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Abstract—A novel approach to linear dimensionality reduction which is unsupervised, LDA is supervised. When the class
is introduced that is based on Locality Preserving Projections information is available, LDA can be used to find a linear
(LPP) with a discretized Laplacian smoothing term. The choice subspace which is optimal for discrimination. Some extmsi

of penalty allows us to incorporate prior information that some -
features may be correlated. For example, amni x no image and variants of PCA and LDA have also been proposed, such

represented in the plane is intrinsically a matrix. The pixels as Penalized Discriminant Analysis [18], Kernel PCA [36],
spatially close to each other may be correlated. Even though we Kernel LDA [1], [44], etc.

haven, xny pixels per image, this spatial correlation suggests the  Recently, the Locality Preserving Projection (LPP) algo-
real number of freedom is far less. However, most of the previous rithm is proposed to discover the local geometrical stmectu

methods consider an image as a vector iiR"**"2. They do not . . I -
take advantage of the spatial correlation in the image, and the of the data space [20]. LPP is derived by finding the optimal

pixels are considered as independent. In this paper, we introduce linear approximations to the eigenfunctions of the Laplace
a Regularized LPP model using a Laplacian penalty to constrain Beltrami operator on the data manifold. The Laplace Beltram

the coefficients to be spatially smooth. By preserving the local gperator takes the second order derivatives of the furgton
geometrical structure of the image space, we can obtain a linear i manjfolds. It measures the smoothness of the functions.

subspace which is optimal for image representation in the sense . . .
of local isometry. Recognition, clustering and retrieval can be Therefore, LPP can discover the nonlinear manifold strectu

then performed in the image Subspace. Experimenta| results on to some extent. LPP haS demonstrated ItS effectivenesséﬂ fa.
face representation and recognition demonstrate the effectaness recognition. The basis functions obtained by LPP is geheral
of our method. referred to ad aplacianfaceqd21].
All the above methods consider a face image as a high
. INTRODUCTION dimensional vector. They do not take advantage of the dpatia

Recently there are considerable interest in geometricaﬁorremIon in the image, and the pixels are considered as

motivated approaches to visual analysis. The visual dké&éa ”!rYdependent pieces of information. Howeverax n, face

image and video is generally of very high dimensionalityMa9¢e represented in the plane is intrinsically a matrix, or

ranging from several thousands to several hundreds of th?dgrder tensor. Even though we have x n, pixels per

sands. For example, a typical image of face is of 8ize 32, lamge, tr_us spatial correlation suggests the real n_urr_1ber of
o . ) . " freedom is far less. Recently there has been a lot of interest
resulting in a 1024-dimensional vector. However, the iirsid

. . tensor based approaches to data analysis in high dimehsiona
degrees of freedom is far less. Various researchers (sdé]3] :
) . spaces. Vasilescu and Terzopoulos have proposed a noeel fac
[35], [37], [49]) have considered the case when the datasllwra resentation algroithm called Tensorface [40]. Tetasarf
on or close to a submanifold of the ambient space. One hoegg 9 '

then to estimate geometrical and topological propertiethef epresents the_ set of face images by_ a higher order_tensor
; . .‘ ™ I and extends Singular Value Decomposition (SVD) to higher-
submanifold from random points (“scattered data”) lying on
. : order tensor data. Some other researchers have also shown
this unknown submanifold.

Previous works have demonstrated that the face recgﬁlgg-w to extend PCA, LDA, and LPP to higher order tensor

nition performance can be improved significantly in lowe f/a [721’ [vlvg]a [t4h2], [43]’r[i4?i]t’ [4?]ih50m(: ixperrlme?tats[ﬁts ver
dimensional linear subspaces [2], [21], [30], [32], [38}1]. ave showed the superionty ot these ensor approaches ove
Two of the most popular appearance-based face recognitt(r)]ﬁIr corresponding vector approaches. However, our aisaly

|a er will show that these tensor approaches only constuer t

methods includé&igenface38] and Fisherface[2]. Eigenface relationship between pixels in the same row (column) and

's based on Principal Component Analysis (PCA) [13] PC%H to fully explorer the spatial information of images. &h

projects the face images along the directions of maxim ; : N ;
variances. It also aims to preserve the Euclidean distan((:ae"s]beddlng functions of tensor approaches will still beiafigt

between face images. For linearly embedded manifolds, pé ugh

is guaranteed to discover the dimensionality of the mauifol n this paper, we introduce a Regularized LPP (RLPP)

and produces a compact representation. Fisherface is bab@ggel using a Laplacian penalty to constrain the coeffisiemt

on Linear Discriminant Analysis (LDA) [13]. Unlike PCA € Spatially smooth._lnstead of conS|der|n.g th? basis i‘unc.t
as an; x ng-dimensional vector, we consider it as a matrix,
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approximation to the second derivative operator, summed oy; = a’'x;. Let yu = % > x; andy = % > y;. The objective
all directions. The choice of Laplacian penalty allows us tfunction of PCA is as follows:

incorporate the prior information that neighboring pixele m )
correlated. Qo = argmaxy (i —79)
. . . a -

Once we obtain compact representations of the images, i=1
classification and clustering can be performed in the lower _ N T
dimensional subspace. - arg;naxz:a (X—p)(X—n) a

The points below highlight several aspects of the paper: o

) i _ o = argmaxa’Ca
1) When the number-of-dimensions to sample-size ratio is a
too high, it is difficult for LPP to discover the intrinsic \yhere 0 — % S (X — ) (X _#)T is the data covariance

geometrical structure. Since the image data generally Nagix. The basis functions of PCA are the eigenvectors ef th

a large number of dimensions (pixels), natural methodgia covariance matrix associated with the largest eigeesa
of regularization emerge.

2) Even if the sample size were sufficient to estimate the | pa
intrinsic geometrical structure, coefficients of spagiall

smooth features (pixels) tend to be spatially rough. Sin Unlike PCA which is unsupgrwsed, LDA is supervised.
. o uppose we haveclasses and theth class haven; samples,

we hope to interpret these coefficients, we would prefér

. . . .m1+---+m. = m. Let y; be the sample mean vector of the

smoother versions, especially if they do not compromise . I .

the fit 1-th class. LDA aims to maximize the ratio of between-class

) The prinary focus of s paper i on ace magel 1T 9 e witivdass warance tercty guarpen
However, our method can be naturally extended to highF P Y- J

r .
order tensors, such as videos which are intrinsically thgllows.
third order tensors. Our results may also be of interest to a’ Sya
researchers in computer graphics who have considered the max —7o— 1)
guestion of modeling the Bidirectional Texture Function . N . .
(BTF) whose observational data is of six dimensions (i'(\é\{here Sy Is the between-class scatter matrand 5,, Is the

. . - Wwithin-class scatter matrixThey are defined as follows:
sixth order tensor), two variables for surface location,

two variables for view direction and two variables for c _ _ -
illumination direction [31]. Researchers in computer vi- Sp = Zmi (lf - /4) (;ﬁ - M)
sion, pattern recognition, molecular biology, informatio i=1

retrieval, and other areas where large amount of higher c [ mi

order tensor (rather than vector) based data are available S, = Z Z (X3 _ Mi) (x; B #i)T
may find some use of the algorithm and analysis of this i=1 \j=1

paper.

. . ) wherex;ﬁ is the j-th sample in the-th class. Thus, the basis
The remainder of the paper is organized as follows. Kyncions of LDA that maximize the objective function is

Section 2, we provide a brief review of PCA, LDA, LPPyiyen py the maximum eigenvalue solution to the generalized
and their tensor extensions. Section 3 introduces our ﬁﬂmoeigenvalue problem:

Regularized LPP with two dimensional discretized Laplacia

sn_]oothing algorifchm. Section _4 provides the t_heoretic:ail-an Sya= \S,a )
ysis of our algorithm. In Section 5, we describe the Smooth ] )

Laplacianfaces approach for face representation. Thesixee We can define théotal scatter matrixas:

experimental results are presented in Section 6. Finalgy, w g _ T x, V% — )T = mC

provide some concluding remarks and suggestions for future t= Z i— ) (Xi—p) =m

work in Section 7. _ . i=1
It is easy to verify thatS; = S, + S, [14], thus:

Il. PCA, LDA, LPPAND THEIR TENSOREXTENSIONS Spa=AS.a
) = (S;—Sy)a=AS,a
Suppose we have: n; x ny face images. Lefx;}™, C R™
(n = ny1 x ny) denote their vector representations akid= = Spa= T )\Sta
(X1, X = S,a=A(S, —Sya
= Sia=-—-—5:a
A. PCA T

: PCA Is a capor_ucal linear d|r_nen5|ona_l|ty reduction algofherefore, LDA can also be obtained by solving the following
rithm. The basic idea of PCA is to project the data alonr%inimumeigenvalue problem:

the directions of maximal variances so that the reconstnuct
error can be minimized. Led be the projection vector and Swa= AS;a 3)



or the following maximumeigenvalue problem: ai|as | a

Sba:/\Sta (4) ‘81|az|a3|a4|a5|ae|a7|as|ag‘;s a | as | as
To get a stable solution of these generalized eigen-prablem (a) Basis vector? (a € RY) €8 || & | &
the scatter matrices are required to be non-singular. Heryvev (b) Matrix form ofa

in many real applications such as face recognition, alltscat

matrices are usually singular since the data points reside i UtV UiV U1Vs
very high-dimensional space and in general the sample size i ® = UV |UaV2| UV

smaller than the dimension. This is known as thelersam-
pled problems [27]. There are a lot of extensions proposed

UgV1|U3Vz|U3V3

in the past try to handle this problem. These approaches  (C) Basis vectou,v € R? (@ u®v = ur, Basis of

include two-stage PCA+LDA [2], Null space LDA [11][24] tensor spac&” ® R

and LDA/GSVD [23][45][48],etc Fig. 1. Take face images of si#ex 3. The ordinary vector-based subspace
learning algorithmsg.g PCA, LDA and LPP) first convert the face images to

C. LPP 9-dimensional vectors and compute the basis vectors (pimjefiinctions).

The basis vector is also 9-dimensional, as shown in (a). (le) Bdsis vector
Different from PCA and LDA which aim to discover thecan be converted to the matrix form and shown as an image, whizh w

Euclidean structure, LPP aims to discover the local manhifojeferred as Eigenface (PCA), Fisherface (LDA) and Lapfaaie (LPP). The
! numbers in the basis vector are independent estimated aedsh® spatial

structure. Given a data affinityi.¢., item-item similarity) relation between them. (c) The tensor-based subspace Hgaapiproaches
matrix W, the optimal projections can be obtained by solvingirectly take3 x 3 face images as input and compute a set of 3-dimensional

; T . basis vectorsl's andv’s. (d) Eachu andv form a basisu® v in tensor space
the foIIowmg minimization prOblem [20]' which can also be shown as an image. The 9 numbers in the tersisroldy
_ . Ty Ty \2117 . have 6 degrees of freedom and the values in the same row (cohame)a
Bopt = argmin Z (a Xi—a XJ) Wi common divisor. However, there is no guarantee of the spatiabthness of
j the basis function.
= argmina’ XLXTa (5)

a

where L = D — W is the graph Laplacian[12] and D;; = LPP will be identical to LDA. For the detailed analysis and
>_; Wij. The matrixD provides a natural measure on the datexperimental comparison of LDA and LPP, please see [21][8].
points. The bigger the valu;; (corresponding tgy;) is, the

more “important” isy;. Therefore, we impose a constraint as

follows: D. Tensor Extensions

T _ T To _
y Dy=1=aXbX a=1, A face image represented in the plane is intrinsically a
wherey = (y1,-- ,ym)? = XTa matrix, or the second order tensor. The relationship beatwee
Finally, the minimization problem reduces to finding: nearby pixels of the image might be important for finding a
argmin a? XLXTa ©6) prOJectlon. Recently there have been a lot of mtgrest i reckt
ing the ordinary vector-based subspace learning appreache

o alxpxTa=i o ~ (PCA, LDA and LPP) to tensor space [7], [42], [46], [43],
The projection vectoa that minimizes the objective function 47, [19].

is given by theminimumeigenvalue solution to the generalize

i The problem of linear tensor subspace learning is the fol-
eigenvalue problem:

lowing. Given a set of data pointg,--- ,T;, iIn R"™ Q R"2,
XLXTa= ) XDX"a (7) find two projection matriced/ of size n; x I; and V of
size ny X ly that maps thesen points to a set of points

It is easy to see that: Vi,V € RE @ RE2(l, < ni,ls < ny), such thaty;

XLXTa=XXDXx"a “represents"T;, whereY; = UTT;V. The difference among
- XDXTa— xwxTa=>xDXxTa tensor extensions of PCA, LDA and LPP lies in their different
interpretations on “representsig., different objective func-

= XWXxTa=(1-MNXDXx"Ta ;
tions.

Therefore, LPPs can also be obtained by solving the follgwin  The tensor-based approaches directly operate on the matrix
maximumeigenvalue problem: representation of image data and are believed can captere th
xwxTa= xDxTa 8) spatial _relation_ship _between the pixels. To_ examine whad ki
) o ) of spatial relationship has been captured in these teres®eb
For the detailed derivation of LPP and the choiceBlafplease approaches, we need to examine the basis function.
see [20]. _ _ _ Let {ug};L, be an orthonormal basis @™ and{v,}"*,
The choices of different graph structure_(d|fferent affinit e an orthonormal basis &”2. It can be shown thafiu; ®v; }
matrix W) play the central role of LPP. Particularly, ¢ al  ¢5ms a basis of the tensor spaRe @ R" [28]. Specifically,
[21] show that with the following supervised affinity matrix 4, projection ofl’ € R™ ® R"* on the basisi; ® v; can be
1 J
W — { 1/my, if x; andx; both belong to theé-th class; computed as their inner product:
(/A

0, otherwise.
9) <T,u; ®V; >=<T,uV] >=u/Tv;



The ordinary vector-based approaches are linear, y; = B. Discretized Laplacian Smoothing

alx; wherex; € R" is the vector representation of the-  ag we described previously;; x n, face images can be
th image,a is the projection vector (basis vector) apdis represented as vectorsiti, n = n; x no. Leta; € R” be the

the one-dimensional embedding on this basis. &healues s vectors (projection functions) obtained by LPP. Wit
in basis functiona are independently estimated. The tensofgeg of generality,a; can also be considered as functions
based approaches are multilineag,, y; = u’T;v = where defined on an; x n, lattice.

T, € R™ @ R™ is thematrix representation of theth image For a face image, the region of intere€t is a two-

_ : o/ 7 . ; . ) .
andn = n; x ny. Then values in a tensor basisv” only  yimensional rectangle, which for notational convenienae w
haven, + ny degrees of freedom. In fact, the tensor-basedyq 1o pefo, 1]2. A lattice is defined orf2 as follows. Let

approaches can be thoughf[ of as spegial cases of vectat-bgse (h1,h2) whereh, = 1/n, andhy = 1/ns. 2, consists
approaches with the following constraint: of the set of two-dimensional vectots = (¢;,,¢;,) with
ti; = (i —0.5) - hy for 1 <i; <nj and1l < j < 2. There
are a total ofn = n; x ns grid points in this lattice. LetD;
where a;, u; and v; are thei-th elements ina, u and v be ann; x n; matrix that yields a discrete approximation to
respectively. 9 /ot3. Thus ifu = (u(t1),- -, u(ty,)) is ann;-dimensional
Figure (1) gives a intuitive example. It is easy to see thaector which is a discretized version of a functie(r), then
there is a common divisor of the values belong to the samig has the property that:
row (or column) in a tensor basis, which exactly the spatial

Qitny(j—1) = Uiy (10)

204(+:
relation captured by the tensor-based approaches. \retiyiti [D;u]; =~ 8u7(2tl)
the spatial correlation of pixels in a face image would ssgge ot _ _
the spatial smoothness of the basis functiom, the element fori=1,---,n;. There are many possible choices/of [6].

values in basis function would be similar if the elements af@ this work, we apply the modified Neuman discretization
spatially near. However, the tensor-based approachesrwavd33]:
guarantee on this and the basis function could still be alpati 1 1 0
rough. 1 -2 1

A more natural measurement of spatial smoothness of basis 1 -2 1
function could be the sum of the squared difference between  _ L
nearby elements. In the next section, we will show how ! h3 1 -2 1
to achieve this by incorporating a 2-D discretized laplacia 1 -2 1
smoothing term in ordinary vector-based approaches. 0 1 -1

Give D;, a discrete approximation for two-dimensional Lapla-

Ill. REGULARIZED LPPWITH TWO-DIMENSIONAL cian £ is then x n. matrix:

DISCRETIZEDLAPLACIAN SMOOTHING

In this section, we describe how to apply Laplacian pe- A=D1®L+ 1L ®Ds (3)
nalized functional to measure the smoothness of the bagigere I; is n; x n; identity matrix forj = 1,2. ® is the
vectors of the face space, which plays the key role in thgonecker product defined below [22]:
regularized LPP with two-dimensional discretized laaci
smoothing algorithm. We begin with a general description &€finition Let A be an x n matrix andB be am x m matrix.

Laplacian smoothing. Then the kronecker product of and B is themn x mn block
matrix
a11B e alnB
A. Laplacian Smoothing A®B= : . :
Let f be a function defined on a region of intere3t_ R?. am B -+ apnB

The Laplacian operatof is defined as follows [26]:

4 For an; x ny dimensional vectom, it is easy to check
L) = Z ﬁ (11) that |A - a||? is proportional to the the sum of the squared
= 8t§ difference between nearby grid points afwith its matrix

form. It provides a measure of smoothness @i then; x no
The Laplacian penalty functional, denoted b is defined |attice.

by:

7(f) = /Q )t (12) C. The Algorithm

Given a pre-defined graph structure with weight mat#ix

Intuitively, 7(f) measures the smoothness of the functjon the Regularized LPP is defined as the minimizer of

over the regionf). In this paper, our primary interest is in
image. An image is intrinsically a two-dimensional signal. Z (aTxi _ aij)QWij + aJ(a), (14)

Therefore, we take to be 2 in the following. i



where7 is the discretized Laplacian regularization functional: IV. THEORETICAL ANALYSIS

In this section, we provide some theoretical analysis of
the two-dimensional discrete Laplaciah as well as our

The parameter > 0 controls the smoothness of the estimatof€gularized LPP algorithm. xns a H
By simple algebraic formulations [20], we have: Given a projection vectoa € R , 11 Sp"’?“a smooth-
ness can be measured|gs - al|. To remove the impact of the

Z(aquz . aTXj)ZWij —aT'xLxTa norm of a, we have the following definition:

J@ =|A-a*=a’ATAa. (15)

ij Definition Let a € R",n = n; x ny be a projection vector.
With the same constraint as the standard LPP [20], finally t}&€ Discretized Laplacian Smoothing Functidhis defined
minimization problem reduces to finding: as follows. |Aa)?  aTATAa
argmin a? (XLXT + aATA)a. (16) [EVR a’a
a” XDXTaz1 S(a) measures the smoothness of the projection vextorer

We will itch L an lati f th theny x ny lattice. The smalleS(a) is, the smoothea is.
e will now switch to a Lagrangian formulation of the . ;o easy to see that the “smoothest"which minimizes

problem. The Lagrangian is as follows S(a) is the eigenvector oA A corresponding to the smallest

L=a? (XLXT + aATA) a — xal XD X a. 17 e@genvalue. Figure 2 show§ the first five and the last five
a’ ( e Ja—la & 7 eigenvectors ofATA. The eigenvalues oA” A are exactly

Requiring that the gradient df vanish gives the following the values of5(a), wherea’s are the corresponding eigenvec-

eigenvector problem: tors. As can be seen, the fir_st five eigenvectprs are ;spatially
smoother than the last five eigenvectors. Particularly fitise
(XLXT + aATA) a=MXDXTa. (18) eigenvector is a vector of all ones.

We have the following theorem:
It is easy to show that the matricé6LX”, XDXT and Theorem 1:The smallest eigenvalue @f” A is 0 and the

ATA are all symmetric and positive semi-definite. Sinceorresponding eigenvector is = (1,---,1)%, which is a
a > 0, the matrix XLXT + aATA is also symmetric and vector of all ones.
positive semi-definite. The vectoas (i = 0,1,--- ,I—1) that Proof: AT A is positive semi-definite. All the eigenvalues

minimize the objective function (16) are given by the minief AT A are non-negative. It is sufficient to show tteais the
mum eigenvalue solutions to the above generalized eigeevatigenvector ofA” A corresponding to eigenvalue 0. We have:
problem.

A-e = (D1®IQ+11®D2)'8
= (Di®h)-e+(LL®Dy)- e
D. Model Selection —1I I 0
The « > 0 is an essential parameter in RLPP model which 1 I 2Ly Ip
controls the smoothness of the estimator. Wher- 0, the - n2 ) ’ ’ e+
RLPP model will reduce to the ordinary LPP which totally ! L 2L, I
ignores the spatial relationship between pixels of an image 0 Iy I
When o — oo, the RLPP model will choose a spatially D, 0
smoothest basis vector and totally ignore the manifold Do
structure of the face data. RLPP with a suitablés a trade- . e
off between these two extreme cases. Thus, a natural questio Dy
would be how to choose the parameteror how to select the 0 Dy
model. = 0+0=0

Model selection is an essential task in most of the Iearninﬁ]
algorithms [18]. Among various kinds of methods, cros us, ATA . e—0—
validation is probably the simplest and most widely used. one e=0=0-¢

In this paper, we also use cross validation for model selecti e is the eigen\/ector OﬁTA Corresponding to eigenva'ue 0.

By noticing that the objective function of RLPP can also be u
written as Let A\rpp and Agrrpp be the smallest eigenvalues of
equations (7) and (18), respectively,
arg min aT((l - BXLXT + BATA)a. (19) q 0 (18) P ¥

a”XDXTa=1 Arpp= min a’XLXTa 1)

) . . . a’ XDXxTa=1
It is easy to see that if we ignore the prior constant, the

minimization problems (16) and (19) are equivalent. Now the and
cross validation can be used for selecting paramgteshich Arrpp = min al (XLXT + aATA) a (22)
is in the interval of|0, 1]. o' XDxTac1



® (©) (h) @ (0

() (b) (c) (d) (e)

Fig. 2. The first five ( ae ) and last five (4j ) eigenvectors ofATA. A is the discrete approximation for two-dimensional Laplacéandefined in
Equation (13). Heren; = na = 32 and thusA is a 1024 x 1024 matrix. All the eigenvectors aré024-dimensional vectors and are displayed here as
32 x 32 images. The smoothness of eigenvectors can be measured bgdhesponding eigenvalues. The smaller of the eigenvahgesioother of the
eigenvector. The first five eigenvectors are spatially smadtie the last five eigenvectors are spatially rough.

Let a,pp andagrrpp be the corresponding eigenvectors. By Supposerank(X) = p, the SVD decomposition ok is
definition (21), it is easy to see that: T
X =UxV
T T T T
a XLX"a <a XLX"a
LPP LPP = SRLPP RLPP whereU € R"*?, V € R™*” and ¥ is ap x p diagonal
This indicates that LPP has more locality preserving powsratrix. LetX = UTX = ©V7 andb = U”a, we have
than RLPP. As to the smoothness of the eigenvectors, we have T. T T T WTUANST
the following theorem: & XDX"a=a UV DVZU a=b"XDX"b
Theorem 2:||A - agrrpp|| < ||A-arpp| and
Proof: By definition (21), we have: o~
. . . . a'XLXTa=a"UsvTLvyUTa=b" XLX b.
a XLX " arpp <a XLX" arrpp
Ler rLrr To deal with the smoothing tera?” A” Aa, we need a small
By definition (22), we have: trick. By noticing that givenU, b and equation/”a = b,
there will be infinitely many solutions o& which satisfies
T T T
aprpp(XLXT + oAl A)aprpr this equation. Among all these solutiors+= Ub is obviously
a;pp(XLXT + aATA)arpp one of them and actually is theinimum normsolution [34].

a}FngpXLXTaRLPP + aa:fppATAaLpp If we choosea = Ub, then
a’ ATAa=bTUTATAUb

Subtractinga,;, pp X LX " arrpp from both sides and notic-  Now, the objective function of RLPP can be rewritten as:
ing thata > 0, we get: o
argmin b” (XLX” + aUTATAU)b. (23)
bT XDXTb=1

and the optimab’s are the minimum eigenvectors of eigen-
B problem:
Theorem (2) indicates that the basis functions obtained by o o
RLPP are spatially smoother than those obtained by LPP. (XLXT + aUTATAU> b=AXDX"b.

A -agrpp|® = agLppAT Adrrrp

<a;ppATAarpp = ||A-arpp|®

It is easy to check thaX DX is nonsingular and the eigen-
problem can be stably solved. After we calculdteas we
mentioned, there are infinitely many solutions afwhich
Based on Regularized LPP with two-dimensional discretizegtisfy the equatio/”a = b. We simply pick the minimum
laplacian smoothing, we describe ocdmooth Laplacianfaces norm solutiona = Ub.
method for face representation in this section. In receats/e |t is important to note that if the data are centered, which is
there has been a growing interest in 2-d laplacian smoathirgcommon pre-processing step in most of the learning tasks,
as well as other higher order smoothing methods. Thegf SVD is essentially same as PCA. The left singular vector
methods have been used in image de-noising [4], imaggitrix U is exactly the projection matrix of PCA [17]. Our
reconstruction [9], [10] and image warping [16]. analysis here also illustrates the rationale behind Lagutdace
In the face analysis and recognition problem, one is copproach (PCA+LPP).
fronted with the dlfflCU'ty that the matriX DX is sometimes We forma”y state the a|gorithmic procedure of Smooth
singular. This stems from the fact that sometimes the numhejplacianfaces below:

of images iq the _training_sem{) is much smaller than the 1) PCA Projection: We project the face images into the
number of pixels in each image). In such a case, the rank PCA subspace by throwing away the components corre-

T . T ,
of XDX™ is at mostm,Tw_hne_XDX IS an x n matri, sponding to zero eigenvalue. We denote the projection
which implies thatX DX* is singular. In the following, we matrix of PCA byUpc 4. We denote as:

will show how to use Singular Value Decomposition (SVD) B B
to solve this problem. X =UpoaX and A=A -Upca (24)

V. LEARNING SMOOTH LAPLACIANFACES FOR
REPRESENTATION



The PCA projection step can also be viewed as SVD In Section V, we have discussed how to learn a spatially
decomposition after centering the data. The rationale sinooth locality preserving face subspace. The images egfac

this step is as stated before. in the training set are used to learn such a subspace. The
2) Constructing the Adjacency Graph: Let G denote a subspace is spanned by the column vectord af Eqn. (27),
graph withm nodes. Thei-th node corresponds to thei.e., ag,a;,--- ,&_1. We can display the eigenvectors as im-

face imagex;. We put an edge between nodeandj if ages. These images may be cal&dooth Laplacianfaces-
X; andx; are “close”, i.ex; is amongk nearest neighbors Laplacianfaces). Using the Yale face database as thertgaini
of x; or x; is amongk nearest neighbors of;. Note set, we present the first 5 S-Laplacianfaces in Fig. (3),thege
that, if the class information is available, we simply putvith Eigenfaces, Fisherfaces and Laplacianfaces. Note tha
an edge between two data points belonging to the sathere is a parametex which controls the smoothness in S-
class. Laplacianfaces. Fig. (3) shows three groups S-Laplaciasfa
3) Choosing the Weights IV is a sparse symmetria x m  with o = 0.5, 5 and 50. For each face (eigenveciprwe also
matrix with W;; having the weight of the edge joiningcalculated thd|A - a||. Since each eigenvector is normalized,

verticesi andj. If node: andj are connected, put ||A - a|| can measure the smoothnessaohs we discussed
g —x; 12 in Section (IV). For comparison, we also show the basis of
Wij=e ¢ tensor-based approaches in Fig. (3). CSA [42], 2DLDA [47]
and TSA [19] are tensor extensions of PCA, LDA and LPP

Otherwise, putV;; = 0. The weight matrid/ of graph respectively.

.G "_‘90'9.'5 the Io_cal s?ructure of the face manifold. The We can see that S-Laplacianfaces is smoother than Lapla-
justification of this weight can be fraced ba_ck to [3]. cianfaces. The bigger is, the smoother are S-Laplacianfaces.

Yhe Fisherfaces and Laplacianfaces are somehow similar

to each other since they have similar graph structure as

(XLXT+OATA) b= )XDX"b (25) we described in Section Il. The approaches based on PCA

(Eigenfaces and CSA) are the smoothest among all the faces.

where D is a diagonal matrix whose entries are columhlowever, Eigenfaces and CSA do not encode discriminating

the generalized eigenvector problem:

(or row, since W is symmetric) sums ofS, D;; = information thus are not optimal for recognition. As we
>-; Wji. L =D —W is the Laplacian matrix [12]. discussed in Section II-D, the bases of tensor approachgs on
Let by, by, - ,b;_; be the solutions of (25), ordered acLonsider the relationship of pixels in the same row (or calym

cording to their eigenvalues) < Ao < \; < --- < \_;. thus the bases in 2DLDA and TSA are still spatially rough.

These eigenvalues are equal to or greater than zero becadé@placianfaces consider both the discriminating powet a
the matrix XLX7 + AT A is symmetric and positive semi-the spatial correlation between the pixels in the face irmage
definite andX DX is symmetric and positive definite. Thus,

the embedding is as follows: B. Face Recognition Using Smooth Laplacianfaces

x —y=A"x (26)  In this section, we investigate the performance of our
A = UpeaBripp @7) proposed Smooth Laplacianface method for face recognition
1) Datasets:Four face databases were used in our experi-

Brrpp = [0o,b1,- -, b;_4] (28) mental study.

« The Yale face databasewas constructed at the Yale
Center for Computational Vision and Control. It contains
165 gray scale images of 15 individuals, each individ-
ual has 11 images. The images demonstrate variations
in lighting condition, facial expression (normal, happy,
sad, sleepy, surprised, and wink). A random subset with
I (= 2,3,4,5) images per individual was taken with
labels to form the training set, and the rest of the database
In this section, several experiments are carried out to was considered to be the testing set.

show the effectiveness of our proposed Smooth Laplaciasfac « The ORL (Olivetti Research Laboratory) face dataBase

method for face representation and recognition. consists of a total of 400 face images, of a total of

40 people (10 samples per person). The images were

captured at different times and have different variations

, ) i including expressions (open or closed eyes, smiling or

As we described previously, a face image can be represented non-smiling) and facial details (glasses or no glasses).

as a point in image space. A typical image of sizex n, The images were taken with a tolerance for some tilting
describes a point im; x ns-dimensional image space. How- and rotation of the face up to 20 degrees. For each
ever, due to the unwanted variations resulting from chaimges

lighting, facial expression, and pose, the image space tmightnyp.//cve yale edu/projectsiyalefacesiyalefaces.ht

not be an optimal space for visual representation. 2http:/Avww.cl.cam.ac.uk/Research/DTG/attarchive/sataglance.html

wherey is a [-dimensional vector and! is the projection
matrix. This linear mapping not only preserves the maniold
estimated intrinsic geometry in a linear sense but alsoidens
ers the spatial correlation of image pixels. The columnomesct
of A are the so-calle®mooth Laplacianfaces

VI. EXPERIMENTAL RESULTS

A. Face Representation Using Smooth Laplacianfaces
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Fig. 3. (a)~ (f) The first 5 Eigenfaces, Fisherfaces, Laplacianfaced,3mooth Laplacianfaces calculated from the face images iYdle database. For
each face (eigenvecta), we also calculated and showed thaA - aj| below of each image. Since each eigenvector is normaliz&d, a|| can measure the
smoothness o4 as we discussed in Section (V). S-Laplacianfaces is smotila@ Laplacianfaces and Fisherfaces. With bigges-Laplacianfaces become
much smoother. (g}~ (i) The bases of tensor approaches, CSA, 2DLDA and TSA amsotegxtensions of PCA, LDA and LPP respectively. The five base
areuvl, uovl, upve, usvy andusvy.

individual, I(= 2,3,4,5) images are randomly selectedve compared our Smooth Laplacianface approach with PCA,
for training and the rest are used for testing. LDA, LPP and their variations. Particularly, we are intéegls

« The Extended Yale face databasé Bontains 16128 in their tensor extensions since the motivation of the tenso
images of 28 human subjects under 9 poses and &gdproaches is also trying to capture the information ofiapat
illumination conditions [15][29]. In this experiment, werelationship between pixels in a face image. The following
choose the frontal pose and use all the images unddgorithms are compared in our experiments:
different illumination, thus we get 64 images for each 1) Eigenface approach (PCA) [39].

person. For each individudli= 5, 10, 20, 30) images are 2) Fisherface approach (PCA+LDA) [2]
randomly selected for training and the rest are used fo%) Laplacianfaczpapproach (PCA+LPP)'[21]
testing. . i

S . 4) Uncorrelated LDA (ULDA), which was recently proposed

« The CMU PIE (Pose, Illum|nat|0q, and Expresspn) face for extracting feature vectors with uncorrelated attritsut

databas® contains 68 s_ubjects with 41,368 face images [25]. A more recent work [45] showed the equivalence
as a \.NhOIe' The face images were captured by_ 13 syn- of ULDA and classical LDA, and proposed an effi-
chronized cameras and 21 flashes, under varying pose, cient algorithm based on Generalized Singular Value

ilumination and expression. We choose the five near Decomposition which can well handle the undersampled

frontal poses (C05, C07, C09, C27, C29) and use all problem

:E‘js'Tvige:tulnfoezrggfeerg?g:”g;“(;g?ﬂg:/f dig‘ﬁ PXPresS071%6) Orthogonal LDA (OLDA), which is essentially similar to

L 9 gest ' ULDA except that the discriminant vectors of OLDA are
d""d“?"zl(: 5,10,20,30) images are rand_omly selected orthogonal to each other [45]. In [48], ¥& al. showed
for training a”f’ the rest are used.for testing. the equivalence between OLDA and Null space LDA
In all the experiments, preprocessing to locate the faces [11], [24] for the undersampled problem.

was applied. Original images were normalized (in scale ang) Concurrent Subspace Analysis (CSA), a tensor extension
orientation) such that the two eyes were aligned at the same of pca [42]. There are also other tensor extensions of
position. Then, the facial areas were cropped into the final pca like GPCA [46], TensorPCA [7letc These algo-
images for matching. The size of each cropped image in rithm are essentially the same in the sense of objective
all the experiments i82 x 32 pixels, with 256 gray levels function.
per pixel. The features (pixel values) are then scaled to7) Two-dimensional LDA (2DLDA), a tensor extension of
[0,1] (divided by 256). For the vector-based approaches, th | pa [47]. Some other tensor extensions of LDA include
image is represented as a 1024-dimensional vector, while fo paTER [43], TensorLDA [7].

the tensor-based approaches the image is represented agyatensor Subspace Analysis (TSA), the tensor extension of
(32 x 32)-dimensional matrix, or the second order tensor. LPP [19].

2) Compared algorithms:Many subspace learning algo- 9) Smooth Laplacianface, our approach proposed in this
rithms have been proposed and applied for face recognition paper.

in the past decades. Among them, PCA, LDA, LPP and there |
variations are the most popular ones. In our experiments/Notice that the approaches based on LPP framework (Lapla-
cianface, TensorLPP and Smooth Laplacianface) need td buil

3http://cve.yale.edu/projects/yalefacesBlyalefacksBl. an .aﬁ”?'ty graph We use the same graph.m these algorithms
“http://www.ri.cmu.edu/projects/projet18.html which is build based on the label informatiare., put an edge



between two nodes if and only if they have the same label. s slightly better than ULDA which may be related to the
In short, the recognition process has three steps. First, we effect of the noise removal inherent of OLDA as pointed
calculate the face subspace from the training set of face im- out in [45].
ages; then the new face image to be identified is projected int « Two groups of algorithms (ULDA vs. Laplacianface,
d-dimensional subspace (vector-based approaches)sorl)- 2DLDA vs. TSA) perform comparatively to each other,
dimensional tensor subspace (tensor-based approaches); fi which is not surprising since LPP reduces to LDA with
nally, the new face image is identified by nearest neighbor an affinity matrix as in Eqg. (9). In our experiments,
classifier. the only difference between the affinity matrix used in
3) Face recognition resultsThe recognition error rates of Laplacianface (or TSA) with the matrix in Eq. (9) is the
different algorithms on Yale, ORL, Yale-B and PIE datasets a weight on each edge.
reported on the Table (1), (1), (1ll) and (IV) respectivelyor o The tensor-based algorithms (2DLDA and TSA) show
each givenl (the number of training images per individual), their advantages in three databases (ORL, Yale-B and
we average the results over 50 random splits and report the PIE) while failed gain improvement on Yale database.
mean as well as the standard deviation. The cross validation This suggests that the spatial relationship of face images
in the training set was used to select the parameter our considered in tensor-based approach (relation between the
S-Laplacianface algorithm. pixels in the same row or column) has its limitation.
A crucial problems for most of the subspace learning based Compare to the tensor approaches, our Smooth Laplacian-
face recognition methods is dimensionality estimatione Th  face is a more natural extension of incorporating spatial
performance usually varies with the number of dimensions. information in vector-based algorithm, which is supported
We show the best results obtained by different algorithms by the experimental results.
and the dimension of the corresponding face subspaces arg It is interesting to note that S-Laplacianface reaches the
called optimal face subspace thereafter. Note that for LDA  best performance almost alwayscat 1 dimensions. This
and its variations (except TensorLDA), the upper bound ef th  property shows that S-Laplacianface does not suffer from
dimensionality is:=—1 wherec is the number of individuals [2]. the problem of dimensionality estimation. Moreover, such
For the baseline method, the recognition is simply perfafme  property makes efficient cross validation for model selec-
in the original 1024-dimensional image space without any tion in S-Laplacianface possible. In cross validation stag
dimensionality reduction. we simple evaluate the performance on dimensienl
The main observations from the performance comparisons and choose the best parameter

include: 4) Model selection for Smooth LaplacianfacEhea > 0 is

« S-Laplacianface outperforms the other methods with difm essential parameter in our Smooth Laplacianface dhgorit
ferent numbers of training samples per individual in alyhich controls the smoothness of the estimator. We use cross
the four databases. The reason lies S-Laplacianface gxfidation on the training set to select this parameter i th
plicitly takes into account the spatial relationship betwe previous experiments. In this subsection, we try to examine
the pixels in an image. The use of spatial informatiothe impact of parameter on the recognition performance of
significantly reduces the number of degrees of freedO@LapIacianface.
Therefore, S-Lapalcianface can have good pen‘ormance,:igure (4), (5), (6) and (7) show the performance changing
even when there is only a small number of trainingf s-| aplacianface with the parameteron Yale, ORL, Yale-
samples available. B and PIE respectively. For convenience, the X-axis is gtbtt

« The methods based on PCA (Eigenface and CSA) pgs o/(1 + a) which is strictly in the interval[0,1]. Each
form the worst in most the cases. They fail to gain mucfiyure has three lines. The curve shows the test error of S-
improvement over the baseline method. This is probabjyp|acianface with respect to/(1+ «). The solid line shows
due to the fact that the PCA is unsupervised and does Rgé test error of S-Laplacianface with= 0 which is exactly
encode discriminating information. the ordinary Laplacianface algorithm. The dashed line show

« The performances of three variations of LDA, Fisherfacepe performance of S-Laplacianface withselection by cross
ULDA and OLDA, are different. ULDA and OLDA \j3jidation on training set.
outperform Fisherface in most cases, especially whenyt s easy to see that S-Laplacianface can achieve signif-
there are only a few training examplesg 2 train in Yale jcantly better performance than Laplacianface over a large
and ORL databases. To guarantee the non-singularityrghge of a. Thus, the parameter selection is not a very
the within-class scatter matrix, Fisherface approach firgt,cial problem in Smooth Laplacinface algorithm. The sros
projects the face images to—c dimensional subspace byya|idation for parameter selection achieves a reasonaiid g

using PCA, wheren is the number of training images andrgg |, especially when the training set is large.
c is the number of classes. Whemnis small (only a few

training examples), the PCA step which only keeps ¢
principle components tends to lose a lot of information.
ULDA and OLDA directly solve the objective function of In this paper, we propose a new linear dimensionality
LDA in the original space thus avoid such problem [45keduction method called Regularized Locality Preserving P
Our experimental results are consistent with previogsctions (RLPP). RLPP explicitly considers the spatial re-
studies on extensions of LDA [11], [24], [45]. The OLDAlationship between the pixels in images. By introducing a

VIl. CONCLUSIONS



TABLE |
RECOGNITION ERROR RATES ONYALE DATABASE (MEAN=+STD-DEV%)
Method 2 Train 3 Train 4 Train 5 Train
error dim error dim error dim error dim
Baseline 54.0£3.3 | 1024 | 48.2:3.7 | 1024 | 45.1+3.8 | 1024 | 41.9:4.0 | 1024
Eigenfaces 54.0£3.3 | 29 | 48.2:3.7 | 44 | 45.1+3.8 | 158 | 41.9t4.0| 74
CSA 50.5+3.4 | 67 | 45.0:34 | 67 | 42743.8| 57 | 38.744.3]| 5’
Fisherfaces 56.2+3.7 9 39.3:4.1 | 14 | 31.4:47] 14 | 259443 14
ULDA 44.5£3.9 14 33.5t4.1 14 27.4:4.7 14 23.9+3.1 14
OLDA 44443 | 14 | 33.0+3.7 | 14 | 27.2t43 | 14 | 22.8:38| 14
2DLDA 54.6£6.9 | 67 | 422447 ] 67 | 37.145.6 | 77 | 33.2£4.3| 5°
Laplacianfaces | 44.6:4.1| 14 | 33.6£3.8] 14 [ 27.2t46] 19 | 23.1+3.6[ 23
TSA 53.8:6.9 | 77 422447 | 62 37.4:54 | 57 33.8+4.2 | 5°
S-Laplacianfaces | 43.5+4.3 | 18 32.0+36 | 14 255+46 | 14 21.2+32 | 14
43643 14 | 32.0&36 | 14 | 255+46 | 14 | 21.2£32| 14
* The first row of S-Laplacianfaces indicates the best performaneechss
the optimal subspace dimension. The second row indicates the penfcema
of S-Laplacianfaces at exactty— 1 dimension,c is the number of class.
TABLE I
RECOGNITION ERROR RATES ONORL DATABASE (MEAN+STD-DEV%)
Method 2 Train 3 Train 4 Train 5 Train
error dim error dim error dim error dim
Baseline 29.6+£3.1 | 1024 | 21.1+2.5 | 1024 | 15.5+2.1 | 1024 | 11.9+2.1 | 1024
Eigenfaces 29.6£3.1| 79 | 21.1+25| 119 | 15.5+2.1 | 158 | 11.9+2.1 | 189
CSA 28.8:3.1| 17° | 20.6£2.4 | 167 | 15.14+1.9 | 57 | 11.5£2.3 | 162
Fisherfaces 245+3.3 28 | 13424 ] 39 8.8+2.0 39 6.1+1.5 39
ULDA 20.0£2.7 | 39 | 125k2.1] 39 8.2+1.8 39 6.0+1.5 39
OLDA 18.2£3.1 | 39 | 10.2:2.1| 39 6.6+1.5 39 45+1.3 39
2DLDA 19.6:3.3| 97 [ 10522 107 | 6.941.9 | 97 | 4.7+1.7 | 107
Laplacianfaces | 20.1+2.7 | 39 | 12.8£2.2] 39 8.7£1.6 39 6.3+1.7 39
TSA 19.6£3.3 | 97 10.5£2.2 | 102 6.8+1.9 97 4.8+1.7 | 107
S-Laplacianfaces | 15.6:2.8 | 77 8.7+1.7 | 113 | 4.9£15 82 3.0+1.2 39
16.6£2.8 | 39 9.0+1.8 39 5.0£15 39 3.0£1.2 39

* The first row of S-Laplacianfaces indicates the best performaneesehsas

the optimal subspace dimension. The second row indicates the pernfgma

of S-Laplacianfaces at exactty— 1 dimension,c is the number of class.

Laplacian penalized functional, the projection vectorsmaoted

by RLPP can be smoother than those obtained by the ordinary
LPP. This prior information significantly reduces the numbe

of degrees of freedom, and hence RLPP can perform bettgg
than LPP. We applied our RLPP method to face recognition
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for embedding and clustering.
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and compared with Eigenface, Fisherface, Laplacianface an
their tensor extensions methods on Yale, ORL, PIE, ang]
Yale-B databases. Experimental results show that our rdetho

consistently outperforms the other methods.
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The primary focus of this paper is on images which are
two-dimensional signals. However, the analysis and algori

5

(6]
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mensional signals. For example, a video can be consider¢g Deng Cai, Xiaofei He, and Jiawei Han. Subspace learniagetl on
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