, some research works such
as [3, 12,24] have made efforts to achieve 3D object reconstruction on
a PC or mobile device connected with a consumer-level depth camera,
but these systems require high performance computing hardware for
complicated dense object reconstruction and the reconstruction quality
strongly depends on the ranging accuracy of the depth camera. Some
other systems [14, 27] tried to allow users to scan objects using mo-
bile devices with a monocular camera, but usually cannot reconstruct
high-quality 3D models without the help of depth sensor. Besides,
these systems are limited in reconstructing homeware objects such as
toys and shoes with small dimensions, due to the limited computation
and memory resources of mobile platforms. Nowadays, researches of
archeology and history usually require 3D scanning of large scale cul-
tural relics and historic sites. Unfortunately, there are seldom 3D scan-
ning systems which can perform high-quality online reconstruction of
large dimension objects such as statues with a mobile device.



This paper presents a new 3D scanning system for high-quality on-
line object reconstruction on a mobile device, which we named as
Mobile3DScanner. Our system provides an online 3D object recon-
struction capability for users to scan static natural objects and acquire
high-quality 3D object models with texture maps, using a mobile de-
vice equipped with an embedded RGBD camera module such as iPad
Pro 2020. The system consists of a real-time scanning module and an
object model post-processing module. The real-time scanning module
allows users to scan an object with a mobile device to get a real-time
3D model for preview. The object model post-processing module ef-
ficiently optimizes the geometric structures of the object model and
maps the optimized model with multi-view texture images to get the
final textured 3D model on the mobile device. Unlike most existing 3D
scanning systems on mobile platforms which can only scan small di-
mension objects due to the limitations of depth ranging, computation
and memory, our system can reconstruct objects with larger dimen-
sions such as statues and humans. Large scale object reconstruction
costs complicated computation and huge memory, which is limited on
most mobile devices. Depth maps captured by embedded depth cam-
eras such as dToF on iPad Pro usually contain depth errors or missing
depths, which will significantly affect the quality of the final fused 3D
model. We focus on solving these problems to make sure that large
objects can be scanned and reconstructed online successfully on a mo-
bile platform, with high accurate and complete geometric structures.
Our main contributions can be summarized as:

* We propose a novel visual-inertial pose tracking method for real-
time 3D reconstruction of objects. We combine iterative closest
point (ICP) tracking with IMU, local mapping and loop closure
for accurate real-time object tracking with a mobile device.

* We propose an adaptive TSDF voxel resizing strategy for real-
time scanning of large objects on a mobile device. The voxel
size is dynamically adjusted whenever too many voxels exceed
the memory limitation during the online TSDF fusion, to make
sure that large objects can be scanned successfully without out-
of-memory on the mobile platform.

* Noticing that the embedded RGBD sensor on the mobile device
usually have depth errors or over-smoothness, we propose to re-
fine the depths from the embedded sensor by multi-view stereo
(MVS), to provide more accurate object depths for better mesh
generation. We incorporate the sensor depths from the sensor as
priors into a multi-view semi-global matching (SGM) approach
to acquire more accurate depths with better geometric details.

* We propose an efficient shape-from-shading (SFS) method with
great time efficiency on the mobile device, to further improve
geometric details of the object model online.

This paper is organized as follows. Section 2 briefly presents related
work. Section 3 gives an overview of the proposed Mobile3DScanner
system. The real-time object scanning module and the object model
post-processing module are described in Sections 4 and 5 respectively.
Finally, we evaluate the proposed solution in Section 6.

2 RELATED WORK

Existing real-time static object reconstruction approaches can be gen-
erally divided into two categories: RGBD camera based 3D scanning
and image-based multi-view reconstruction.

With the development of consumer RGBD cameras such as Mi-
crosoft Kinect and Intel RealSense, some real-time object scanning
systems came out, which simultaneously track the real-time pose of
the input depths using ICP [28], and fuse all the tracked object depths
into a global TSDF model. An impressive work of this category is
KinectFusion [24], which localizes a Kinect to a ray-casted global
model using ICP, while fusing depths into the global model using
TSDEF. However, KinectFusion cannot work for large objects even on a
desktop PC, due to the huge computation and memory costs by TSDF
voxels. More recent works such as BundleFusion [3] achieve real-
time reconstruction of large scale models on PC by introducing voxel

hashing [26] to break through the limitations of TSDF fusion. Infini-
TAM [12] proposed a highly efficient implementation of voxel hashing
to achieve real-time scanning of large objects on a Nvidia Shield Tablet
externally connected with a depth camera. Recently, some interac-
tive in-hand object modeling systems have been proposed by [33,42],
which provide real-time registration of the input RGBD frames, while
the in-hand interactivity enables the user to guide the object scanning
process. Tzionas and Gall [40] improve the in-hand scanning pipeline
to effectively facilitate the reconstruction of featureless and highly
symmetric objects by 3D hand motion extraction. Xu et al. [44] pro-
posed an online global non-rigid registration for high-quality small
object scanning using a consumer RGBD camera, with a pause-and-
restart operation to support 360-degree reconstruction. However, these
in-hand works are specially designed for scanning handheld small ob-
jects. In general, very few works can reconstruct large objects on a
mobile device with an embedded RGBD camera.

Although impressive dense reconstruction quality can be achieved
by a consumer RGBD camera, it is inconvienent for a user to scan a
object with an RGBD camera externally connected to a PC or mobile
device, especially when a large object is to be scanned in an outdoor en-
vironment. This limitation encouraged researchers to explore real-time
image-based multi-view object reconstruction systems on a mobile de-
vice with a monocular RGB camera, such as [14,27,31,36]. Without
input depths, these systems estimate depths of the input RGB frames,
and fuse the estimated depths into a global 3D model by TSDF or sur-
fels. MonoFusion [31] presented a real-time dense reconstruction with
a single web camera and MobileFusion [27] proposed a real-time 3D
object scanning tool on mobile devices with monocular camera. Both
works perform volume-based TSDF fusion without voxel hashing, and
therefore can only reconstruct small objects. For large-scale objects,
Tanskanen et al. [39] proposed a live reconstruction system on mobile
phones, which can perform inertial metric scale estimation while pro-
ducing dense surfels of the scanned objects online. Kolev et al. [14]
enhance the pipeline of [39] by introducing a confidence-based depth
map fusion method. Schops et al. [36] estimate sparse depths via mo-
tion stereo with a monocular fisheye camera on the GPU of Google’s
Project Tango Tablets, and integrates the filtered depths by the Tango’s
volumetric fusion pipeline, which is more suitable for large scale scene
reconstruction. However, most of these multi-view reconstruction sys-
tems are not able to reconstruct so accurate 3D object models as the
RGBD camera based scanning approaches.

RGBD registration is crucial for achieving accurate SLAM or on-
line 3D reconstruction. To improve tracking stability on mobile de-
vices, some works combine ICP registration with IMU, which is the
same as our method. For example, Laidlow et al. [15] proposed
a tightly-coupled RGBD inertial real-time tracking method on GPU.
NieBner et al. [25] directly integrate the IMU data to estimate camera
pose for improving ICP initialization and tracking recovery. Brunetto
et al. [2] use two Kalman filters to estimate camera orientation and po-
sition respectively. [2,25] do not optimize the bias of IMU and haven’t
combined IMU in ICP optimization, which might lead to worse ac-
curacy and robustness. In contrast, our method optimizes the IMU
bias and loosely coupled RGBD and IMU to achieve real-time track-
ing on mobile device with only CPU. Some works such as [5,7,23,51]
make efforts to reconstruct deformable or dynamic objects online us-
ing non-rigid registration. For example, Zollhofer et al. [51] use an
as-rigid-as-possible registration framework to do non-rigid surface fit-
ting. DynamicFusion [23] and Fusion4D [5] employ the embedded
deformation graph method [38] to track the motion of deformable ob-
jects. Guo et al. [7] proposed a more stablized non-rigid registration
approach for dynamic objects by employing both Ly and L, based mo-
tion regularizations to further constrain the tracking error propagation.
However, these dynamic object reconstruction systems usually require
high performance computing hardware for online reconstruction and
are difficult to reconstruct large objects with high accuracy due to the
complicated non-rigid registration and fusion computation.

There are also some offline dense reconstruction works on mobile
devices. For example, 3DCapture [22] presented a dense textured
model reconstruction system, which starts with an online RGB and



IMU data capturing stage followed by an offline post-processing re-
construction. The main reconstruction steps including pose tracking,
depth estimation, TSDF depth fusion, mesh extraction and texture
mapping, are all done as the post-processing stage on mobile devices.
Poiesi et al. [29] described another cloud-based dense scene recon-
struction system that performs Structure-from-Motion (SfM) and local
bundle adjustment (BA) on monocular videos from smartphones to re-
construct a consistent point cloud map for each client, and run periodic
full BA to align the maps of various clients on a cloud server. Some
other works presented real-time dense scene reconstruction with GPU
acceleration on a desktop PC, and are more suitable for reconstructing
large-scale scenes instead of focusing on the reconstruction quality of
a single object. For example, Merrell et al. [20] proposed a real-time
3D reconstruction pipeline on PC, which utilizes visibility-based and
confidence-based fusion for merging multiple depth maps to an on-
line large-scale 3D model. Pollefeys et al. [30] presented a complete
system for real-time video-based 3D reconstruction, which captures
large-scale urban scenes with multiple video cameras mounted on a
driving vehicle. Recently, some methods [1,46] adopt convolutional
neural networks in 3D reconstruction, which are generally time con-
suming and limited in scale due to large GPU memory requirement.
In comparison, our pipeline focuses on high-quality online object re-
construction, with both the scanning process and the post-process of
our pipeline run on a mobile device with an embedded RGBD camera.

3 SYSTEM OVERVIEW

We now outline the steps of the proposed online 3D scanning pipeline,
as shown in Fig. 2. If a user wants to scan a natural object by our
system, the object should be put on a horizontal planar surface such
as a desk or the ground. As the user scans the object by a mobile
device with a rear RGBD camera, our pipeline tracks 6DoF poses of
the object in real-time using a visual-inertial ICP (VI-ICP) approach,
which combines IMU and RGBD information to track the 6DoF poses
on the front end, while maintaining a keyframe pool on the back end,
with a local BA module and a loop closing module to refine poses of all
the keyframes. The object is consistently segmented in each keyframe
by a spatio-temporal planar surface tracking method. Simultaneously,
the incoming depths are fused by the estimated poses to a TSDF model
for real-time preview, using an adaptive voxel resizing strategy.

When the user finishes scanning, an object model post-processing
module is activated to obtain the final object model. In this post-
process, the keyframe poses are optimized in a global BA module, and
the object depths of each keyframe are optimized by SGM. The opti-
mized keyframe depths are fused by the globally optimized poses to a
final TSDF model, followed by Marching Cubes [17], Poisson Surface
Reconstruction (PSR) [13] and SFS to get the final 3D mesh. Finally,
the 3D mesh model is mapped with multi-view images to get the final
texture mapped 3D object model, as shown in Fig. 1. In the following
sections, the main steps of our pipeline will be described in detail.

4 REAL-TIME OBJECT SCANNING

In the real-time scanning stage, our system tracks the accurate pose of
the object for each incoming frame scanned by the user on the front
end, while maintaining a set of keyframes optimized by local mapping
and loop closure on the back end. The optimized keyframe poses are
used to fuse the depths to an implicit 3D model in real-time for pre-
viewing the scanning progress. We will describe the steps in details.
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Accurate pose tracking of the object is crucial for online high-quality
3D reconstruction. For each incoming RGBD frame, our system local-
izes the camera by loosely coupled integration of ICP and IMU in a
real-time tracking thread on the front end, which predicts a prior pose
by IMU estimation and integrates it into ICP tracking. Meanwhile, we
optimize a sliding window of keyframes in a local mapping thread and
perform loop closing in another thread on the back end for further opti-
mization of the tracked poses. The following subsections will describe
our IMU estimation, ICP tracking, local mapping and loop closing.

Visual-inertial Pose Tracking

4.1.1 IMU Estimation

To acquire a reliable pose prediction for the current frame, the IMU
state should be initialized first with the ICP tracking result of the first
two frames, with the 6DoF part initialized with the ICP result, the
velocity computed assuming a uniform motion, and the gravity calcu-
lated by madgwick filter [18]. After initialization, the IMU module
can provide a current pose prediction based on the inertial data be-
tween the current frame and the last one. The predicted pose prior
will be integrated into our ICP to enhance tracking robustness of the
current frame, whose details will be given in Section 4.1.2. Then, the
current frame pose tracked by ICP is used as constraints for further
IMU optimization, and the optimized IMU state of the current frame
is used for pose prediction of the next incoming frame, which forms a
loosely coupled iterative optimization.

We follow the approach in [32] to proceed a sliding window-based
IMU state optimization, which minimizes an energy function contain-
ing the residuals of IMU pre-integration proposed in [6], the relative
pose from our ICP, and the same prior constraints as [32]. We use
Ceres Solver [34] for the energy minimization, to get a more reliable
IMU state for pose prediction.

4.1.2 Visual-inertial ICP Tracking

Each incoming RGBD frame F; at time ¢ is tracked by a frame-to-
frame ICP approach similar to Open3D [49], with a previous frame
as the reference one. Our system defines the first frame as the world
coordinates, and maintains a reference frame F, for ICP tracking of
the current frame, with a 6DoF pose matrix M, from global 3D space
to local camera space. We propose a VI-ICP approach by adding the
pose prior estimated by IMU in Section 4.1.1 to improve the robust-
ness and accuracy of ICP tracking. The original ICP solution of [49]
measures color and depth differences between the current frame and
the reference one, which is defined as the following two energy terms:

6= Lex, [dlepOP) ~Di(mlew @)/
Ee = Tnen, || 1(x) ~ h(m(exp(€)P) H/|Nr\ ’

where & represents the 6DoF pose of the current frame to be esti-
mated by ICP, and exp(é) is its Lie Algebra format. N, is the set
of pixels with valid depths inside the object region of F,. For each
depth d € N, at pixel x = (u,v) inside the object region, we project
it back to get a global 3D space point by P = M,_lp(u,v,d), where

p(u,v,d) = (“f”d, f‘”d d> is the back projection function, with
(fus fv) the focal lengths in u and v directions, and (cy,c,) the optical
center. 7(x,y,z) = (£fu+cu, % fy+cy) is the projection function. I,
is the gray image of reference frame F,, while I; and D; are the gray

image and depth map at time 7. d(exp(é)P) represents the depth of P

at time 7 transformed by exp(&).

However, ICP tracking is sensitive to depth errors or over-
smoothness, which are especially common for input depths of iPad
Pro, like the misalignment cases of “David” and “Worker” shown in
Fig. 3(a). Symmetric structures such as spherical and cylindrical
shapes will also affect tracking robustness. Although IMU module
can provide us a predicted pose M{J of the current frame, this esti-
mated pose prior is usually unreliable when the IMU state is not well
initialized or optimized. Fortunately, according to our observation, the
rotation part of the pose predicted by the IMU module and the gravity
are always reliable. Therefore, we add rotation and gravity contraints
as our new ICP energy terms as follows:

& =In exp(c?))RfDi1 )
& = HG, - exp(c?))RflG,H
where  is the rotation components of the £ to be estimated. RY and
R, are the rotation part of MF and M, respectively. ||-|| represents L2-
norm. G; and G, are the gravities in the camera coordinates of F; and
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Fig. 2. System framework, which shows the real-time scanning stage including object segmentation, VI-ICP and local mapping with adaptive TSDF
fusion, and the post-processing stage including the global refinement of keyframe poses and depths, final TSDF fusion, SFS, and texture mapping.

F, respectively, acquired from the mobile device directly. In this way,
our VI-ICP approach minimizes the following energy function:

éa]CP - éad +A’Léac +)Lg£g +Arréar
§ = argmin(&jcp) ; 3)
¢

with weights A, = 0.03, A, = 0.04, and A, = 0.04. The energy mini-
mization is solved iteratively by Gauss-Newton method similar to [49],
with a coarse-to-fine multi-level pyramid scheme for speed-up. We use
3 levels and 15 iterations for each level in our experiment, with each
iteration further accelerated by multi-thread parallel, to ensure real-
time on the mobile platform. With the estimated &, we get the 6DoF

A

pose matrix M; = exp(&) for the current frame. Fig. 3(b) shows the
effectiveness of our VI-ICP. We can see that the tracking errors are sig-
nificantly reduced by introducing the rotation and gravity contraints,
compared to the original ICP approach in Fig. 3(a).

After the ICP tracking finishes, we project all the pixels with valid
depth of F; to F; to evaluate the ICP alignment. The pixels whose
depth difference is within 7mm and color difference is within 30 are
considered as inliers. The tracking fails if the outlier ratio exceeds
0.4 and current frame will be discarded. If ICP has five failures con-
tinuously, the system is lost and will trigger a global relocalization
module. For each successfully tracked frame, we check the pose sim-
ilarity of F; and F;. If the distance of view positions between M, and
M, exceeds &, = 3cm, or the difference of view angles between them
exceeds 8; = 1.5°, we consider F, no longer suitable as the reference
frame, and replace it with F; for future ICP tracking.

4.1.3 Local Mapping and Loop Closing

Although the tracking accuracy can be improved by our VI-ICP, track-
ing errors are still accumulated when we scan around a large object
through a long distance, which will obviously affect the fused 3D
model. Therefore, a local mapping module is necessary to further re-
duce accumulated errors by local pose optimization, with a loop clos-
ing module for global pose optimization on the back end.

On the back end, we maintains a candidate keyframe buffer which
contains the historical reference frames, and a keyframe pool which
consists of all the keyframes with poses and 3D map points refined by
the local mapping module. When a reference frame is replaced with
a new one as mentioned in Section 4.1.2, the old reference frame be-
comes a candidate keyframe for local mapping, and is inserted into the
candidate keyframe buffer. Then, the local mapping thread is activated

to refine the keyframe poses within a sliding window of no more than 6
keyframes. It continuously pops the front candidate from the candidate
keyframe buffer, checks its pose similarity to the latest keyframe in the
sliding window with thresholds 28, and 28, and decides whether to
involve it as a new keyframe for pose optimization or discard it. If
it becomes a new keyframe K;, ORB features are extracted inside its
object region, and matched with the projections of the existing map
points from the sliding window to its local camera space. A local BA
is performed on K; and all the existing map points and keyframes in
the sliding window matched with K; for further pose optimization.

We improve the local BA of ORB-SLAM?2 [21] by using keyframe
depths as constraints. Our energy function contains a reprojection er-
ror term E, and an inverse depth prior term E; defined as follows:

{X,M;|XeP;,K;€Ky } = argmin (E, + A,E,;)

stV
E, = Yxep, Txek, % — T(MX)|5 @
E;s = Yxer, Lriek, [|1/D1(x;) — 1/d(M;X) |5

where Py is the set of 3D map points in the sliding window matched
with K;, and K denotes the set of keyframes in the sliding window
which have common feature correspondences with K; plus K; itself.
M; is the global-to-local pose matrix of K;, and D;(x;) is the depth
measurement at pixel x;, which is the 2D feature correspondence of
map point X at keyframe K;. 7(-) is the projection function, and
d(M;X) represents the projection depth of X at keyframe K. A, is the
depth prior weight and is empirically set to 5. ||-|| 5 is the robust Huber
cost function. We use Ceres Solver [34] for this energy minimization.
After local BA finishes, we count the inliers of correspondences with
reprojection error within 3 pixels. If the number of inliers is less than
20 or the inlier ratio is below 0.6, we destroy the current keyframe,
clear the candidate keyframe buffer and set the system to lost status.
Otherwise, we add K; and its new 3D map points to the sliding window
and the keyframe pool, with the changed 3D map points and keyframe
poses in Py and K updated to the keyframe pool. If the sliding win-
dow is full, the earlist keyframe is popped out.

Meanwhile, we adopt the method of ORB-SLAM?2 [21] for loop de-
tection and closure on the loop closing thread. The effectiveness of lo-
cal mapping and loop closing are demonstrated in Fig. 3(d) and (e). As
can be seen in the camera trajectories and the fused 3D models, local
BA and loop closure significantly improve the accuracy of keyframe
poses. We can also seen from Fig. 3(c-d) that depth constraints are
necessary for local mapping in reducing the tracking errors.
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Fig. 3. ICP tracking results on cases “David” and “Worker”: (a) The
keyframe pose trajectories of original ICP in Open3D [49] and their
fused 3D models. (b) Our VI-ICP involving IMU and gravity. (c) Our
VI-ICP combined with local mapping without depth constraints. (d)
Our VI-ICP combined with local mapping under depth constraints. (e)
Our VI-ICP combined with both local mapping and loop closure. All
the pose trajectories are compared to ground truth (GT) computed by
COLMAP [35] in black color, to give quantitative accuracies in Absolute
Trajectory Root Mean Squared Error (AT RMSE) [37] that aligns the two
trajectories and evaluates the absolute pose differences. The tracking
error of each keyframe is visualized in its mapped color.

4.1.4 360-degree Reconstruction

Our system supports 360-degree reconstruction of a movable object
by allowing the user to pause the scanning, lay down the object, and
continue to scan its bottom. The tracking is continued by adopting
a pause-and-restart strategy similar to [44]. We relocalize the current
frame by finding the most similar keyframe in the keyframe pool using
DBoW2. SVD decomposition is used to initialize the current 6DoF
pose by 3D-3D correspondences acquired from ORB feature matching
and depth back-projection, followed by an ICP based pose refinement.
If ICP has sufficient inliers, we consider the relocalization successful
and allow the user to continue the scanning normally. The current
frame is inserted as a new keyframe to both the sliding window and
the keyframe pool, with new feature correspondences connected to the
other keyframes added for further local BA.

4.2 Temporal Consistent Object Segmentation

Fig. 4. Object segmentations of two frames in case “David”, with red re-
gion denoting planar pixels and background pixels highlighted in purple.

As mentioned in Section 4.1, both ICP tracking and local mapping
focus on the object region to speed up tracking and reduce the influ-
ence of depth calibration error on tracking accuracy. Therefore, a tem-
poral consistent object segmentation is required to run simultaneously
with tracking on the mobile platform in real-time. We use a 3D plane
tracking scheme for temporal consistent segmentation of the object.

For the first frame, we fit a plane on the point cloud with normals,
which is acquired by back projecting the valid depths of the whole
frame to local camera space. Since we have the gravity in the local
camera coordinates, a RANSAC based plane fitting algorithm is car-
ried out, which iteratively selects a point with normals consistent with
gravity as seeds to fit a candidate horizontal plane perpendicular to
the gravity, and collects a set of inliers with distances to the candidate
plane less than 1cm, to evaluate the fitness of the candidate. Therefore,
we only solve a variable of plane height in the opposite direction of
gravity during the whole RANSAC process. The 3D equation of can-
didate plane with the best fitness of inliers is maintained as a global
plane for further plane tracking. The object region is segmented out by
eliminating the inlier pixels of the plane, the pixels with 3D positions
under the plane, and those with invalid or faraway depths, followed by
a morphological open operation and a maximal connected component
extraction. We consider depths with more than 3m too faraway.

For each of a new incoming frame, the global plane is projected to
the local camera space of its previous frame with its tracked 6DoF pose
to get a plane height in the opposite gravity direction, which is used as
a prior constraint for RANSAC plane fitting of the current frame. We
constrain the selection of the seeds within a distance range of 5c¢m from
the projected plane height prior, so that the current plane height fitted
by RANSAC is consistent with the global plane. The object region is
segmented in the same way as the first frame, which ensures temporal
consistency. After the current frame pose is tracked, the fitted plane
height in the local camera space is converted to global 3D space to
update the global plane equation, considering the slight change of the
global plane due to the accumulated tracking error on the front end.

Our object segmentation performs in real-time on iPad Pro to keep
up with the frequency of pose tracking. Fig. 4 shows the results of ob-
ject segmentation of two sequential frames with satisfactory temporal
consistency. The segmented object regions are also used for the follow-
ing TSDF fusion and depth refinement stages, to make sure that only
the object depths are refined and fused to form the final 3D model.

4.3 TSDF Fusion with Adaptive Voxel Resizing

Fig. 5. Our adaptive voxel resizing on case “Worker”: (a) The mesh
extracted from the TSDF volume before voxel resizing. (b) The volume
mesh after triggering voxel resizing. (c) The mesh of the final TSDF
volume after fusing all the keyframes.

While performing the visual-inertial tracking and object segmenta-
tion, the depths inside the object region of each keyframe are fused
by its tracked 6DoF pose into a global TSDF model in another fusion
thread on the back end. Simultaneously, the fused TSDF volume is ray-
casted by the viewing pose on the front end for a normal shader based
real-time rendering of the currently reconstructed model, allowing the
user to preview which parts of the object are scanned.

TSDF fusion is a volumetric method for integrating range images to
ensure incremental updating, representation of directional uncertainty,
reconstruction gap filling, and robustness in the presence of outliers,
and has demonstrated its effectiveness in literature [3,24]. However,
its huge memory consumption prevented further applications to large
object reconstruction. Although voxel hashing [26] is employed in [3]
to break through the memory limitation of TSDF fusion to some extent,
the memory problem still occurs when a large object is being scanned
and fused on a mobile device with gradually increasing volume oc-
cupancy. Larger voxel size can represent the object with a smaller
number of voxels with less memory cost on the mobile platform, but



will seriously affect the object reconstruction quality. Moreover, we do
not know the best voxel size for the object scale to balance the mem-
ory limitation and reconstruction accuracy before we scan it. To better
overcome this issue, we propose an adaptive voxel resizing strategy,
so that users are able to use a mobile device with limited memory to
scan as-large-as-possible objects with adaptive voxel resolution.

Our TSDF fusion follows the voxel hashing strategy adopted in [48].
Rather than allocating voxels for the entire volume, we only allocate
voxels which are really occupied by the depth map fusion. To further
speed up voxel allocation and hashing, we use sub-volume hashing for
TSDF representation. Each sub-volume contains 16 x 16 x 16 voxels,
and is allocated or updated if any of its voxels is created or updated
by depth fusion. The initial voxel size § is set to 6mm. Suppose we
have the depth map D; for keyframe K;. For each depth d € D; at
pixel x = (u,v) inside the object region, we project it back to get a
global 3D space point by P = M; ! p(u,v, d), where M, is the global-
to-local transformation at time #, and p(-) is the back projection func-
tion. Each voxel V inside the sub-volumes occupied by the truncation
band [—7, 7] of P is created or updated as follows:

T, V)W, (V) + (D1 (m(M, V) —d(M, V))S(2(M, V)) /7
(V)= W;, (V) +1

5)
Wi(V) =W, (V) +1

where d(M, V) represents the projection depth of V at keyframe ¢, and
D;(m(M;V)) is the depth measurement at pixel 7(M;V). S(u,v) =
V((u=cu)/f)2+((v=cy)/f»)? + 1 converts the depth difference at
pixel (u,v) to distances in camera space, with focal lengths fy, f,
and optical center ¢y, ¢,. 7(-) is the projection function. 7;(V) and
W; (V) represent the TSDF value and weight of V respectively at time
t. T;,(V) and W, (V) are the TSDF value and weight at the previ-
ously updated time 7,. We set T = 3cm. For a newly generated voxel,
T;(V) = (Di(mn(M;V)) —d(M,V))S(n(M;V)) /7 and W;(V) = 1.

On a mobile device, the memory usage of TSDF should be kept
under an upper limitation M, which we set to 200MB for scanning
preview on the iPad Pro platform. When the memory cost M; exceeds
this limitation after a keyframe depth map fusion at time 7, a voxel
resizing is triggered by recreating a new TSDF volume to represent
the object with a larger voxel size 8’ = 1.58 for memory reduction.
We allocate new sub-volumes according to the new voxel size. Each
new sub-volume should fully contain at least one old voxel. For a
newly created voxel V', its new TSDF value is calculated by trilinear
interpolation of the old voxels as:

(6 — V3= Va)(8 = [V5 = Vy)(8 — [V~ V¢|)
53

(V)=
VeN(V')

(V).

(6)
where N(V') is the 8 nearest neighboring old voxels of V'. The new
weight W, (V') can be calculated in the same interpolation way as Eq.
(6). Through this trilinear interpolation, the voxels can be dynami-
cally resized efficiently without recalculating their TSDF values and
weights by Eq. (5). An intuitive example of this adaptive voxel resiz-
ing in case “Worker” is shown in Fig. 5, where the 4mm TSDF voxels
in (a) are resized to 6mm in (b). Actually, the voxel resizing is trig-
gered iteratively whenever the memory limitation is reached, until the
object scanning is completed. A similar voxel sizing strategy is ap-
plied for TSDF fusion at the post-processing stage to handle memory
limitation, which will be described in Section 5.2 with more details.

Both TSDF fusion and voxel resizing are accelerated by OS Metal
GPU. For case “Worker”, a TSDF fusion takes 5.5 ms/keyframe and
a voxel resizing costs 65.51 ms at a time averagely on iPad Pro. The
fused TSDF volume is raycasted to the current view for real-time visu-
alization of the scanned surface to the user, in the same way as [24].

5 OBJECT MODEL POST-PROCESSING

In this post-processing stage, since we have the keyframe pool on the
back end with all the keyframes and their corresponding 3D mappoints,

we can use these keyframes to further optimize the geometric accu-
racy of the object model, and fulfill texture mapping for the optimized
model, to finally create a high-quality textured 3D model. We will
describe our object model post-processing in key details.

5.1 Global Optimization of Keyframe Poses and Depths

RMSE: 24.998mm RMSE: 21.587mm lSmm
(a) (b)

Fig. 6. Global BA of case “Worker”: (a) The pose trajectory of all the
keyframes optimized online by local BA and its fused 3D model. (b) The
optimized keyframe pose trajectory and its finally fused 3D model after
global BA, with GT given by COLMAP [35].

Fig. 7. Depth refinement by MVS on case “David”: (a) A keyframe and
its two reference ones. (b) The original depth map of the keyframe from
dToF, its point cloud, and the finally fused 3D model. (c) The estimates
depth map by MVS without dToF depth priors, and its point cloud. (d)
The refined depth map by MVS with dToF depths as prior, its point cloud,
and the finally fused 3D model of all the refined keyframe depths.

Our global BA uses the same energy function as local BA by Eq.
(4), except that all the keyframes and map points in the keyframe pool
participate in the global optimization. Note that the first frame is fixed
during the optimization to keep the world coordinates unchanged. The
effectiveness of the global BA on case “Worker” is shown in Fig. 6,
with the slight pose registration drift thoroughly reduced to improve
the accuracies of both tracking and geometry fusion.

Although global BA can help reducing the object pose alignment
errors, directly using the optimized poses and the input depths for 3D
model fusion is insufficient for a high-quality reconstruction purpose,
because the input depths from consumer RGBD camera such as dToF
on iPad Pro might have depth errors or over-smoothness with lost geo-
metric details, as can be seen in Fig. 7(b). To solve this problem, we
propose to estimate more accurate depths with geometric details for
all the keyframes by MVS, since we have multi-view keyframes with
globally optimized poses. For each keyframe, we propose to refine
the depth measurements from dToF sensor using an SGM approach,
which is widely used for binocular depth estimation and MVS prob-
lems like in [9,45]. We improve the multi-view SGM approach in [45]
by incorporating dToF depth priors into cost aggregation to exploit the
complementary advantages of MVS and dToF, according to our obser-



vation that depths from MVS is more accurate but noisy in textureless
regions while depths from dToF are more complete but lost in details.

Suppose the depth measurement is bounded to a range from dy;, to
dmax, Which can be acquired from a predefined valid depth range of
dToF sensor. We uniformly sample the inverse depth space to L levels,
and the /-th sampled depth can be computed as follows:

(L - 1)dmindmax
d = : 7
! (L —1- l)dmin +1 (dmax - dmin) (

where [ € {0,1,2...,L— 1}, and d is the sampled depth at the /-th level.
Given a pixel x = (u,v) with depth d; in the object region of keyframe
K;, its projection pixel x,_,,(d;) on a reference keyframe K, by d; can
be calculated by x,_,,(d;) = 7(MyM; ' p(u,v,d;)), where M;, My
are the 6DoF pose matrices of keyframe K; and K/, with 7t(-) and p(-)
the projection and back projection functions respectively. We resort
to a variant of Census Transform (CT) [8] as the feature descriptor to
compute patch similarity cost. Meanwhile, considering the dToF depth
measurements have higher completeness, we combine these depths as
priors to compute weights for multi-frame cost fusion. Therefore, our
matching cost is determined as follows:

Y CT(x,%r(dp))
t'eN(t)
w(x,d;) = 1 — N5 (d; — Dys(x))

C(x,d;) = w(x,d)) ®)

where N(7) is the set of reference keyframes for K;, which are selected
by the strategy in [45]. w(x,d;) is the cost fusion weight using a Gaus-
sian function with variance o = 0.45, and D;(x) is the dToF depth
prior. CT (x,x,_,(d;)) is the Census cost of the two patches centered
at x and X,y (d;). We only compute costs of the pixels inside the ob-
ject region of K;. Therefore, by Eq. (8), we get a cost volume C with
size W x H x L, where W and H are width and height of the object
region bounding box. After that, the cost volume is aggregated along
various directions using the method proposed in [9, 10], to generate a
more reliable matching cost volume C.

The final depth label Il (x) is given by a Winner-Take-All strategy to
select the depth level with the lowest cost in cost volume C. In order
to get a sub-level depth value, we follow the method in [45] by using
parabola fitting to acquire a refined depth level Jg (x). We substitute
[ in Eq. (7) with fs(x) to get a more accurate sub-level depth for x.
With the sub-level depths, we get an depth map D, for each keyframe
K;. As can be seen in Fig. 7(d), the object depths refined by our
SGM with dToF depth priors contain more geometric details than the
dToF depth measurements shown in Fig. 7(b), and are more complete
in textureless regions compared to results of Yang et al. [45] shown
in Fig. 7(c). In this way, advantages of MVS and dToF depths are
combined to provide more accurate depths for final mesh generation.

5.2 Mesh Generation with Detail Enhancement

Fig. 8. SFS results on examples of “David” and “Lion”: (a) The 3D
models by PSR. (b) The 3D models with more details after SFS.

With the optimized keyframe poses and depths, a final TSDF fusion
is performed for better geometric accuracy than the real-time preview
one at the scanning stage. A larger memory limitation Mp = 400MB
is adopted for this mesh generation stage, since the memory pressure
is much relieved after the scanning and global optimization. Besides,

Fig. 9. Texture mapping of case “Farm”: (a) shows three of the repre-
sentative keyframes for texturing. (b) The input 3D model. (c) The final
3D model after our multi-view texture mapping.

it is also feasible to estimate a proper voxel size &, for the final TSDF
volume considering the memory usage of the preview one as: 8, =

max(8pin, 6/ 3/ MM »/ M), where d; and M, denote the voxel size and

memory cost of the preview TSDF volume at the end time respectively,
and we set O, = 4mm. 7 is a protection coefficiency to make sure
the memory usage will not reach M p» With 7 = 0.9 in our experiments.
With the estimated voxel size, the optimized depths are fused to the
final TSDF volume using Eq. (5), with Marching Cubes [17] followed
to extract a triangle mesh of the object.

The triangle mesh generated from TSDF volume is usually incom-
plete, because some local parts of the object with self-occlusion are
hard to be scanned fully. The bottom surface is apparently missing if
an immovable object cannot be laid down for bottom scanning. There-
fore, PSR [13] is adopted to deal with the incompleteness, with its
capability to fit watertight surfaces from the set of mesh vertices with
normals. For an immovable large object, our algorithm reconstructs
a presumptive bottom surface for it, by adding dense point samples
on the 3D planar surface, with inverse plane normal as the sample nor-
mals. These additional sample points are combined with mesh vertices
as the input for PSR, to obtain a complete 3D mesh of the object.

After TSDF fusion and PSR, we use SFS method to improve geo-
metric details from shading clues. Although SFS is helpful for detail
restoration, most existing implementations are far from feasible to mo-
bile platform. For example, Intrinsic3D [19] refine the SDF in a coarse-
to-fine manner on pyramid levels, which causes exponential growth of
computation and memory. Instead, we propose a highly efficient SFS
implementation for detail enhancement on mobile platform.

Most SFS works are performed on depth maps [43] or TSDF vol-
ume [19, 50], which require extra computation cost to extract the op-
timized triangle mesh. For time efficiency on a mobile device, we
perform SES directly on the mesh, by optimizing an intermediate trian-
gle normal map, followed by updating the vertex positions according
to the optimization of the normal map. The optimization framework
is similar to that of [50], with the major difference lying in that we
optimize triangle normals instead of TSDF. Our SFS based detail en-
hancement iteratively optimize face normals, face albedos and the SH
coefficiencies, to make the estimated luminance closer to the observed
irradiance. The energy function of each mesh triangle f is defined as:

Espg (f) = Eg (f) + AsEs (f) + ArEr(f) + laEa (f)7 9

where E,(f) = (VB(f) — VI(f))? is the gradient residual between lu-
minance B(f) and irradiance I(f). Es(f) = |In(f) —mg(f)||? is the
normal stabilizer to keep the derived normal n(f) closer to the input

one ng(f), with weight A; = 0.005. E,(f) =L pren(y) [In(f) —n(f)|]?
is the normal regularizer to smooth the derived normals with weight
Ar=0.003, and Eq(f) = Epen(s) 9 (C(f) = C(f))(A(f) — A(f"))" is
the albedo regularizer which helps to avoid texture-copy problem with
weight A, = 2. Here, N(f) is the neighboring triangles of f, C(f) de-
notes the chromaticity, and ¢(-) = 1/(1+3||-||)? is the robust kernel.



Fig. 10. The reconstructed 3D models of cases “Ancient Lion”, “Elephant”, “Qi Lin”, “Deer”, “Shoe”, “Sofa” and “Horse Head”, with three represen-

tative keyframes given for each case.

Fig. 11. Comparison of our Mobile3DScanner with other state-of-the-art methods: (a) Three representative keyframes in case “La Marseillaise”. (b)
Open3D [49]. (c) KinectFusion [24]. (d) InfiniTAM [12]. (e) BundleFusion [3]. (f) 3D Scanner App. (g) Our Mobile3DScanner. (h) The GT model

aqcuired by a commercial 3D scanner.

Fig. 12. Two failure cases of a microwave owen with reflecting surfaces,
and a textureless trash can. Each case contains three representative
keyframes, and the reconstructed 3D model with textures.

We follows the coarse-to-fine pyramid optimization strategy
adopted in [19, 50], with mesh triangles upsampled by loop subdivi-
sion. The optimization framework contains three levels of pyramids.
In the first level, the lighting coefficiencies are estimated, followed
by optimization of albedos and normals twice. In each of the next
two levels, we upsample the mesh triangles, update lighting coeffi-
ciencies on the subdivided mesh, and optimize albedos and normals
once. Rather than using the conventional Gauss-Newton method, we
utilize L-BFGS [16] for energy optimization, which is a light-weighted
quasi-Newton method with line-search strategy. For each time of op-
timization, 30 iterations are sufficient to achieve a satisfactory result
with significantly reduced time on the mobile device. Besides, only
25% triangles with the largest energies by Eq. (9) are upsampled for
the next level optimization, so that the amount of triangles participat-
ing in optimization can be well controlled, which is essential for time
efficiency on mobile platform. After the optimization, we use an ef-
ficient approach proposed in [47] to update vertex positions. Fig. 8

shows results of our SFS based mesh detail enhancement, which takes
only 3.24 seconds for case “David” on iPad Pro CPU with Root Mean
Squared Error (RMSE) 3.12mm and Mean Absolute Error (MAE)
2.473mm. Meanwhile, we run Intrinsic3D for “David” with exactly
the same keyframes and 4mm as the voxel size, and keep all other pa-
rameters as default. Although Intrinsic3D turns out to preform slightly
better with RMSE 2.89mm and MAE 2.16mm, it costs 81 minutes on
an Intel Core 17 7700K CPU with 32GB RAM.

5.3 Multi-view Texture Mapping

We can use the color images of all the keyframes with optimized poses
to perform texture mapping for the 3D model refined by SFS. We fol-
low the approach in [41] to perform a multi-view texture mapping on
the mobile device, with some improvements for time efficiency.

We select a set of representative keyframes for texture mapping to
speed up both the data cost calculation and the graph-cuts optimization
steps. Based on a prerequisite that we scan around the object, we can
classify all the keyframes based on their view directions in polar an-
gles. We defines @ x 6 = 6 x 12 direction bins, where & is the number
of bins in elevation angle and 6 is for azimuth angle. Each keyframe
is classified into the corresponding bin by its polar angles. After all
the keyframes are classified, a representative keyframe is chosen from
each bin with the most similar colors in visible common regions with
other keyframes in the bin, and all the representative keyframes com-
pose the set of candidate texture frames. In this way, we have 72 can-
didate frames at most for texture mapping, which proves to be enough
for most of the experimental cases. Besides, we use the sparse label
costs proposed in [4] to further speed up graph-cuts, since each trian-
gle is visible in only a small part of the candidate frames. An example
“Farm” is demonstrated in Fig. 9 to show the effectiveness of our tex-
ture mapping, which costs 13.93s on an iPad Pro 2020.



Table 1. We report RMSEs and MAEs of the reconstruction results by our Mobile3DScanner, and [3, 12,24, 49], and 3D Scanner App on our four
experimental cases captured by iPad Pro, with each object scanned by a commercial 3D scanner as GT. To demonstrate the effectiveness of the
post-processing stages, the accuracies without global BA and SFS (marked as “-GBA-SFS”) and without SFS (“-SFS”) are given separately.

RMSE/MAE [mm)] Open3D [49] KinectFusion [24] InfiniTAM [12] BundleFusion [3] 3D Scanner App Ours(-GBA-SFS) Ours(-SFS) Ours

Deer 7.507/5.698 21.156/13.152 4.905/3.476 8.248/5.306 7.8/6.501 4.701/3.159 4.564/3.024 | 3.845/2.56
David 10.021/8.417 8.532/7.472 4.579/3.568 5.877/4.555 8.389/7.172 3.186/2.525 3.153/2.513 3.12/2.473
La Marseillaise 16.334/11.689 9.543/7.796 6.015/4.77 5.818/4.517 8.208/6.448 4.181/3.289 4.179/3.27 4.169/3.249
Horse Head 12.793/9.855 5.24/4.311 5.059/3.836 4.911/3.919 8.032/6.868 4.037/2.88 3.937/2.864 | 3.363/2.65

Table 2. We report detailed computation time of our Mobile3DScanner in all the substeps of three cases “Deer”, “La Marseillaise” and “Worker” on
an iPad Pro 2020, which contain 487 frames, 1098 frames, and 1438 frames respectively.

Time Real-time Scanning [ms/frame] Post-processing [s]

Pose Object TSDF Voxel R Global Depth TSDF Texture

Tracking Segmentation Fusion Resizing Raycasting Total BA Refinement | Fusion PSR SFS Mapping Total
Deer 12.62 3.64 1.76 / 2.49 18.75 | 0.27 16.85 0.275 0.733 1.63 | 4.39 24.15
La Marseillaise 15.72 3.29 1.89 / 2.69 21.7 1.17 26.56 0.446 1.17 3.31 6.76 39.42
Worker 21.87 4.19 55 65.51 3.32 29.38 1.75 33.23 1.381 1.9 5.64 | 20.31 64.21

6 EXPERIMENTAL EVALUATION

In this section, we perform evaluation of our Mobile3DScanner, whose
App is developed by iOS Object-C, with the core algorithms imple-
mented in C++ code. We report quantitative comparisons as well as
qualitative comparisons of our work with the state-of-the-art methods
on our experimental benchmark captured by an iPad Pro 2020 with a
rear dToF, which show that our Mobile3DScanner achieves the best
performance on the benchmark. We also report the time consumption
on each stage of our approach to show the efficient online 3D recon-
struction using our system on iPad Pro.

6.1

We qualitatively and quantitatively compare our Mobile3DScanner
to other state-of-the-art methods on the generated 3D models of the
twelves static objects captured by iPad Pro, including normal-sized
movable objects like “Deer” with 30cm long, large movable objects
like “David” with 63cm tall, and very large immovable objects such
as “Lion” with 2.3m long. The input resolution of each case is
1920 x 1440 for image and 256 x 192 for depth, which are warpped
and resized to 512 x 384 in our experiments. In Fig. 1 and 9, we have
already demonstrated cases “Lion”, “David”, “Worker” and “Farm” in
detail. Other cases are shown in Fig. 10. For cases “Deer”, “David”,
“La Marseillaise” and “Horse Head”, we compare our reconstructed
3D models against Open3D [49], KinectFusion [24], InfiniTAM [12],
BundleFusion [3], and 3D Scanner App' (a third-party online app on
iPad Pro). For 3D Scanner App, we choose object mode with the high-
est resolution of Smm; for other methods, we use 4mm as the voxel size
and 3cm as the truncation band, and leave all other parameters default.
The GT models are scanned by a commercial digital 3D scanner for
accuracy evaluation of each case. For model accuracy evaluation, we
use CloudCompare 2 to compare the reconstructed meshes with GT:
we align the mesh with GT using manual rough registration followed
by ICP fine registration, then evaluate the mesh-point-to-GT-plane dis-
tances. This routine is achieved with CloudCompare’s built-in func-
tions. As the comparison results on case “La Marseillaise” shown in
Fig. 11, both Open3D and 3D Scanner App have tracking drifts caused
by the depth errors and over-smoothness from dToF, which signifi-
cantly affect geometry of the final models. KinectFusion, InfiniTAM
and BundleFusion have fewer tracking drifts, but do not guarantee ge-
ometry completeness. Besides, all these methods lack in geometric
details due to the depth over-smoothness. In comparison, our system
performs better than the other works in the finally generated 3D mod-
els with better geometric structure and fewer noisy arifacts. We can
also see from the model accuracy evaluation in Table 1 that our Mo-
bile3DScanner reconstructs the object models with a millimeter-level
accuracy, which turns out to be the best in both RMSE and MAE.

Quantitative and Qualitative Evaluations

Uhttp://www.3dscannerapp.com/
Zhttp://cloudcompare.org

Table 2 gives the time statistics of our pipeline on three typical cases
“Deer”, “La Marseillaise” and “Worker” with the longest dimension
30cm, 58cm, and 1.7m respectively, in stages of real-time 3D scan-
ning and post-processing separately on iPad Pro with A12Z bionic
chip. Since the TSDF fusion and voxel resizing both run on a back-end
thread, the total time of the real-time scanning stage is actually the sum
of all the front-end time costs from pose tracking, object segmentation
and raycasting. We can see from the time consumptions that larger
objects cost more time on pose tracking and TSDF fusion, and larger
objects with more keyframes take more time on post-process. Even for
the largest case “Worker” in Table 2 with the most keyframes, our Mo-
bile3DScanner can still achieve real-time scanning and efficient post-
processing for online 3D reconstruction on a mobile device, which
makes it convenient to create 3D models as digitalized content for AR
applications such as the example shown in the supplementary video.

6.2 Limitations

Since our local mapping and global BA rely on feature matching, the
scanned object is required to contain lambertian features, which might
be a limitation to textureless objects or reflecting surfaces. Tracking
drift accumulates for these cases and is difficult to be corrected by loop
or BA module due to the wrong feature matches cause by textureless
or non-lambertian features. Besides, reconstructing reflecting surfaces
is a well-known challenging problem [11]. Neither the depth sensor
nor SGM is able to estimate accurate depths for these surfaces, which
results in unsatisfactory reconstrcution results, as shown in Fig. 12.

7 CONCLUSION

We have presented a novel online 3D scanning system for 3D object
reconstruction with a mobile device. Our system allows users to recon-
struct high-quality dense textured 3D models of the scanned objects us-
ing a mobile device with an embedded RGBD camera. Unlike existing
state-of-the-art methods which only support small object scanning due
to the limited computation and memory on the mobile platform, our
Mobile3DScanner utilizes an adaptive TSDF voxel resizing strategy
to solve memory limitation of large object scanning. A novel visual-
inertial ICP combined with local mapping ensures accurate object pose
tracking, and the geometric details of the reconstructed model are re-
fined through efficient optimization of poses, depths and geometry, to
achieve high-quality object reconstruction. A more sophisticated track-
ing mechanism is preferred as a future work to better handle objects
with textureless or non-lambertian surfaces. In addition, how to recon-
struct high-quality objects online using a mobile device with only a
monocular camera is a problem worth studying in the future.
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