
Report No. UIUCDCS-R-2007-2857 UILU-ENG-2007-1758

SRDA: An Efficient Algorithm for Large Scale Discriminant Analysis

by

Deng Cai, Xiaofei He, and Jiawei Han

May 2007

SRDA: An Efficient Algorithm for Large Scale

Discriminant Analysis∗

Deng Cai† Xiaofei He‡ Jiawei Han†

† Department of Computer Science, University of Illinois at Urbana-Champaign

‡ Yahoo! Research Labs

Abstract

Linear Discriminant Analysis (LDA) has been a popular method for extracting features which

preserve class separability. The projection functions of LDA are commonly obtained by maximizing the

between class covariance and simultaneously minimizing the within class covariance. It has been widely

used in many fields of information processing, such as machine learning, data mining, information

retrieval, and pattern recognition. However, the computation of LDA involves dense matrices eigen-

decomposition which can be computationally expensive both in time and memory. Specifically, LDA

has O(mnt + t3) time complexity and requires O(mn + mt + nt) memory, where m is the number

of samples, n is the number of features and t = min(m,n). When both m and n are large, it is

infeasible to apply LDA. In this paper, we propose a novel algorithm for discriminant analysis, called

Spectral Regression Discriminant Analysis (SRDA). By using spectral graph analysis, SRDA casts

discriminant analysis into a regression framework which facilitates both efficient computation and the

use of regularization techniques. Specifically, SRDA only needs to solve a set of regularized least

squares problems and there is no eigenvector computation involved, which is a huge save of both time

and memory. Our theoretical analysis shows that SRDA can be computed with O(ms) time and

O(ms) memory, where s(≤ n) is the average number of non-zero features in each sample. Extensive

experimental results on four real world data sets demonstrate the effectiveness and efficiency of our

algorithm.

1 Introduction

Dimensionality reduction has been a key problem in many fields of information processing, such as

data mining, information retrieval, and pattern recognition. When data are represented as points in a

high-dimensional space, one is often confronted with tasks like nearest neighbor search. Many methods

have been proposed to index the data for fast query response, such as K-D tree, R tree, R* tree, etc

[6]. However, these methods can only operate with small dimensionality, typically less than 100. The

∗The work was supported in part by the U.S. National Science Foundation NSF IIS-05-13678/06-42771 and NSF BDI-

05-15813. Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not

necessarily reflect the views of the funding agencies.

1

effectiveness and efficiency of these methods drop exponentially as the dimensionality increases, which is

commonly referred to as the “curse of dimensionality”.

During the last decade, with the advances in computer technologies and the advent of the World

Wide Web, there has been an explosion in the amount of digital data being generated, stored, analyzed,

and accessed. Much of this information is multimedia in nature, including text, image, and video data.

The multimedia data are typically of very high dimensionality, ranging from several thousands to several

hundreds of thousand. Learning in such high dimensionality in many cases is almost infeasible. Thus,

learnability necessitates dimensionality reduction. Once the high-dimensional data is mapped into lower-

dimensional space, conventional indexing schemes can then be applied.

One of the most popular dimensionality reduction algorithms is Linear Discriminant Analysis (LDA)

[3], [5]. LDA searches for the project axes on which the data points of different classes are far from each

other while requiring data points of the same class to be close to each other. The optimal transformation

(projection) of LDA can be computed by applying an eigen-decomposition on the scatter matrices of

the given training data. LDA has been widely used in many applications such as text processing [19],

face recognition [1]. However, the scatter matrices are dense and the eigen-decomposition could be very

expensive in both time and memory for high dimensional large scale data. Moreover, to get a stable

solution of LDA, the scatter matrices are required to be nonsingular which is not true when the number

of features is larger than the number of samples. Some additional preprocessing steps (e.g ., PCA, SVD)

are required to guarantee the non-singularity of scatter matrices [1], [20] which further increase the time

and memory cost. Therefor, it is almost infeasible to apply LDA on large scale high dimensional data.

In this paper, we propose a novel algorithm for discriminant analysis, called Spectral Regression Dis-

criminant Analysis (SRDA). SRDA is essentially developed from LDA but has significant computational

advantage over LDA. Benefit from recent progresses on spectral graph analysis, we analyze LDA from a

graph embedding point of view which can be traced back to [10]. We show how the LDA solution can

be obtained by solving a set of linear equations which links LDA and classical regression. Our approach

combines the spectral graph analysis and regression to provide an efficient and effective approach for

discriminant analysis.

The points below highlight the contributions of this paper:

• The classical LDA is well analyzed from a new graph embedding point of view. The singularity issue

in classical LDA is clearly analyzed and we show how various kinds of LDA extensions, e.g ., two-

stage PCA+LDA approach [1] and LDA/GSVD approaches [11][20], can be unified in a SVD+LDA

framework.

• The projective functions obtained by those classical LDA approaches and LDA/GSVD approaches

are optimal with respect to the objective function. However, in small sample size situation, these

solutions tend to over-fit the training data, and thus may not be optimal on the test set. The

regularized solution of LDA usually achieves better performance.

• A new approach for discriminant analysis based on the graph embedding formulation of LDA

is developed, which is called Spectral Regression Discriminant Analysis (SRDA). In SRDA, the

2

transformation vectors are obtained by solving a set of linear regression problems which can be

very efficient. Since it contains regression as a building block, SRDA provides a natural framework

for regularized discriminant analysis.

• LDA has O(mnt + t3) time complexity and requires O(mn + mt + nt) memory, where m is the

number of samples, n is the number of features and t = min(m, n). When both m and n are large,

it is infeasible to apply LDA. On the other hand, SRDA can be computed with O(ms) time and

O(ms) memory, where s(≤ n) is the average number of non-zero features in each sample. It can

be easily scaled to very large high dimensional data sets.

The remainder of the paper is organized as follows. In Section 2, we provide a brief review of LDA

and its variant extensions. Section 3 gives a detailed analysis of LDA from a graph embedding point

of view. Section 4 introduces our proposed Spectral Regression Discriminant Analysis algorithm. The

extensive experimental results are presented in Section 5. Finally, we provide some concluding remarks

in Section 6.

2 A Brief Review of LDA

LDA seeks directions on which the data points of different classes are far from each other while requiring

data points of the same class to be close to each other. Suppose we have a set of m samples x1,x2, · · · ,xm,

belonging to c classes. The objective function of LDA is as follows:

a∗ = arg max
a

aT Sba

aT Swa
, (1)

Sb =
c∑

k=1

mk(µµµ
(k) −µµµ)(µµµ(k) −µµµ)T , (2)

Sw =
c∑

k=1

(
mk∑

i=1

(x
(k)
i −µµµ(k))(x

(k)
i −µµµ(k))T

)
, (3)

where µµµ is the total sample mean vector, mk is the number of samples in the k-th class, µµµ(k) is the average

vector of the k-th class, and x
(k)
i is the i-th sample in the k-th class. We call Sw the within-class scatter

matrix and Sb the between-class scatter matrix.

Define St =
∑m

i=1(xi − µµµ)(xi − µµµ)T as the total scatter matrix and we have St = Sb + Sw [5]. The

objective function of LDA in Eqn. (1) is equivalent to

a∗ = arg max
a

aT Sba

aT Sta
. (4)

When l projective functions A = [a1, · · · ,al] are needed, the objective function of LDA can be written

as

A∗ = arg max
A

tr(AT SbA)

tr(AT StA)
, (5)

3

Table 1: Notations
Notations Descriptions

m the number of total training data points

n the number of features

c the number of classes

mk the number of data points in k-th class

xi the i-th data point

x
(k)
i the i-th data point in the k-th class

µµµ the total sample mean vector

µµµ(k) the mean vector of the k-th class

x̄i the i-th centered data point (x̄i = xi −µµµ)

X the data matrix

X̄ the centered data matrix

Sb the between-class scatter matrix

Sw the within-class scatter matrix

St the total scatter matrix

a the transformation vector

A the transformation matrix

where tr() denotes matrix trace. The optimization problem in Eq. (5) is equivalent to find the l

eigenvectors of following generalized eigen-problem associated with maximum eigenvalues:

Sba = λSta. (6)

Since the rank of Sb is bounded by c− 1, there are at most c− 1 eigenvectors corresponding to non-zero

eigenvalues [5].

To get a stable solution of the above generalized eigen-problem, St is required to be nonsingular

which is clearly not true when the number of features is larger than the number of samples. In the

past few decades, various approaches have been proposed to solve this problem. One of the most well

know approaches is to perform dimensionality reduction in two stages. LDA is performed after another

stage of dimension reduction. Some popular methods for the first stage include Principle Component

Analysis (PCA) and Singular Value Decomposition (SVD). Both Swets et al . [18] and Belhumeur et al .

[1] have utilized PCA+LDA for face recognition. Torkkola [19] implemented SVD+LDA for document

classification. All these approaches use the LDA objective function in Eqn. (1). Since the rank of Sw is

bounded from above by m − c [1], the PCA (SVD) step should reduce the dimension to at most m − c.

Recently, Howland et al . [11] solved the singularity problem of LDA by using Generalized Singular

Value Decomposition (GSVD). They rewrite the LDA objective function as the following equivalent form:

A∗ = arg max
A

tr
(
(AT StA)−1(AT SbA)

)
,

which can be solved by the GSVD algorithm. One limitation of this method is the high computational

4

cost of GSVD, especially for large and high-dimensional data sets. In [20], Ye extended such approach

by solving the optimization problem using simultaneous diagonalization of the scatter matrices.

Another way to deal with the singularity of Sw is to apply the idea of regularization, by adding some

constant values to the diagonal elements of Sw, as Sw +αI, for some α > 0. It is easy to see that Sw +αI

is nonsingular. This approach is called Regularized Discriminant Analysis (RDA) [4], [8]. However, the

Sw + λI is a very large dense matrix for high-dimensional data which incurs a high computational cost

on directly solving the eigen-problem in Eqn (6). By noticing that the eigen-decomposition of Sw +αI is

the sum of eigen-decomposition of Sw and αI, Ye et al . [22] developed an efficient algorithm to compute

the projective functions of RDA. The computational cost of this approach will be comparable to those

two stage PCA+LDA approaches.

The computation of all the above LDA extensions involves the SVD decomposition of the data matrix,

which is computationally expensive in both time and memory for high dimensional large scale data sets.

In some applications (e.g ., text processing), the data matrix is sparse which can be fit into the memory

even with a large number of both samples and features. However, the singular vector matrices are dense,

thus may not be able to be fit into the memory. In this case, all these LDA approaches can not be applied.

To solve this problem, Ye et al . proposed a new algorithm called IDR/QR in which QR decomposition

is applied rather than SVD [21]. Experiments on some data sets showed that IDR/QR is much more

efficient than LDA and achieves comparable performance as LDA [21]. However, there is no theoretical

relation between the optimization problem solved by IDR/QR and that of LDA. It is not clear under

what situation IDR/QR can achieve similar or even better performance than LDA.

3 Computational Analysis of LDA

In this section, we provide a computational analysis of LDA. Our analysis is based on a graph embedding

viewpoint of LDA which can be traced back to [10]. We start from analyzing the between-class scatter

matrix Sb.

Let x̄i = xi − µµµ denote the centered data point and X̄(k) = [x̄
(k)
1 , · · · , x̄

(k)
mk

] denote the centered data

matrix of k-th class. We have

Sb =
c∑

k=1

mk(µµµ
(k) −µµµ)(µµµ(k) −µµµ)T

=

c∑

k=1

mk

(
1

mk

mk∑

i=1

(x
(k)
i −µµµ)

)(
1

mk

mk∑

i=1

(x
(k)
i −µµµ)

)T

=
c∑

k=1

1

mk

(
mk∑

i=1

x̄
(k)
i

mk∑

i=1

(x̄
(k)
i)T

)

=
c∑

k=1

X̄(k)W (k)(X̄(k))T

where W (k) is a mk × mk matrix with all the elements equal to 1/mk.

5

Let X̄ = [X̄(1), · · · , X̄(c)] which is the centered data matrix and define a m × m matrix W as:

W =

W (1) 0 · · · 0

0 W (2) · · · 0
...

...
. . .

...

0 0 · · · W (c)

(7)

We have

Sb =
c∑

k=1

X̄(k)W (k)(X̄(k))T = X̄WX̄T . (8)

Since St = X̄X̄T , we have

Sw = St − Sb = X̄(I − W)X̄T = X̄LX̄T . (9)

If we take the W as the edge weight matrix of a graph G. Wij is the weight of edge joining vertices i

and j. Wij = 0 indicates there is no edge between vertices i and j. Thus L = I − W is called graph

Laplacian1 [2].

We have

rank(St) = rank(X̄X̄T) ≤ rank(X̄) ≤ min(m − 1, n).

Since St is size of n × n, in the case of n > m, St is singular and the eigen-problem of LDA in Eqn. (6)

can not be stably solved. With the new formulation of Sb, it is clear that we can use SVD to solve this

singularity problem.

Suppose rank(X̄) = r, the SVD decomposition of X̄ is

X̄ = UΣV T (10)

where Σ = diag(σ1, · · · , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of X̄, U = [u1, · · · ,ur] ∈
R

n×r and ui’s are called left singular vectors, V = [v1, · · · ,vr] ∈ R
m×r and vi’s are called right singular

vectors. Let X̃ = UT X̄ = ΣV T and B = UT A, we have

AT SbA = AT X̄WX̄T A = AT UΣV T WV ΣUT A

= BT X̃WX̃T B

and

AT StA = AT X̄X̄T A = AT UΣV T V ΣUT A

= BT X̃X̃T B.

Now, the objective function of LDA in (5) can be rewritten as:

B∗ = arg max
B

tr(BT X̃WX̃T B)

tr(BT X̃X̃T B)
,

1A subtlety needs to be addressed here. The graph Laplacian is actually defined as L = D − W , where D is a diagonal

matrix with its (i, i)-element equals to the sum of the i-th column (or row, since W is symmetric) of W . With the W defined

in Eqn. (7), we can easily see D = I.

6

and the columns of B∗ are the eigenvectors of the following generalized eigen-problem associated with

the non-zero eigenvalues:

X̃WX̃Tb = λX̃X̃Tb. (11)

Since X̃X̃T = ΣV T (ΣV T)T = Σ2, the above eigen-problem can be stably solved. After we get B∗, the

A∗ can be obtained by

A∗ = UB∗ (12)

Since X̄ has zero mean, the SVD of X̄ is exactly the same as the PCA of X̄, and therefore the same

as the PCA of X. Our analysis here justifies the rationale behind two-stage PCA+LDA approach. The

Fisherface approach [1] keeps at most m − c dimension in the PCA step to make Sw nonsingular, thus

may lose some useful information. Our analysis shows that based on the modified but equivalent LDA

objective function in Eqn. (4), we can keep all the non-zero eigenvalues in the PCA step which avoids

information loss.

By using this transformation matrix A∗, the features in the reduced space are uncorrelated to each

other. We have the following theorem:

Theorem 1 Let A be the transformation matrix of LDA calculated in Eq. (12). The original feature

vectors X is transformed into Y = AT X, where the i-th feature component of Y (i-th row of Y) is denoted

as y
T
i , yi = XT

ai. Thus, yi and yj are uncorrelated, for any i 6= j.

Proof Let νi = mean(yi) = µµµTai and e be the vector of all ones, it is sufficient to prove (yi−eνi)
T (yj −

eνj) = 0, for i 6= j. We have

(yi − eνi)
T (yj − eνj)

= (XTai − eµµµTai)
T (XTaj − eµµµTaj)

= (X̄Tai)
T (X̄Taj)

= aT
i X̄X̄Taj

= bT
i X̃X̃Tbj = 0, (i 6= j)

The last equation holds since bi’s are eigenvectors of eigen-problem (11) [7].

In this sense, this SVD+LDA approach described above can also be called Uncorrelated LDA (ULDA)

[20].

3.1 Computational Complexity of LDA

Now let us analyze the computational complexities of LDA. The main computation of LDA is solve the

generalized eigen-problem:

X̄WX̄Ta = λX̄X̄Ta. (13)

7

Suppose we have the SVD decomposition of X̄ shown in Eqn. (10), we have

X̄WX̄Ta = λX̄X̄Ta

⇒UΣV T WV ΣUTa = λUΣΣUTa

⇒Σ−1UT UΣV T WV
(
ΣUTa

)
= λΣ−1UT UΣ

(
ΣUTa

)

⇒V T WV b = λb

where b = ΣUTa and V ∈ R
m×r is right singular matrix of X̄. The above algebraic steps show that the

LDA projective functions can be obtained through the following three steps:

1. SVD decomposition of X̄ to get U , V and Σ.

2. Computing b’s, the eigenvectors of V T WV .

3. Computing a = UΣ−1b.

Since there are at most c−1 projective functions in LDA, we do not need to compute all the eigenvectors

of V T WV . The following trick can be used to save computational cost. We denote the i-th row vector of

V as zi, which corresponds to the data point xi. Let z
(k)
i denote the row vector of V which corresponds

to x
(k)
i . Define ννν(k) = 1

lk

∑lk
i=1 z

(k)
i and H = [

√
l1ννν

(1), · · · ,
√

lcννν
(c)] ∈ R

d×c. We have

V T WV =
c∑

k=1

1

lk

(
lk∑

i=1

z
(k)
i

lk∑

i=1

(z
(k)
i)T

)

=
c∑

k=1

lk ννν(k)(ννν(k))T

=HHT

(14)

It is easy to check that the left singular vectors of X̄ (column vectors of U) are the eigenvectors of X̄X̄T

and the right singular vectors of X̄ (column vectors of V) are the eigenvectors of X̄T X̄ [17]. Moreover, if

U or V is given, then we can recover the other via the formula X̄V = UΣ and UT X̄ = ΣV T . In fact, the

most efficient SVD decomposition algorithm (i.e. cross-product) applies this strategy [17]. Specifically, if

m ≥ n, we compute the eigenvectors of X̄X̄T , which gives us U and can be used to recover V ; If m < n,

we compute the eigenvectors of X̄T X̄, which gives us V and can be used to recover U . Since the matrix

H is of size r × c, where r is the rank of X and c is the number of classes. In most of the cases, r is

close to min(m, n) which is far larger than c. Thus, comparing to directly calculate the eigenvectors of

HHT , compute the eigenvectors of HT H then recover the eigenvectors of HHT can achieve a significant

saving. The computational approach described here is exactly identical to the ULDA approach in [20].

We use the term flam [16], a compound operation consisting of one addition and one multiplication,

to measure the operation counts. When m ≥ n, the calculation of X̄X̄T requires 1
2mn2 flam; Computing

the eigenvectors of X̄X̄T requires 9
2n3 flam [17, 7]; Recovering V from U requires mn2 flam by assuming

r is close to min(m, n); Computing the c eigenvectors of HHT requires 1
2nc2 + 9

2c3 + nc2 flam; Finally,

8

calculating a’s from b’s requiring n2c. When m < n, we have the similar analysis. We conclude that the

time complexity of LDA measured by flam is

3

2
mnt +

9

2
t3 +

3

2
tc2 +

9

2
c3 + t2c

where t = min(m, n). Considering c ≪ t, the time complexity of LDA can be written as 3
2mnt + 9

2 t3 +

O(t2).

For the memory requirement, we need to store X̄, U , V and a’s. All sum together is

mn + nt + mt + cn

It is clear that LDA has cubic-time complexity with respect to min(m, n) and the memory requirement

is O(mn). When both m and n are large, it is not feasible to apply LDA. In the next section, we will

show how to solve this problem with the new formulation of Sb.

4 Spectral Regression Discriminant Analysis

In order to solve the LDA eigen-problem in Eqn. (13) efficiently, we use the following theorem:

Theorem 2 Let ȳ be the eigenvector of eigen-problem

W ȳ = λȳ (15)

with eigenvalue λ. If X̄T
a = ȳ, then a is the eigenvector of eigen-problem in Eqn. (13) with the same

eigenvalue λ.

Proof We have W ȳ = λȳ. At the left side of Eqn. (13), replace X̄Ta by ȳ, we have

X̄WX̄Ta = X̄W ȳ = X̄λȳ = λX̄ȳ = λX̄X̄Ta

Thus, a is the eigenvector of eigen-problem Eqn. (15) with the same eigenvalue λ.

Theorem 2 shows that instead of solving the eigen-problem Eqn. (13), the LDA basis functions can

be obtained through two steps:

1. Solve the eigen-problem in Eqn. (15) to get ȳ.

2. Find a which satisfies X̄Ta = ȳ. In reality, such a may not exist. A possible way is to find a which

can best fit the equation in the least squares sense:

a = arg min
a

m∑

i=1

(aT x̄i − ȳi)
2 (16)

where ȳi is the i-th element of ȳ.

9

The advantages of this two-step approach are as follows:

1. We will show later how the eigen-problem in Eqn. (15) is trivial and we can directly get those

eigenvectors ȳ.

2. Comparing to all the other LDA extensions, there is no dense matrix eigen-decomposition or SVD

decomposition involved. The technique to solve the least squares problem is already matured [7]

and there exist many efficient iterative algorithms (e.g ., LSQR [14]) that can handle very large

scale least squares problems. Therefor, the two-step approach can be easily scaled to large data

sets.

In the situation that the number of samples is smaller than the number of features, the minimization

problem (16) is ill posed. We may have infinite many solutions for the linear equations system X̄Ta = ȳ

(the system is underdetermined). The most popular way to solve this problem is to impose a penalty on

the norm of a:

a = arg min
a

(
m∑

i=1

(
aT x̄i − ȳi

)2
+ α‖a‖2

)
(17)

This is so called regularization and is well studied in statistics. The regularized least squares is also

called ridge regression [9]. The α ≥ 0 is a parameter to control the amounts of shrinkage. Now we can

see the third advantage of the two-step approach:

3 Since the regression was used as a building block, the regularization techniques can be easily

incorporated and produce more stable and meaningful solutions, especially when there exist a large

amount of features [9].

Now let us analyze the eigenvectors of W which is defined in Eqn. (7). The W is block-diagonal, thus,

its eigenvalues and eigenvectors are the union of the eigenvalues and eigenvectors of its blocks (the latter

padded appropriately with zeros). It is straightforward to show that W (k) has eigenvector e(k) ∈ R
mk

associated with eigenvalue 1, where e(k) = [1, 1, · · · , 1]T . Also there is only one non-zero eigenvalue of

W (k) because the rank of W (k) is 1. Thus, there are exactly c eigenvectors of W with the same eigenvalue

1. These eigenvectors are

yk = [0, · · · , 0︸ ︷︷ ︸
∑

k−1

i=1
mi

, 1, · · · , 1︸ ︷︷ ︸
mk

, 0, · · · , 0︸ ︷︷ ︸∑
c

i=k+1
mi

]T k = 1, · · · , c (18)

Since 1 is a repeated eigenvalue of W , we could just pick any other c orthogonal vectors in the space

spanned by {yk}, and define them to be our c eigenvectors. Notice that, in order to guarantee there

exists a vector a which satisfies the linear equations system X̄Ta = y, y should be in the space spanned

by the row vectors of X̄. Since X̄e = 0, the vector of all ones e is orthogonal to this space. On the

other hand, we can easily see that e is naturally in the space spanned by {yk} in Eqn. (18). Therefor,

we pick e as our first eigenvector of W and use Gram-Schmidt process to orthogonalize the remaining

eigenvectors. The vector e can then be removed, which leaves us exactly c − 1 eigenvectors of W , we

denote them as follows:

{ȳk}c−1
k=1, (ȳT

i e = 0, ȳT
i ȳj = 0, i 6= j) (19)

10

The two-step approach essentially combines the spectral analysis of the graph matrix W and regression

techniques. Therefor, we named this new approach as Spectral Regression Discriminant Analysis (SRDA).

In the following several subsections, we will provide the theoretical and computational analysis on SRDA

and give the detailed algorithmic procedure.

4.1 Theoretical Analysis

In the following discussions, ȳ is one of the eigenvectors in Eqn. (19).

The regularized least squares problem of SRDA in Eqn. (17) can be rewritten in matrix form as:

a = arg min
a

((
X̄Ta − ȳ

)T (
X̄Ta − ȳ

)
+ αaTa

)
. (20)

Requiring the derivative of right side with respect to a vanish, we get

(
X̄X̄T + αI

)
a = X̄ȳ

⇒ a =
(
X̄X̄T + αI

)−1
X̄ȳ

(21)

When α > 0, this regularized solution will not satisfy the linear equations system X̄Ta = ȳ and a is

also not the eigenvector of the LDA eign-problem in Eqn. (13). It is interesting and important to see

the relationship between the projective function of ordinary LDA and SRDA. Specifically, we have the

following theorem:

Theorem 3 If ȳ is in the space spanned by row vectors of X̄, the corresponding projective function a

calculated in SRDA will be the eigenvector of eigen-problem in Eqn. (13) as α deceases to zero. Therefor,

a will be one of the projective function of LDA.

Proof See Appendix A.

When the number of features is larger than the number of samples, the sample vectors are usually

linearly independent, i.e., rank(X) = m. In this case, we have a stronger conclusion which is shown in

the following corollary.

Corollary 4 If the sample vectors are linearly independent, i.e., rank(X) = m, all the c − 1 projective

functions in SRDA will be identical to those of ULDA described in Section 3 as α deceases to zero.

Proof See Appendix B.

It is easy to check that the values of the i-th and j-th entries of any vector y in the space spanned by

{yk} in Eqn. (18) are the same as long as xi and xj belong to the same class. Thus the i-th and j-th

rows of Ȳ are the same, where Ȳ = [ȳ1, · · · , ȳc−1]. Corollary (4) shows that when the sample vectors are

linearly independent, the c − 1 projective functions of LDA are exactly the solutions of the c − 1 linear

11

equations systems X̄Tak = ȳk. Let A = [a1, · · · ,ac−1] be the LDA transformation matrix which embeds

the data points into the LDA subspace as:

AT X = AT (X̄ + µµµeT) = Ȳ T + ATµµµeT .

The columns of matrix Ȳ T + ATµµµeT are the embedding results of samples in the LDA subspace. Thus,

the data points with the same label are corresponding to the same point in the LDA subspace when the

sample vectors are linearly independent.

These projective functions are optimal in the sense of separating training samples with different labels.

However, they usually overfit the training set thus may not be able to perform well for the test samples,

thus the regularization is necessary.

4.2 The Algorithmic Procedure

Notice that, we need first to calculate the centered data matrix X̄ in the algorithm. In some applications

(e.g ., text processing), the data matrix is sparse which can be fit into the memory even with a large

number of both samples and features. However, the center data matrix is dense, thus may not be able to

be fit into the memory. Before we give the detailed algorithmic procedure of SRDA, we present a trick

to avoid the center data matrix calculation first.

We have:

arg min
a

m∑

i=1

(aT x̄i − ȳi)
2

= arg min
a

m∑

i=1

(aTxi − aTµµµ − ȳi)
2

If we append a new element “1” to each xi, the scalar aTµµµ can be absorbed into a and we have

arg min
a
′

m∑

i=1

((a′)Tx′
i − ȳi)

2

where both a′ and x′
i are (n + 1)-dimensional vectors. By using this trick, we can avoid the computation

of centered data matrix which can save the memory a lot for sparse data processing.

Given a set of data points x1, · · · ,xm ∈ Rn which belong to c classes. Let mk denote the number of

samples in the k-th class (
∑c

k=1 mk = m). The algorithmic procedure of SRDA is as follows.

1. Responses generation: Let

yk = [0, · · · , 0︸ ︷︷ ︸
∑

k−1

i=1
mi

, 1, · · · , 1︸ ︷︷ ︸
mk

, 0, · · · , 0︸ ︷︷ ︸∑
c

i=k+1
mi

]T k = 1, · · · , c

and y0 = [1, 1, · · · , 1]T denotes a vector of all ones. Take y0 as the first vector and use Gram-

Schmidt process to orthogonize {yk}. Since y0 is in the subspace spanned by {yk}, we will obtain

c − 1 vectors

{ȳk}c−1
k=1, (ȳT

i y0 = 0, ȳ
T
i ȳj = 0, i 6= j)

12

2. Regularized least squares: Append a new element “1” to each xi which will be still denoted as

xi for simplicity. Find c − 1 vectors {ak}c−1
k=1 ∈ R

n+1, where ak is the solution of regularized least

squares problem:

ak = arg min
a

(
m∑

i=1

(aTxi − ȳk
i)2 + α‖a‖2

)
(22)

where ȳk
i is the i-th element of ȳk.

3. Embedding to c − 1 dimensional subspace: The c − 1 vectors {ak} are the basis vectors of

SRDA. Let A = [a1, · · · ,ac−1] which is a (n+1)× (c− 1) transformation matrix. The samples can

be embedded into c − 1 dimensional subspace by

x → z = AT

[
x

1

]

4.3 Computational Complexity Analysis

In this section, we provide a computational complexity analysis of SRDA. Our analysis considers both

time complexity and memory cost. The term flam, a compound operation consisting of one addition and

one multiplication, is used for presenting operation counts [16].

The computation of SRDA involves two steps: responses generation and regularized least squares.

The cost of the first step is mainly the cost of Gram-Schmidt method, which requires (mc2 − 1
3c3) flam

and mc + c2 memory [16].

We have two ways to solve the c − 1 regularized least squares problems in Eqn. (22):

• Differentiate the residual sum of squares with respect to components of a and set the results to

zero, which is the textbook way to minimize a function. The result is a linear system called the

normal equations [16], as shown in Eqn. (21)

• Use iterative algorithm LSQR [14].

These two approaches have different complexity and we provide the analysis below separately.

4.3.1 Solving Normal Equations

As shown in Eqn. (21), the normal equations of regularized least squares problem in Eqn (22) are

(XXT + αI)ak = Xȳk (23)

The calculation of XXT requires 1
2mn2 flam and the calculation of c − 1 Xȳk requires cmn flam. Since

the matrix XXT + αI is positive definite, it can be factored uniquely in the form XXT + αI = RT R,

where R is upper triangular with positive diagonal elements. This is so called Cholesky decomposition

and it requires 1
6n3 flam [16]. With this Cholesky decomposition, the c − 1 linear equations can be

13

solved within cn2 flam [16]. Thus, the computational cost of solving regularized least squares by normal

equations is
1

2
mn2 + cmn +

1

6
n3 + cn2.

When n > m, we can further decrease the cost. In the proof of Theorem 3, we used the concept of

pseudo inverse of a matrix [15], which is denoted as (·)+. We have [15]:

X+ = lim
α→0

(XT X + αI)−1XT = lim
α→0

X(XXT + αI)−1.

Thus, the normal equations in Eqn. (23) can be solve by solving the following two linear equations

system when α decreasing to zero:

(XT X + αI)ck = ȳk

ak = Xck

(24)

The cost of solving c − 1 linear equations system in Eqn. (24) is

1

2
nm2 +

1

6
m3 + cm2 + cmn.

Finally, the time cost of SRDA (including the responses generation step) by solving normal equations

is:

mc2 − 1

3
c3 +

1

2
mnt + cmn +

1

6
t3 + ct2.

where t = min(m, n). Considering c ≪ t, this time complexity can be written as 1
2mnt + 1

6 t3 + O(t2) +

O(mn).

We also need to store X, XXT (or XT X), yk and the solutions ak. Thus, the memory cost of SRDA

by solving normal equations is:

mn + t2 + mc + nc

4.3.2 Iterative Solution with LSQR

The LSQR is an iterative algorithm designed to solve large scale sparse linear equations and least squares

problems [14]. In each iteration, LSQR needs to compute two matrix-vector products in the form of Xp

and XTq. The remaining work load of LSQR in each iteration is 3m + 5n flam [13]. Thus, the time cost

of LSQR in each iteration is 2mn + 3m + 5n. If LSQR stops after k iterations, the total time cost is

k(2mn + 3m + 5n). LSRQ converges very fast [14]. In our experiments, 20 iterations are enough. Since

we need to solve c − 1 least squares problems, the time cost of SRDA with LSQR is

k(c − 1)(2mn + 3m + 5n),

which can be simplified as 2kcmn + O(m) + O(n).

Besides storing X, LSQR needs m + 2n memory [13]. We need to store the ak. Thus, the memory

cost of SRDA with LSQR is:

mn + m + 2n + cn.

14

Table 2: Computational complexity of LDA and SRDA

Algorithm operation counts (flam [16]) memory

LDA 3
2mnt + 9

2 t3 mn + nt + mt

SRDA

Solving normal equations 1
2mnt + 1

6 t3 mn + t2

Iterative solution with LSQR
dense 2kcmn mn

sparse 2kcms + 5kcn ms + (2 + c)n

m: the number of data samples n: the number of features

t: min(m, n) c: the number of classes

k: the number of iterations in LSQR

s: the average number of non-zero features for one sample

which can be simplified as mn + O(m) + O(n).

When the data matrix is sparse, the above computational cost can be further reduced. Suppose each

sample has around only s ≪ n non-zero features, the time cost of SRDA with LSQR is 2kcsm + 5kcn +

O(m) and the memory cost is sm + (2 + c)n + O(m).

4.3.3 Summary

We summarize our complexity analysis results in Table 2, together with the complexity results of LDA.

For simplicity, we only show the dominant part of the time and memory costs. The main conclusions

include:

• SRDA (by solving normal equations) is always faster than LDA. It is easy to check that when

m = n, we get the maximum speedup, which is 9.

• LDA has cubic-time complexity with respect to min(m, n). When both m and n are large, it is

not feasible to apply LDA. SRDA (iterative solution with LSQR) has linear-time complexity with

both m and n. It can be easily scaled to high dimensional large data sets.

• In many high dimensional data processing tasks e.g ., text processing, the data matrix is sparse.

However, LDA needs to calculate centered data matrix X̄ which is dense. Moreover, the left and

right singular matrices are also dense. When both m and n are large, the memory limit will restricts

the ordinary LDA algorithms (e.g ., PCA+LDA, ULDA, RLDA) to be applied.

• On the other hand, SRDA (iterative solution with LSQR) can fully explore the sparseness of the

data matrix and gain significant computational saving on both time and memory. SRDA can

successfully applied as long as the data matrix X can be fit into the memory.

• Even the data matrix X is too large to be fit into the memory, SRDA can still be applied with

some reasonable disk I/O. This is because in each iteration of LSQR, we only need to calculate two

15

Table 3: Statistics of the four data sets
dataset size (m) dimensionality (n) # of classes (c)

PIE 11560 1024 68

Isolet 6237 617 26

MNIST 4000 784 10

20Newsgroup 18941 26214 20

matrix-vector products in the form of Xp and XTq, which can be easily implemented with X and

XT stored on the disk.

5 Experimental Results

In this section, we investigate the performance of our proposed SRDA algorithm for classification. All of

our experiments have been performed on a P4 3.20GHz Windows XP machines with 2GB memory.

5.1 Datasets

Four datasets are used in our experimental study, including face, handwritten digit, spoken letter and

text databases. The important statistics of these datasets are summarized below (see also Table 3):

• The CMU PIE face database2 contains 68 subjects with 41,368 face images as a whole. The face

images were captured under varying pose, illumination and expression. We choose the five near

frontal poses (C05, C07, C09, C27, C29) and use all the images under different illuminations and

expressions, thus we get 170 images for each individual. All the face images are manually aligned

and cropped. The cropped images are 32 × 32 pixels, with 256 gray levels per pixel. The features

(pixel values) are then scaled to [0,1] (divided by 256). For each individual, l(= 10, 20, 30, 40, 50, 60)

images are randomly selected for training and the rest are used for testing.

• The Isolet spoken letter recognition database3 contains 150 subjects who spoke the name of each

letter of the alphabet twice. The speakers are grouped into sets of 30 speakers each, and are referred

to as isolet1 through isolet5. For the purposes of this experiment, we chose isolet 1&2 which contain

3120 examples (120 examples per class) as the training set, and test on isolet 4&5 which contains

3117 examples (3 example is missing due to the difficulties in recording). A random subset with

l(= 20, 30, 50, 70, 90, 110) examples per letter from the isolet 1&2 were selected for training.

• The MNIST handwritten digit database4 has a training set of 60,000 samples (denoted as set A),

and a testing set of 10,000 samples (denoted as set B). In our experiment, we take the first 2,000

samples from the set A as our training set and the first 2,000 samples from the set B as our test

2http://www.ri.cmu.edu/projects/project 418.html
3http://www.ics.uci.edu/∼mlearn/MLSummary.html
4http://yann.lecun.com/exdb/mnist/

16

set. Each digit image is of size 28 × 28 and there are around 200 samples of each digit in both

training and test sets. A random subset with l(= 30, 50, 70, 100, 130, 170) samples per digit from

training set are selected for training.

• The popular 20 Newsgroups5 is a data set collected and originally used for document classification

by Lang [12]. The “bydate” version is used in our experiment. The duplicates and newsgroup-

identifying headers are removed which leaves us 18,941 documents, evenly distributed across 20

classes. This corpus contains 26,214 distinct terms after stemming and stop word removal. Each

document is then represented as a term-frequency vector and normalized to 1. A random subset

with l(= 5%, 10%, 20%, 30%, 40%, 50%) samples per category are selected for training and the rest

are used for testing.

The first three data sets have relatively smaller numbers of features and the data matrices are dense.

The last data set has a very large number of features and the data matrix is sparse.

5.2 Compared algorithms

Four algorithms which are compared in our experiments are listed below:

1. Uncorrelated LDA (ULDA)[20], which was also analyzed in Section 3.

2. Regularized LDA (RLDA) [4]. Solving the singularity problem by adding some constant values to

the diagonal elements of Sw, as Sw + αI, for some α > 0. In [22], Ye et al . proposed an efficient

algorithm to calculate the solution of RLDA.

3. Spectral Regression Discriminant Analysis (SRDA), our approach proposed in this paper.

4. IDR/QR [21], a LDA variation in which QR decomposition is applied rather than SVD. Thus,

IDR/QR is very efficient.

We compute the closed form solution of SRDA (by solving normal equations) for the first three data sets

and use LSQR [14] to get the iterative solution for 20Newsgroup. The iteration number in LSQR is set

to be 15. Notice that there is a parameter α which controls smoothness of the estimator in both RLDA

and SRDA. We simply set the value of α as 1, and the effect of parameter selection will be discussed

later.

5.3 Results

The classification error rate as well as the the running time (second) of computing the projection functions

for each method on the four data sets are reported on the Table (4 ∼ 11) respectively. These results

are also showed in the Figure (1 ∼ 4). For each given l (the number of training samples per class), we

average the results over 20 random splits and report the mean as well as the standard deviation.

The main observations from the performance comparisons include:

5http://people.csail.mit.edu/jrennie/20Newsgroups/

17

Table 4: Classification error rates on PIE (mean±std-dev%)

Train Size ULDA RLDA SRDA IDR/QR

10×68 31.8±1.1 19.1±1.2 19.5±1.3 23.1±1.4

20×68 20.5±0.8 10.9±0.7 10.8±0.7 16.0±1.1

30×68 10.9±0.5 8.7±0.7 8.4±0.7 13.7±0.8

40×68 8.2±0.4 7.2±0.5 6.9±0.4 11.9±0.6

50×68 7.2±0.4 6.6±0.4 6.3±0.4 11.4±0.7

60×68 6.4±0.3 6.0±0.3 5.7±0.2 10.8±0.5

Table 5: Computational time on PIE (s)

Train Size ULDA RLDA SRDA IDR/QR

10×68 4.291 4.725 0.235 0.126

20×68 7.626 7.728 0.685 0.244

30×68 7.887 7.918 0.903 0.359

40×68 8.130 8.178 1.126 0.488

50×68 8.377 8.414 1.336 0.527

60×68 8.639 8.654 1.573 0.675

10 20 30 40 50 60
5

10

15

20

25

30

35

Training number per class

E
rr

or
 r

at
e

(%
)

ULDA
RLDA
SRDA
IDR/QR

10 20 30 40 50 60
0

2

4

6

8

10

Training number per class

C
om

pu
ta

tio
na

l t
im

e
(s

)

ULDA
RLDA
SRDA
IDR/QR

Figure 1: Error rate and computational time as functions of number of labeled samples per class on PIE.

• Both ULDA and RLDA need SVD decomposition of the data matrix. They can be applied when

min(m, n) is small (the first three data sets). The 20Nesgroups has a very large number of features

(n = 26214). ULDA needs the memory to store the centered data matrix and the left singular

matrix, which are both dense and with size of m × n [20]. With the size of training sample (m)

increases, these matrices can not be fit into memory and ULDA thus can not be applied. The

situation of RLDA is even worse since it needs store a left singular matrix with size of n × n [22].

The IDR/QR algorithm only need to solve a QR decomposition of matrix with size of n× c and an

Eigen-decomposition of matrix with size c × c, where c is number of classes [21]. Thus, IDR/QR

is very efficient. However, it still needs to store the centered data matrix which can not be fit into

memory when both m and n are large (In the case of using more than 40% samples in 20Newsgroups

as training set). SRDA only needs to solve c − 1 regularized least squares problems which make

it almost as efficient as IDR/QR. Moreover, it can fully explore the sparseness of the data matrix

18

Table 6: Classification error rates on Isolet (mean±std-dev%)

Train Size ULDA RLDA SRDA IDR/QR

20×26 54.1±1.5 9.4±0.4 9.5±0.5 11.4±0.5

30×26 27.7±1.0 8.3±0.6 8.4±0.7 10.2±0.7

50×26 11.4±0.6 7.5±0.3 7.5±0.3 9.3±0.4

70×26 8.9±0.4 7.0±0.3 7.1±0.3 8.9±0.3

90×26 7.8±0.3 6.7±0.2 6.8±0.2 8.5±0.3

110×26 7.2±0.2 6.5±0.1 6.6±0.2 8.3±0.2

Table 7: Computational time on Isolet (s)

Train Size ULDA RLDA SRDA IDR/QR

20×26 1.351 1.403 0.096 0.056

30×26 1.629 1.653 0.148 0.059

50×26 1.764 1.766 0.204 0.092

70×26 1.861 1.869 0.265 0.134

90×26 1.935 1.941 0.322 0.177

110×26 2.007 2.020 0.374 0.269

20 30 50 70 90 110
6

8

10

12

14

16

Training number per class

E
rr

or
 r

at
e

(%
)

ULDA
RLDA
SRDA
IDR/QR

20 30 50 70 90 110
0

0.5

1

1.5

2

Training number per class

C
om

pu
ta

tio
na

l t
im

e
(s

)

ULDA
RLDA
SRDA
IDR/QR

Figure 2: Error rate and computational time as functions of number of labeled samples per class on

Isolet.

and gain significant computational saving on both time and memory.

• The ULDA seeks the projective functions which are optimal on the training set. It does not consider

the possible overfitting in small sample size case. RLDA and SRDA are regularized versions of LDA.

The Tikhonov regularizer is used to control the model complexity. In all the test cases, RLDA and

SRDA are significantly better than other ULDA, which suggests that overfitting is a very crucial

problem which should be addressed in LDA model.

• Although IDR/QR is developed from LDA idea, there is no theoretical relation between the opti-

mization problem solved by IDR/QR and that of LDA. In all the four data sets, RLDA and SRDA

significantly outperform IDR/QR.

• Considering both accuracy and efficiency, SRDA is the best choice among four of the compared

19

Table 8: Classification error rates on MNIST (mean±std-dev%)

Train Size ULDA RLDA SRDA IDR/QR

30×10 48.1±1.5 23.4±1.4 23.6±1.4 26.8±1.6

50×10 73.3±2.2 21.5±1.2 21.9±1.2 26.1±1.7

70×10 62.1±7.3 20.4±0.9 20.8±0.8 24.9±1.1

100×10 43.1±3.3 19.5±0.5 19.7±0.5 24.7±0.7

130×10 45.5±9.7 18.8±0.5 19.0±0.6 24.2±0.9

170×10 38.4±8.0 18.1±0.3 18.5±0.5 24.0±0.6

Table 9: Computational time on MNIST (s)

Train Size ULDA RLDA SRDA IDR/QR

30×10 0.389 0.817 0.035 0.023

50×10 1.645 1.881 0.092 0.042

70×10 2.341 2.429 0.180 0.062

100×10 2.498 2.622 0.268 0.154

130×10 2.528 2.673 0.317 0.168

170×10 2.636 2.713 0.379 0.211

30 50 70 100 130 170

20

30

40

50

60

70

Training number per class

E
rr

or
 r

at
e

(%
)

ULDA
RLDA
SRDA
IDR/QR

30 50 70 100 130 170
0

0.5

1

1.5

2

2.5

3

Training number per class

C
om

pu
ta

tio
na

l t
im

e
(s

)

ULDA
RLDA
SRDA
IDR/QR

Figure 3: Error rate and computational time as functions of number of labeled samples per class on

MNIST.

algorithms. It provides an efficient and effective discriminant analysis solution for large scale data

sets.

5.4 Parameter selection for SRDA

The α ≥ 0 is an essential parameter in our SRDA algorithm which controls the smoothness of the

estimator. We empirically set it to be 1 in the previous experiments. In this subsection, we try to

examine the impact of parameter α on the performance of SRDA.

Figure (5) shows the performance of SRDA as a function of the parameter α. For convenience, the

X-axis is plotted as α/(1 + α) which is strictly in the interval [0, 1]. It is easy to see that SRDA can

achieve significantly better performance than ULDA and IDR/QR over a large range of α. Thus, the

20

Table 10: Classification error rates on 20Newsgroups (mean±std-dev%)

Train Size ULDA∗ RLDA∗ SRDA IDR/QR∗

5% 28.0±0.6 − 27.3±0.5 33.0±0.9

10% 22.7±0.6 − 21.3±0.5 29.0±0.4

20% − − 16.0±0.3 25.9±0.4

30% − − 13.8±0.2 25.2±0.4

40% − − 12.4±0.2 −
50% − − 11.4±0.2 −

Table 11: Computational time on 20Newsgroups (s)

Train Size ULDA∗ RLDA∗ SRDA IDR/QR∗

5% 61.84 − 16.47 5.705

10% 224.9 − 19.23 11.77

20% − − 22.93 20.18

30% − − 26.84 32.75

40% − − 31.24 −
50% − − 36.51 −

∗ULDA (RLDA, IDR/QR) can not be applied as the size of

training set increases due to the memory limit.

5% 10% 20% 30% 40% 50%
10

15

20

25

30

35

Training sample ratio

E
rr

or
 r

at
e

(%
)

ULDA
SRDA
IDR/QR

5% 10% 20% 30% 40% 50%
0

50

100

150

200

250

Training sample ratio

C
om

pu
ta

tio
na

l t
im

e
(s

)

ULDA
SRDA
IDR/QR

Figure 4: Error rate and computational time as functions of number of labeled samples per class on

20Newsgroup.

parameter selection is not a very crucial problem in SRDA algorithm.

6 Conclusions

In this paper, we propose a novel algorithm for discriminant analysis, called Spectral Regression Discrim-

inant Analysis (SRDA). Our algorithm is developed from a graph embedding viewpoint of LDA problem.

It combines the spectral graph analysis and regression to provide an efficient and effective approach for

discriminant analysis. Specifically, SRDA only needs to solve a set of regularized least squares problems

and there is no eigenvector computation involved, which is a huge save of both time and memory. To the

21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

25

30

α/(1+α)

E
rr

or
 r

at
e

(%
)

SRDA ULDA IDR/QR

(a) PIE (10 Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

α/(1+α)

E
rr

or
 r

at
e

(%
)

SRDA ULDA IDR/QR

(b) PIE (30 Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7

8

9

10

11

12

α/(1+α)

E
rr

or
 r

at
e

(%
)

SRDA ULDA IDR/QR

(c) Isolet (50 Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

7

7.5

8

8.5

9

α/(1+α)

E
rr

or
 r

at
e

(%
)

SRDA ULDA IDR/QR

(d) Isolet (90 Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

30

40

50

α/(1+α)

E
rr

or
 r

at
e

(%
)

SRDA ULDA IDR/QR

(e) MNIST (30 Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

25

30

35

40

45

α/(1+α)

E
rr

or
 r

at
e

(%
)

SRDA ULDA IDR/QR

(f) MNIST (100 Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

30

35

α/(1+α)

E
rr

or
 r

at
e

(%
)

SRDA ULDA IDR/QR

(g) 20Newsgroup (5% Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

22

24

26

28

30

α/(1+α)

E
rr

or
 r

at
e

(%
)

SRDA ULDA IDR/QR

(h) 20Newsgroup (10%

Train)

Figure 5: Model selection of SRDA on PIE (a, b), Isolet (c, d), MNIST (e, f) and 20Newsgroup (g h).

The curve shows the test error of SRDA with respect to α/(1 + α). The other two lines show the test

error of ULDA and IDR/QR. It is clear that SRDA can achieve significantly better performance than

ULDA and IDR/QR over a large range of α.

best of our knowledge, our proposed SRDA algorithm is the first one which can handle very large scale

high dimensional data for discriminant analysis. Extensive experimental results show that our method

consistently outperforms the other state-of-the-art LDA extensions considering both effectiveness and

efficiency.

APPENDIX

A Proof of Theorem 3

Proof Suppose rank(X̄) = r, the SVD decomposition of X̄ is

X̄ = UΣV T (25)

where Σ = diag(σ1, · · · , σr), U ∈ R
n×r, V ∈ R

m×r and we have UT U = V T V = I. The ȳ is in the

space spanned by row vectors of X̄, therefor, ȳ is in the space spanned by column vectors of V . Thus, ȳ

can be represented as the linear combination of the column vectors of V . Moreover, the combination is

unique because the column vectors of V are linearly independent. Suppose the combination coefficients

are b1, · · · , br. Let b = [b1, · · · , br]
T , we have:

V b = ȳ ⇒ V T V b = V T ȳ

⇒ b = V T ȳ

⇒ V V T ȳ = ȳ (26)

22

To continue our proof, we need to introduce the concept of pseudo inverse of a matrix [15], which we

denote as (·)+. Specifically, pseudo inverse of the matrix X̄ can be computed by the following two ways:

X̄+ = V Σ−1UT

and

X̄+ = lim
α→0

(X̄T X̄ + αI)−1X̄T

The above limit exists even if X̄T X̄ is singular and (X̄T X̄)−1 does not exist [15].

Thus, the regularized least squares solution of SRDA

a =
(
X̄X̄T + αI

)−1
X̄ȳ

α→0
= (X̄T)+ȳ

= UΣ−1V T ȳ

Combined with Eqn. (26), we have

X̄Ta = V ΣUTa

= V ΣUT UΣ−1V T ȳ = V V T ȳ = ȳ

By Theorem (2), a is the eigenvector of eigen-problem in Eqn. (13).

B Proof of Corollary 4

Proof Since the m data points xi’s are linearly independent, we have rank(X̄) = m − 1. Also we have

X̄e = 0. The space spanned by row vectors of X̄ is orthogonal to e and have dimension m − 1. Let us

examine the c − 1 vectors ȳk in Eqn. (19). We have ȳk ∈ R
m and ȳT

k e = 0. Thus, all c − 1 vectors ȳk

are in the space spanned by row vectors of X̄. By Theorem (3), all c− 1 corresponding ak of SRDA are

eigenvectors of eigen-problem in Eqn. (13) as α decreases to zero. They are

aSRDA
k = UΣ−1V T ȳk.

Consider the eigen-problem in Eqn. (11), since the c − 1 vectors ȳk are also in the space spanned

by row vectors of X̃ = UT X̄ = ΣV T , eigenvector bk will be the solution of linear equations system

X̃Tbk = ȳk. The row vectors of X̃ = ΣV T are linearly independent, thus bk is unique and

bk = Σ−1V T ȳk.

Thus, the projective functions of LDA in Section 3

aULDA
k = Ubk = UΣ−1V T ȳk = aSRDA

k

23

References

[1] P. N. Belhumeur, J. P. Hepanha, and D. J. Kriegman. Eigenfaces vs. fisherfaces: recognition using

class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(7):711–720, 1997.

[2] F. R. K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in Mathematics.

AMS, 1997.

[3] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience, Hoboken, NJ,

2nd edition, 2000.

[4] J. H. Friedman. Regularized discriminant analysis. Journal of the American Statistical Association,

84(405):165–175, 1989.

[5] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 2nd edition, 1990.

[6] V. Gaede and O. Günther. Multidimensional access methods. ACM Comput. Surv., 30(2):170–231,

1998.

[7] G. H. Golub and C. F. V. Loan. Matrix computations. Johns Hopkins University Press, 3rd edition,

1996.

[8] T. Hastie, A. Buja, and R. Tibshirani. Penalized discriminant analysis. Annals of Statistics, 23:73–

102, 1995.

[9] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. New York: Springer-Verlag, 2001.

[10] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang. Face recognition using laplacianfaces. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(3):328–340, 2005.

[11] P. Howland and H. Park. Generalizing discriminant analysis using the generalized singular value

decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):995–1006,

2004.

[12] K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth International

Conference on Machine Learning, pages 331–339, 1995.

[13] C. C. Paige and M. A. Saunders. Algorithm 583 LSQR: Sparse linear equations and least squares

problems. ACM Transactions on Mathematical Software, 8(2):195–209, June 1982.

[14] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least

squares. ACM Transactions on Mathematical Software, 8(1):43–71, March 1982.

[15] R. Penrose. A generalized inverse for matrices. In Proceedings of the Cambridge Philosophical

Society, volume 51, pages 406–413, 1955.

24

[16] G. W. Stewart. Matrix Algorithms Volume I: Basic Decompositions. SIAM, 1998.

[17] G. W. Stewart. Matrix Algorithms Volume II: Eigensystems. SIAM, 2001.

[18] D. L. Swets and J. Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 18(8):831–836, 1996.

[19] K. Torkkola. Linear discriminant analysis in document classification. In Proc. IEEE ICDM Workshop

Text Mining, 2001.

[20] J. Ye. Characterization of a family of algorithms for generalized discriminant analysis on undersam-

pled problems. Journal of Machine Learning Research, (6):483–502, 2005.

[21] J. Ye, Q. Li, H. Xiong, H. Park, R. Janardan, and V. Kumar. IDR/QR: an incremental dimension

reduction algorithm via QR decomposition. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining (KDD’04), pages 364–373, 2004.

[22] J. Ye and T. Wang. Regularized discriminant analysis for high dimensional, low sample size data. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data

mining (KDD’06), pages 454–463, 2006.

25

