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Abstract—A novel approach to linear dimensionality reduction
is introduced that is based on Locality Preserving Projections
(LPP) with a discretized Laplacian smoothing term. The choice
of penalty allows us to incorporate prior information that some
features may be correlated. For example, ann1 × n2 image
represented in the plane is intrinsically a matrix. The pixels
spatially close to each other may be correlated. Even though we
haven1×n2 pixels per image, this spatial correlation suggests the
real number of freedom is far less. However, most of the previous
methods consider an image as a vector inRn1×n2 . They do not
take advantage of the spatial correlation in the image, and the
pixels are considered as independent. In this paper, we introduce
a Regularized LPP model using a Laplacian penalty to constrain
the coefficients to be spatially smooth. By preserving the local
geometrical structure of the image space, we can obtain a linear
subspace which is optimal for image representation in the sense
of local isometry. Recognition, clustering and retrieval can be
then performed in the image subspace. Experimental results on
face representation and recognition demonstrate the effectiveness
of our method.

I. I NTRODUCTION

Recently there are considerable interest in geometrically
motivated approaches to visual analysis. The visual data like
image and video is generally of very high dimensionality,
ranging from several thousands to several hundreds of thou-
sands. For example, a typical image of face is of size32×32,
resulting in a 1024-dimensional vector. However, the intrinsic
degrees of freedom is far less. Various researchers (see [3], [5],
[35], [37], [49]) have considered the case when the data lives
on or close to a submanifold of the ambient space. One hopes
then to estimate geometrical and topological properties ofthe
submanifold from random points (“scattered data”) lying on
this unknown submanifold.

Previous works have demonstrated that the face recog-
nition performance can be improved significantly in lower
dimensional linear subspaces [2], [21], [30], [32], [38], [41].
Two of the most popular appearance-based face recognition
methods includeEigenface[38] andFisherface[2]. Eigenface
is based on Principal Component Analysis (PCA) [13]. PCA
projects the face images along the directions of maximal
variances. It also aims to preserve the Euclidean distances
between face images. For linearly embedded manifolds, PCA
is guaranteed to discover the dimensionality of the manifold
and produces a compact representation. Fisherface is based
on Linear Discriminant Analysis (LDA) [13]. Unlike PCA
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which is unsupervised, LDA is supervised. When the class
information is available, LDA can be used to find a linear
subspace which is optimal for discrimination. Some extensions
and variants of PCA and LDA have also been proposed, such
as Penalized Discriminant Analysis [18], Kernel PCA [36],
Kernel LDA [1], [44], etc.

Recently, the Locality Preserving Projection (LPP) algo-
rithm is proposed to discover the local geometrical structure
of the data space [20]. LPP is derived by finding the optimal
linear approximations to the eigenfunctions of the Laplace
Beltrami operator on the data manifold. The Laplace Beltrami
operator takes the second order derivatives of the functions on
the manifolds. It measures the smoothness of the functions.
Therefore, LPP can discover the nonlinear manifold structure
to some extent. LPP has demonstrated its effectiveness in face
recognition. The basis functions obtained by LPP is generally
referred to asLaplacianfaces[21].

All the above methods consider a face image as a high
dimensional vector. They do not take advantage of the spatial
correlation in the image, and the pixels are considered as
independent pieces of information. However, an1 × n2 face
image represented in the plane is intrinsically a matrix, or
2-order tensor. Even though we haven1 × n2 pixels per
iamge, this spatial correlation suggests the real number of
freedom is far less. Recently there has been a lot of interestin
tensor based approaches to data analysis in high dimensional
spaces. Vasilescu and Terzopoulos have proposed a novel face
representation algroithm called Tensorface [40]. Tensorface
represents the set of face images by a higher-order tensor
and extends Singular Value Decomposition (SVD) to higher-
order tensor data. Some other researchers have also shown
how to extend PCA, LDA, and LPP to higher order tensor
data [7], [19], [42], [43], [46], [47]. Some experimental results
have showed the superiority of these tensor approaches over
their corresponding vector approaches. However, our analysis
later will show that these tensor approaches only consider the
relationship between pixels in the same row (column) and
fail to fully explorer the spatial information of images. The
embedding functions of tensor approaches will still be spatially
rough.

In this paper, we introduce a Regularized LPP (RLPP)
model using a Laplacian penalty to constrain the coefficients to
be spatially smooth. Instead of considering the basis function
as an1 × n2-dimensional vector, we consider it as a matrix,
or a discrete function defined on an1 × n2 lattice. Thus, the
discretized Laplacian can be applied to the basis functionsto
measure their smoothness along horizontal and vertical direc-
tions. The discretized Laplacian operator is a finite difference
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approximation to the second derivative operator, summed over
all directions. The choice of Laplacian penalty allows us to
incorporate the prior information that neighboring pixelsare
correlated.

Once we obtain compact representations of the images,
classification and clustering can be performed in the lower
dimensional subspace.

The points below highlight several aspects of the paper:

1) When the number-of-dimensions to sample-size ratio is
too high, it is difficult for LPP to discover the intrinsic
geometrical structure. Since the image data generally has
a large number of dimensions (pixels), natural methods
of regularization emerge.

2) Even if the sample size were sufficient to estimate the
intrinsic geometrical structure, coefficients of spatially
smooth features (pixels) tend to be spatially rough. Since
we hope to interpret these coefficients, we would prefer
smoother versions, especially if they do not compromise
the fit.

3) The primary focus of this paper is on face images.
However, our method can be naturally extended to higher
order tensors, such as videos which are intrinsically the
third order tensors. Our results may also be of interest to
researchers in computer graphics who have considered the
question of modeling the Bidirectional Texture Function
(BTF) whose observational data is of six dimensions (i.e.
sixth order tensor), two variables for surface location,
two variables for view direction and two variables for
illumination direction [31]. Researchers in computer vi-
sion, pattern recognition, molecular biology, information
retrieval, and other areas where large amount of higher
order tensor (rather than vector) based data are available
may find some use of the algorithm and analysis of this
paper.

The remainder of the paper is organized as follows. In
Section 2, we provide a brief review of PCA, LDA, LPP
and their tensor extensions. Section 3 introduces our proposed
Regularized LPP with two dimensional discretized Laplacian
smoothing algorithm. Section 4 provides the theoretical anal-
ysis of our algorithm. In Section 5, we describe the Smooth
Laplacianfaces approach for face representation. The extensive
experimental results are presented in Section 6. Finally, we
provide some concluding remarks and suggestions for future
work in Section 7.

II. PCA, LDA, LPP AND THEIR TENSOREXTENSIONS

Suppose we havem n1×n2 face images. Let{xi}
m
i=1 ⊂ R

n

(n = n1 × n2) denote their vector representations andX =
[x1, · · · , xm].

A. PCA

PCA is a canonical linear dimensionality reduction algo-
rithm. The basic idea of PCA is to project the data along
the directions of maximal variances so that the reconstruction
error can be minimized. Leta be the projection vector and

yi = aT xi. Let µµµ = 1
m

∑
xi and y = 1

m

∑
yi. The objective

function of PCA is as follows:

aopt = arg max
a

m∑

i=1

(yi − y)
2

= arg max
a

m∑

i=1

aT (x −µµµ) (x −µµµ)
T a

= arg max
a

aT Ca

whereC = 1
m

∑m
i=1 (x −µµµ) (x −µµµ)

T is the data covariance
matrix. The basis functions of PCA are the eigenvectors of the
data covariance matrix associated with the largest eigenvalues.

B. LDA

Unlike PCA which is unsupervised, LDA is supervised.
Suppose we havec classes and thei-th class havemi samples,
m1 + · · ·+mc = m. Let µµµi be the sample mean vector of the
i-th class. LDA aims to maximize the ratio of between-class
variance to the within-class variance thereby guaranteeing
maximal separability. The objective function of LDA is as
follows:

max
a

aT Sba
aT Swa

(1)

whereSb is the between-class scatter matrixand Sw is the
within-class scatter matrix. They are defined as follows:

Sb =

c∑

i=1

mi

(
µµµi −µµµ

) (
µµµi −µµµ

)T

Sw =

c∑

i=1




mi∑

j=1

(
xi

j −µµµi
) (

xi
j −µµµi

)T




wherexi
j is the j-th sample in thei-th class. Thus, the basis

functions of LDA that maximize the objective function is
given by the maximum eigenvalue solution to the generalized
eigenvalue problem:

Sba = λSwa (2)

We can define thetotal scatter matrixas:

St =

m∑

i=1

(xi −µµµ) (xi −µµµ)
T

= mC

It is easy to verify thatSt = Sb + Sw [14], thus:

Sba = λSwa

⇒ (St − Sw)a = λSwa

⇒ Swa =
1

1 + λ
Sta

⇒ Sba = λ(St − Sb)a

⇒ Sba =
λ

1 + λ
Sta

Therefore, LDA can also be obtained by solving the following
minimumeigenvalue problem:

Swa = λSta (3)
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or the followingmaximumeigenvalue problem:

Sba = λSta (4)

To get a stable solution of these generalized eigen-problem,
the scatter matrices are required to be non-singular. However,
in many real applications such as face recognition, all scatter
matrices are usually singular since the data points reside in a
very high-dimensional space and in general the sample size is
smaller than the dimension. This is known as theundersam-
pled problems [27]. There are a lot of extensions proposed
in the past try to handle this problem. These approaches
include two-stage PCA+LDA [2], Null space LDA [11][24]
and LDA/GSVD [23][45][48],etc.

C. LPP

Different from PCA and LDA which aim to discover the
Euclidean structure, LPP aims to discover the local manifold
structure. Given a data affinity (i.e., item-item similarity)
matrix W , the optimal projections can be obtained by solving
the following minimization problem [20]:

aopt = arg min
a

∑

ij

(
aT xi − aT xj

)2
Wij

= arg min
a

aT XLXT a (5)

whereL = D − W is the graph Laplacian[12] and Dii =∑
j Wij . The matrixD provides a natural measure on the data

points. The bigger the valueDii (corresponding toyi) is, the
more “important” isyi. Therefore, we impose a constraint as
follows:

yT Dy = 1 ⇒ aT XDXT a = 1,

wherey = (y1, · · · , ym)T = XT a.
Finally, the minimization problem reduces to finding:

arg min
a

a
T XDXT

a=1

a
T XLXT

a (6)

The projection vectora that minimizes the objective function
is given by theminimumeigenvalue solution to the generalized
eigenvalue problem:

XLXT a = λXDXT a (7)

It is easy to see that:

XLXT a = λXDXT a

⇒ XDXT a− XWXT a = λXDXT a

⇒ XWXT a = (1 − λ)XDXT a

Therefore, LPPs can also be obtained by solving the following
maximumeigenvalue problem:

XWXT a = λXDXT a (8)

For the detailed derivation of LPP and the choices ofW , please
see [20].

The choices of different graph structure (different affinity
matrix W ) play the central role of LPP. Particularly, Heet al.
[21] show that with the following supervised affinity matrix

Wij =

{
1/mk, if xi andxj both belong to thek-th class;
0, otherwise.

(9)

a1 a2 a3 a4 a5 a6 a7 a8 a9

(a) Basis vectoraT (a ∈ R
9)

⇒

a1 a4 a7

a2

a3

a5 a8

a6 a9

(b) Matrix form ofa

u1

u2

u3

⊗

v1

v2

v3

(c) Basis vectoru, v ∈ R
3

⇒

u1v1 u1v2 u1v3

u2v1

u3v1

u2v2 u2v3

u3v2 u3v3

(d) u ⊗ v = uvT , Basis of
tensor spaceR3 ⊗R3

Fig. 1. Take face images of size3× 3. The ordinary vector-based subspace
learning algorithms (e.g. PCA, LDA and LPP) first convert the face images to
9-dimensional vectors and compute the basis vectors (projection functions).
The basis vector is also 9-dimensional, as shown in (a). (b) The basis vector
can be converted to the matrix form and shown as an image, which was
referred as Eigenface (PCA), Fisherface (LDA) and Laplacianface (LPP). The
9 numbers in the basis vector are independent estimated and there is no spatial
relation between them. (c) The tensor-based subspace learning approaches
directly take3 × 3 face images as input and compute a set of 3-dimensional
basis vectorsu’s andv’s. (d) Eachu andv form a basisu⊗v in tensor space
which can also be shown as an image. The 9 numbers in the tensor basis only
have 6 degrees of freedom and the values in the same row (column)have a
common divisor. However, there is no guarantee of the spatial smoothness of
the basis function.

LPP will be identical to LDA. For the detailed analysis and
experimental comparison of LDA and LPP, please see [21][8].

D. Tensor Extensions

A face image represented in the plane is intrinsically a
matrix, or the second order tensor. The relationship between
nearby pixels of the image might be important for finding a
projection. Recently there have been a lot of interest in extend-
ing the ordinary vector-based subspace learning approaches
(PCA, LDA and LPP) to tensor space [7], [42], [46], [43],
[47], [19].

The problem of linear tensor subspace learning is the fol-
lowing. Given a set of data pointsT1, · · · , Tm in Rn1 ⊗Rn2 ,
find two projection matricesU of size n1 × l1 and V of
size n2 × l2 that maps thesem points to a set of points
Y1, · · · , Ym ∈ Rl1 ⊗ Rl2(l1 < n1, l2 < n2), such thatYi

“represents”Ti, whereYi = UT TiV . The difference among
tensor extensions of PCA, LDA and LPP lies in their different
interpretations on “represents”,i.e., different objective func-
tions.

The tensor-based approaches directly operate on the matrix
representation of image data and are believed can capture the
spatial relationship between the pixels. To examine what kind
of spatial relationship has been captured in these tensor-based
approaches, we need to examine the basis function.

Let {uk}
n1

k=1 be an orthonormal basis ofRn1 and{vl}
n2

l=1

be an orthonormal basis ofRn2 . It can be shown that{ui⊗vj}
forms a basis of the tensor spaceRn1⊗Rn2 [28]. Specifically,
the projection ofT ∈ Rn1 ⊗Rn2 on the basisui ⊗ vj can be
computed as their inner product:

< T, ui ⊗ vj >=< T, uivT
j >= uT

i Tvj
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The ordinary vector-based approaches are linear,i.e., yi =
aT xi where xi ∈ R

n is the vector representation of thei-
th image,a is the projection vector (basis vector) andyi is
the one-dimensional embedding on this basis. Then values
in basis functiona are independently estimated. The tensor-
based approaches are multilinear,i.e., yi = uT Tiv = where
Ti ∈ Rn1 ⊗Rn2 is thematrix representation of thei-th image
and n = n1 × n2. The n values in a tensor basisuvT only
have n1 + n2 degrees of freedom. In fact, the tensor-based
approaches can be thought of as special cases of vector-based
approaches with the following constraint:

ai+n1(j−1) = uivj (10)

where ai, ui and vi are the i-th elements ina, u and v
respectively.

Figure (1) gives a intuitive example. It is easy to see that
there is a common divisor of the values belong to the same
row (or column) in a tensor basis, which exactly the spatial
relation captured by the tensor-based approaches. Intuitively,
the spatial correlation of pixels in a face image would suggest
the spatial smoothness of the basis function,i.e., the element
values in basis function would be similar if the elements are
spatially near. However, the tensor-based approaches haveno
guarantee on this and the basis function could still be spatially
rough.

A more natural measurement of spatial smoothness of basis
function could be the sum of the squared difference between
nearby elements. In the next section, we will show how
to achieve this by incorporating a 2-D discretized laplacian
smoothing term in ordinary vector-based approaches.

III. R EGULARIZED LPP WITH TWO-DIMENSIONAL

DISCRETIZEDLAPLACIAN SMOOTHING

In this section, we describe how to apply Laplacian pe-
nalized functional to measure the smoothness of the basis
vectors of the face space, which plays the key role in the
regularized LPP with two-dimensional discretized laplacian
smoothing algorithm. We begin with a general description of
Laplacian smoothing.

A. Laplacian Smoothing

Let f be a function defined on a region of interest,Ω ⊂ R
d.

The Laplacian operatorL is defined as follows [26]:

Lf(t) =
d∑

j=1

∂2f

∂t2j
(11)

The Laplacian penalty functional, denoted byJ , is defined
by:

J (f) =

∫

Ω

[
Lf

]2
dt (12)

Intuitively, J (f) measures the smoothness of the functionf
over the regionΩ. In this paper, our primary interest is in
image. An image is intrinsically a two-dimensional signal.
Therefore, we taked to be 2 in the following.

B. Discretized Laplacian Smoothing

As we described previously,n1 × n2 face images can be
represented as vectors inRn, n = n1×n2. Let ai ∈ R

n be the
basis vectors (projection functions) obtained by LPP. Without
loss of generality,ai can also be considered as functions
defined on an1 × n2 lattice.

For a face image, the region of interestΩ is a two-
dimensional rectangle, which for notational convenience we
take to be[0, 1]2. A lattice is defined onΩ as follows. Let
h = (h1, h2) whereh1 = 1/n1 and h2 = 1/n2. Ωh consists
of the set of two-dimensional vectorsti = (ti1 , ti2) with
tij

= (ij − 0.5) · hj for 1 ≤ ij ≤ nj and 1 ≤ j ≤ 2. There
are a total ofn = n1 × n2 grid points in this lattice. LetDj

be annj × nj matrix that yields a discrete approximation to
∂2/∂t2j . Thus if u = (u(t1), · · · , u(tnj

)) is annj-dimensional
vector which is a discretized version of a functionu(t), then
Dj has the property that:

[Dju]i ≈
∂2u(ti)

∂t2

for i = 1, · · · , nj . There are many possible choices ofDj [6].
In this work, we apply the modified Neuman discretization
[33]:

Dj =
1

h2
j




−1 1 0
1 −2 1

1 −2 1
· · ·

1 −2 1
1 −2 1

0 1 −1




Give Dj , a discrete approximation for two-dimensional Lapla-
cianL is then × n matrix:

∆ = D1 ⊗ I2 + I1 ⊗ D2 (13)

where Ij is nj × nj identity matrix for j = 1, 2. ⊗ is the
kronecker product defined below [22]:

Definition Let A be an×n matrix andB be am×m matrix.
Then the kronecker product ofA andB is themn×mn block
matrix

A ⊗ B =




a11B · · · a1nB
...

. . .
...

an1B · · · annB




For a n1 × n2 dimensional vectora, it is easy to check
that ‖∆ · a‖2 is proportional to the the sum of the squared
difference between nearby grid points ofa with its matrix
form. It provides a measure of smoothness ofa on then1×n2

lattice.

C. The Algorithm

Given a pre-defined graph structure with weight matrixW ,
the Regularized LPP is defined as the minimizer of

∑

ij

(
aT xi − aT xj

)2
Wij + αJ (a), (14)
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whereJ is the discretized Laplacian regularization functional:

J (a) = ‖∆ · a‖2 = aT ∆T ∆a. (15)

The parameterα ≥ 0 controls the smoothness of the estimator.
By simple algebraic formulations [20], we have:

∑

ij

(aT
xi − a

T
xj)

2Wij = a
T XLXT

a.

With the same constraint as the standard LPP [20], finally the
minimization problem reduces to finding:

arg min
a

a
T XDXT

a=1

a
T
(
XLXT + α∆T ∆

)
a. (16)

We will now switch to a Lagrangian formulation of the
problem. The Lagrangian is as follows

L = a
T

(
XLXT + α∆T ∆

)
a − λa

T XDXT
a. (17)

Requiring that the gradient ofL vanish gives the following
eigenvector problem:

(
XLXT + α∆T ∆

)
a = λXDXT

a. (18)

It is easy to show that the matricesXLXT , XDXT and
∆T ∆ are all symmetric and positive semi-definite. Since
α ≥ 0, the matrixXLXT + α∆T ∆ is also symmetric and
positive semi-definite. The vectorsai (i = 0, 1, · · · , l−1) that
minimize the objective function (16) are given by the mini-
mum eigenvalue solutions to the above generalized eigenvalue
problem.

D. Model Selection

The α ≥ 0 is an essential parameter in RLPP model which
controls the smoothness of the estimator. Whenα = 0, the
RLPP model will reduce to the ordinary LPP which totally
ignores the spatial relationship between pixels of an image.
When α → ∞, the RLPP model will choose a spatially
smoothest basis vectora and totally ignore the manifold
structure of the face data. RLPP with a suitableα is a trade-
off between these two extreme cases. Thus, a natural question
would be how to choose the parameterα, or how to select the
model.

Model selection is an essential task in most of the learning
algorithms [18]. Among various kinds of methods, cross
validation is probably the simplest and most widely used one.
In this paper, we also use cross validation for model selection.
By noticing that the objective function of RLPP can also be
written as

arg min
a

a
T XDXT

a=1

a
T
(
(1 − β)XLXT + β∆T ∆

)
a. (19)

It is easy to see that if we ignore the prior constant, the
minimization problems (16) and (19) are equivalent. Now the
cross validation can be used for selecting parameterβ which
is in the interval of[0, 1].

IV. T HEORETICAL ANALYSIS

In this section, we provide some theoretical analysis of
the two-dimensional discrete Laplacian∆ as well as our
regularized LPP algorithm.

Given a projection vectora ∈ R
n1×n2 , its spatial smooth-

ness can be measured as‖∆ ·a‖. To remove the impact of the
norm of a, we have the following definition:

Definition Let a ∈ R
n, n = n1 × n2 be a projection vector.

The Discretized Laplacian Smoothing FunctionS is defined
as follows.

S(a) =
‖∆a‖2

‖a‖2
=

aT ∆T ∆a
aT a

(20)

S(a) measures the smoothness of the projection vectora over
the n1 × n2 lattice. The smallerS(a) is, the smoothera is.

It is easy to see that the “smoothest”a which minimizes
S(a) is the eigenvector of∆T ∆ corresponding to the smallest
eigenvalue. Figure 2 shows the first five and the last five
eigenvectors of∆T ∆. The eigenvalues of∆T ∆ are exactly
the values ofS(a), wherea’s are the corresponding eigenvec-
tors. As can be seen, the first five eigenvectors are spatially
smoother than the last five eigenvectors. Particularly, thefirst
eigenvector is a vector of all ones.

We have the following theorem:
Theorem 1:The smallest eigenvalue of∆T ∆ is 0 and the

corresponding eigenvector ise = (1, · · · , 1)T , which is a
vector of all ones.

Proof: ∆T ∆ is positive semi-definite. All the eigenvalues
of ∆T ∆ are non-negative. It is sufficient to show thate is the
eigenvector of∆T ∆ corresponding to eigenvalue 0. We have:

∆ · e = (D1 ⊗ I2 + I1 ⊗ D2) · e

= (D1 ⊗ I2) · e+ (I1 ⊗ D2) · e

=
1

h2
1




−I2 I2 0
I2 −2I2 I2

· · ·
I2 −2I2 I2

0 I2 −I2




e+




D2 0
D2

·
D2

0 D2




e

= 0 + 0 = 0

Thus,
∆T ∆ · e = 0 = 0 · e,

e is the eigenvector of∆T ∆ corresponding to eigenvalue 0.

Let λLPP and λRLPP be the smallest eigenvalues of
equations (7) and (18), respectively,

λLPP = min
a

aT XDXT a=1

aT XLXT a (21)

and

λRLPP = min
a

aT XDXT a=1

aT
(
XLXT + α∆T ∆

)
a (22)
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 2. The first five ( a∼e ) and last five ( f∼j ) eigenvectors of∆T ∆. ∆ is the discrete approximation for two-dimensional Laplacianas defined in
Equation (13). Heren1 = n2 = 32 and thus∆ is a 1024 × 1024 matrix. All the eigenvectors are1024-dimensional vectors and are displayed here as
32 × 32 images. The smoothness of eigenvectors can be measured by theircorresponding eigenvalues. The smaller of the eigenvalue, the smoother of the
eigenvector. The first five eigenvectors are spatially smoothwhile the last five eigenvectors are spatially rough.

Let aLPP andaRLPP be the corresponding eigenvectors. By
definition (21), it is easy to see that:

aT
LPP XLXT aLPP ≤ aT

RLPP XLXT aRLPP

This indicates that LPP has more locality preserving power
than RLPP. As to the smoothness of the eigenvectors, we have
the following theorem:

Theorem 2:‖∆ · aRLPP ‖ ≤ ‖∆ · aLPP ‖
Proof: By definition (21), we have:

aT
LPP XLXT aLPP ≤ aT

RLPP XLXT aRLPP

By definition (22), we have:

aT
RLPP

(
XLXT + α∆T ∆

)
aRLPP

≤ aT
LPP

(
XLXT + α∆T ∆

)
aLPP

≤ aT
RLPP XLXT aRLPP + αaT

LPP ∆T ∆aLPP

SubtractingaT
RLPP XLXT aRLPP from both sides and notic-

ing thatα > 0, we get:

‖∆ · aRLPP ‖
2 = aT

RLPP ∆T ∆aRLPP

≤ aT
LPP ∆T ∆aLPP = ‖∆ · aLPP ‖

2

Theorem (2) indicates that the basis functions obtained by
RLPP are spatially smoother than those obtained by LPP.

V. L EARNING SMOOTH LAPLACIANFACES FOR

REPRESENTATION

Based on Regularized LPP with two-dimensional discretized
laplacian smoothing, we describe ourSmooth Laplacianfaces
method for face representation in this section. In recent years,
there has been a growing interest in 2-d laplacian smoothing,
as well as other higher order smoothing methods. These
methods have been used in image de-noising [4], image
reconstruction [9], [10] and image warping [16].

In the face analysis and recognition problem, one is con-
fronted with the difficulty that the matrixXDXT is sometimes
singular. This stems from the fact that sometimes the number
of images in the training set (m) is much smaller than the
number of pixels in each image (n). In such a case, the rank
of XDXT is at mostm, while XDXT is a n × n matrix,
which implies thatXDXT is singular. In the following, we
will show how to use Singular Value Decomposition (SVD)
to solve this problem.

Supposerank(X) = p, the SVD decomposition ofX is

X = UΣV T

where U ∈ R
n×p, V ∈ R

m×p and Σ is a p × p diagonal
matrix. Let X̃ = UT X = ΣV T andb = UT a, we have

aT XDXT a = aT UΣV T DV ΣUT a = bT X̃DX̃T b

and

aT XLXT a = aT UΣV T LV ΣUT a = bT X̃LX̃T b.

To deal with the smoothing termaT ∆T ∆a, we need a small
trick. By noticing that givenU , b and equationUT a = b,
there will be infinitely many solutions ofa which satisfies
this equation. Among all these solutions,a = Ub is obviously
one of them and actually is theminimum normsolution [34].
If we choosea = Ub, then

aT ∆T ∆a = bT UT ∆T ∆Ub

Now, the objective function of RLPP can be rewritten as:

arg min
b

b
T X̃DX̃T

b=1

b
T
(
X̃LX̃T + αUT ∆T ∆U

)
b. (23)

and the optimalb’s are the minimum eigenvectors of eigen-
problem:

(
X̃LX̃T + αUT ∆T ∆U

)
b = λX̃DX̃T

b.

It is easy to check that̃XDX̃T is nonsingular and the eigen-
problem can be stably solved. After we calculateb, as we
mentioned, there are infinitely many solutions ofa which
satisfy the equationUT a = b. We simply pick the minimum
norm solutiona = Ub.

It is important to note that if the data are centered, which is
a common pre-processing step in most of the learning tasks,
the SVD is essentially same as PCA. The left singular vector
matrix U is exactly the projection matrix of PCA [17]. Our
analysis here also illustrates the rationale behind Laplacianface
approach (PCA+LPP).

We formally state the algorithmic procedure of Smooth
Laplacianfaces below:

1) PCA Projection: We project the face imagesxi into the
PCA subspace by throwing away the components corre-
sponding to zero eigenvalue. We denote the projection
matrix of PCA byUPCA. We denote as:

X̃ = UT
PCAX and ∆̃ = ∆ · UPCA (24)
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The PCA projection step can also be viewed as SVD
decomposition after centering the data. The rationale of
this step is as stated before.

2) Constructing the Adjacency Graph: Let G denote a
graph withm nodes. Thei-th node corresponds to the
face imagexi. We put an edge between nodesi andj if
xi andxj are “close”, i.e.xi is amongk nearest neighbors
of xj or xj is amongk nearest neighbors ofxi. Note
that, if the class information is available, we simply put
an edge between two data points belonging to the same
class.

3) Choosing the Weights: W is a sparse symmetricm×m
matrix with Wij having the weight of the edge joining
verticesi and j. If node i and j are connected, put

Wij = e−
‖xi−xj‖2

t

Otherwise, putWij = 0. The weight matrixW of graph
G models the local structure of the face manifold. The
justification of this weight can be traced back to [3].

4) Eigenmap: Compute the eigenvectors and eigenvalues for
the generalized eigenvector problem:

(
X̃LX̃T + α∆̃T ∆̃

)
b = λX̃DX̃T

b (25)

whereD is a diagonal matrix whose entries are column
(or row, since W is symmetric) sums ofS, Dii =∑

j Wji. L = D − W is the Laplacian matrix [12].

Let b0, b1, · · · , bl−1 be the solutions of (25), ordered ac-
cording to their eigenvalues,0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λl−1.
These eigenvalues are equal to or greater than zero because
the matrixX̃LX̃T + α∆̃T ∆̃ is symmetric and positive semi-
definite andX̃DX̃T is symmetric and positive definite. Thus,
the embedding is as follows:

x → y = AT x (26)

A = UPCABRLPP (27)

BRLPP = [b0, b1, · · · , bl−1] (28)

where y is a l-dimensional vector andA is the projection
matrix. This linear mapping not only preserves the manifold’s
estimated intrinsic geometry in a linear sense but also consid-
ers the spatial correlation of image pixels. The column vectors
of A are the so-calledSmooth Laplacianfaces.

VI. EXPERIMENTAL RESULTS

In this section, several experiments are carried out to
show the effectiveness of our proposed Smooth Laplacianfaces
method for face representation and recognition.

A. Face Representation Using Smooth Laplacianfaces

As we described previously, a face image can be represented
as a point in image space. A typical image of sizen1 × n2

describes a point inn1 × n2-dimensional image space. How-
ever, due to the unwanted variations resulting from changesin
lighting, facial expression, and pose, the image space might
not be an optimal space for visual representation.

In Section V, we have discussed how to learn a spatially
smooth locality preserving face subspace. The images of faces
in the training set are used to learn such a subspace. The
subspace is spanned by the column vectors ofA in Eqn. (27),
i.e., a0, a1, · · · , al−1. We can display the eigenvectors as im-
ages. These images may be calledSmooth Laplacianfaces(S-
Laplacianfaces). Using the Yale face database as the training
set, we present the first 5 S-Laplacianfaces in Fig. (3), together
with Eigenfaces, Fisherfaces and Laplacianfaces. Note that
there is a parameterα which controls the smoothness in S-
Laplacianfaces. Fig. (3) shows three groups S-Laplacianfaces
with α = 0.5, 5 and 50. For each face (eigenvectora), we also
calculated the‖∆ · a‖. Since each eigenvector is normalized,
‖∆ · a‖ can measure the smoothness ofa as we discussed
in Section (IV). For comparison, we also show the basis of
tensor-based approaches in Fig. (3). CSA [42], 2DLDA [47]
and TSA [19] are tensor extensions of PCA, LDA and LPP
respectively.

We can see that S-Laplacianfaces is smoother than Lapla-
cianfaces. The biggerα is, the smoother are S-Laplacianfaces.
The Fisherfaces and Laplacianfaces are somehow similar
to each other since they have similar graph structure as
we described in Section II. The approaches based on PCA
(Eigenfaces and CSA) are the smoothest among all the faces.
However, Eigenfaces and CSA do not encode discriminating
information thus are not optimal for recognition. As we
discussed in Section II-D, the bases of tensor approaches only
consider the relationship of pixels in the same row (or column),
thus the bases in 2DLDA and TSA are still spatially rough.
S-Laplacianfaces consider both the discriminating power and
the spatial correlation between the pixels in the face images.

B. Face Recognition Using Smooth Laplacianfaces

In this section, we investigate the performance of our
proposed Smooth Laplacianface method for face recognition.

1) Datasets:Four face databases were used in our experi-
mental study.

• The Yale face database1 was constructed at the Yale
Center for Computational Vision and Control. It contains
165 gray scale images of 15 individuals, each individ-
ual has 11 images. The images demonstrate variations
in lighting condition, facial expression (normal, happy,
sad, sleepy, surprised, and wink). A random subset with
l (= 2, 3, 4, 5) images per individual was taken with
labels to form the training set, and the rest of the database
was considered to be the testing set.

• The ORL (Olivetti Research Laboratory) face database2

consists of a total of 400 face images, of a total of
40 people (10 samples per person). The images were
captured at different times and have different variations
including expressions (open or closed eyes, smiling or
non-smiling) and facial details (glasses or no glasses).
The images were taken with a tolerance for some tilting
and rotation of the face up to 20 degrees. For each

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.cl.cam.ac.uk/Research/DTG/attarchive/facesataglance.html
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0.87 1.22 1.25 1.65 1.95
(a) Eigenfaces

16.1 14.3 13.4 14.1 12.8
(b) Fisherfaces

14.7 16.4 15.8 14.8 14.9
(c) Laplacianfaces

10.7 10.8 11.8 11.6 12.4
(d) Smooth Laplacianfaces (α = 0.5)

7.56 7.19 7.91 7.45 8.27
(e) Smooth Laplacianfaces (α = 5)

3.89 3.82 4.39 4.29 4.26
(f) Smooth Laplacianfaces (α = 50)

0.13 0.17 0.18 0.21 0.24
(g) CSA

13.3 12.9 12.6 12.2 15.5
(h) 2DLDA

13.1 12.6 12.3 11.9 15.1
(i) TSA

Fig. 3. (a)∼ (f) The first 5 Eigenfaces, Fisherfaces, Laplacianfaces, and Smooth Laplacianfaces calculated from the face images in theYale database. For
each face (eigenvectora), we also calculated and showed the‖∆ · a‖ below of each image. Since each eigenvector is normalized,‖∆ · a‖ can measure the
smoothness ofa as we discussed in Section (IV). S-Laplacianfaces is smoother than Laplacianfaces and Fisherfaces. With biggerα, S-Laplacianfaces become
much smoother. (g)∼ (i) The bases of tensor approaches, CSA, 2DLDA and TSA are tensor extensions of PCA, LDA and LPP respectively. The five bases
areu1vT

1
, u2vT

1
, u1vT

2
, u2vT

2
andu3vT

1
.

individual, l(= 2, 3, 4, 5) images are randomly selected
for training and the rest are used for testing.

• The Extended Yale face database B3 contains 16128
images of 28 human subjects under 9 poses and 64
illumination conditions [15][29]. In this experiment, we
choose the frontal pose and use all the images under
different illumination, thus we get 64 images for each
person. For each individual,l(= 5, 10, 20, 30) images are
randomly selected for training and the rest are used for
testing.

• The CMU PIE (Pose, Illumination, and Expression) face
database4 contains 68 subjects with 41,368 face images
as a whole. The face images were captured by 13 syn-
chronized cameras and 21 flashes, under varying pose,
illumination and expression. We choose the five near
frontal poses (C05, C07, C09, C27, C29) and use all
the images under different illuminations and expressions,
thus we get 170 images for each individual. For each in-
dividual, l(= 5, 10, 20, 30) images are randomly selected
for training and the rest are used for testing.

In all the experiments, preprocessing to locate the faces
was applied. Original images were normalized (in scale and
orientation) such that the two eyes were aligned at the same
position. Then, the facial areas were cropped into the final
images for matching. The size of each cropped image in
all the experiments is32 × 32 pixels, with 256 gray levels
per pixel. The features (pixel values) are then scaled to
[0,1] (divided by 256). For the vector-based approaches, the
image is represented as a 1024-dimensional vector, while for
the tensor-based approaches the image is represented as a
(32 × 32)-dimensional matrix, or the second order tensor.

2) Compared algorithms:Many subspace learning algo-
rithms have been proposed and applied for face recognition
in the past decades. Among them, PCA, LDA, LPP and there
variations are the most popular ones. In our experiments,

3http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
4http://www.ri.cmu.edu/projects/project418.html

we compared our Smooth Laplacianface approach with PCA,
LDA, LPP and their variations. Particularly, we are interested
in their tensor extensions since the motivation of the tensor
approaches is also trying to capture the information of spatial
relationship between pixels in a face image. The following
algorithms are compared in our experiments:

1) Eigenface approach (PCA) [39].
2) Fisherface approach (PCA+LDA) [2].
3) Laplacianface approach (PCA+LPP) [21].
4) Uncorrelated LDA (ULDA), which was recently proposed

for extracting feature vectors with uncorrelated attributes
[25]. A more recent work [45] showed the equivalence
of ULDA and classical LDA, and proposed an effi-
cient algorithm based on Generalized Singular Value
Decomposition which can well handle the undersampled
problem.

5) Orthogonal LDA (OLDA), which is essentially similar to
ULDA except that the discriminant vectors of OLDA are
orthogonal to each other [45]. In [48], Yeet al. showed
the equivalence between OLDA and Null space LDA
[11], [24] for the undersampled problem.

6) Concurrent Subspace Analysis (CSA), a tensor extension
of PCA [42]. There are also other tensor extensions of
PCA, like GPCA [46], TensorPCA [7],etc. These algo-
rithm are essentially the same in the sense of objective
function.

7) Two-dimensional LDA (2DLDA), a tensor extension of
LDA [47]. Some other tensor extensions of LDA include
DATER [43], TensorLDA [7].

8) Tensor Subspace Analysis (TSA), the tensor extension of
LPP [19].

9) Smooth Laplacianface, our approach proposed in this
paper.

Notice that the approaches based on LPP framework (Lapla-
cianface, TensorLPP and Smooth Laplacianface) need to build
an affinity graph. We use the same graph in these algorithms
which is build based on the label information,i.e., put an edge
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between two nodes if and only if they have the same label.
In short, the recognition process has three steps. First, we

calculate the face subspace from the training set of face im-
ages; then the new face image to be identified is projected into
d-dimensional subspace (vector-based approaches) or(d×d)-
dimensional tensor subspace (tensor-based approaches); fi-
nally, the new face image is identified by nearest neighbor
classifier.

3) Face recognition results:The recognition error rates of
different algorithms on Yale, ORL, Yale-B and PIE datasets are
reported on the Table (I), (II), (III) and (IV) respectively. For
each givenl (the number of training images per individual),
we average the results over 50 random splits and report the
mean as well as the standard deviation. The cross validation
in the training set was used to select the parameterα in our
S-Laplacianface algorithm.

A crucial problems for most of the subspace learning based
face recognition methods is dimensionality estimation. The
performance usually varies with the number of dimensions.
We show the best results obtained by different algorithms
and the dimension of the corresponding face subspaces are
called optimal face subspace thereafter. Note that for LDA
and its variations (except TensorLDA), the upper bound of the
dimensionality isc−1 wherec is the number of individuals [2].
For the baseline method, the recognition is simply performed
in the original 1024-dimensional image space without any
dimensionality reduction.

The main observations from the performance comparisons
include:

• S-Laplacianface outperforms the other methods with dif-
ferent numbers of training samples per individual in all
the four databases. The reason lies S-Laplacianface ex-
plicitly takes into account the spatial relationship between
the pixels in an image. The use of spatial information
significantly reduces the number of degrees of freedom.
Therefore, S-Lapalcianface can have good performance
even when there is only a small number of training
samples available.

• The methods based on PCA (Eigenface and CSA) per-
form the worst in most the cases. They fail to gain much
improvement over the baseline method. This is probably
due to the fact that the PCA is unsupervised and does not
encode discriminating information.

• The performances of three variations of LDA, Fisherface,
ULDA and OLDA, are different. ULDA and OLDA
outperform Fisherface in most cases, especially when
there are only a few training examples,e.g. 2 train in Yale
and ORL databases. To guarantee the non-singularity of
the within-class scatter matrix, Fisherface approach first
projects the face images tom−c dimensional subspace by
using PCA, wherem is the number of training images and
c is the number of classes. Whenm is small (only a few
training examples), the PCA step which only keepsm−c
principle components tends to lose a lot of information.
ULDA and OLDA directly solve the objective function of
LDA in the original space thus avoid such problem [45].
Our experimental results are consistent with previous
studies on extensions of LDA [11], [24], [45]. The OLDA

is slightly better than ULDA which may be related to the
effect of the noise removal inherent of OLDA as pointed
out in [45].

• Two groups of algorithms (ULDA vs. Laplacianface,
2DLDA vs. TSA) perform comparatively to each other,
which is not surprising since LPP reduces to LDA with
an affinity matrix as in Eq. (9). In our experiments,
the only difference between the affinity matrix used in
Laplacianface (or TSA) with the matrix in Eq. (9) is the
weight on each edge.

• The tensor-based algorithms (2DLDA and TSA) show
their advantages in three databases (ORL, Yale-B and
PIE) while failed gain improvement on Yale database.
This suggests that the spatial relationship of face images
considered in tensor-based approach (relation between the
pixels in the same row or column) has its limitation.
Compare to the tensor approaches, our Smooth Laplacian-
face is a more natural extension of incorporating spatial
information in vector-based algorithm, which is supported
by the experimental results.

• It is interesting to note that S-Laplacianface reaches the
best performance almost always atc−1 dimensions. This
property shows that S-Laplacianface does not suffer from
the problem of dimensionality estimation. Moreover, such
property makes efficient cross validation for model selec-
tion in S-Laplacianface possible. In cross validation stage,
we simple evaluate the performance on dimensionc − 1
and choose the best parameterα.

4) Model selection for Smooth Laplacianface:Theα ≥ 0 is
an essential parameter in our Smooth Laplacianface algorithm
which controls the smoothness of the estimator. We use cross
validation on the training set to select this parameter in the
previous experiments. In this subsection, we try to examine
the impact of parameterα on the recognition performance of
S-Laplacianface.

Figure (4), (5), (6) and (7) show the performance changing
of S-Laplacianface with the parameterα on Yale, ORL, Yale-
B and PIE respectively. For convenience, the X-axis is plotted
as α/(1 + α) which is strictly in the interval[0, 1]. Each
figure has three lines. The curve shows the test error of S-
Laplacianface with respect toα/(1+α). The solid line shows
the test error of S-Laplacianface withα = 0 which is exactly
the ordinary Laplacianface algorithm. The dashed line shows
the performance of S-Laplacianface withα selection by cross
validation on training set.

It is easy to see that S-Laplacianface can achieve signif-
icantly better performance than Laplacianface over a large
range of α. Thus, the parameter selection is not a very
crucial problem in Smooth Laplacinface algorithm. The cross
validation for parameter selection achieves a reasonable good
result, especially when the training set is large.

VII. C ONCLUSIONS

In this paper, we propose a new linear dimensionality
reduction method called Regularized Locality Preserving Pro-
jections (RLPP). RLPP explicitly considers the spatial re-
lationship between the pixels in images. By introducing a
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TABLE I
RECOGNITION ERROR RATES ONYALE DATABASE (MEAN±STD-DEV%)

Method 2 Train 3 Train 4 Train 5 Train
error dim error dim error dim error dim

Baseline 54.0±3.3 1024 48.2±3.7 1024 45.1±3.8 1024 41.9±4.0 1024
Eigenfaces 54.0±3.3 29 48.2±3.7 44 45.1±3.8 158 41.9±4.0 74

CSA 50.5±3.4 6
2 45.0±3.4 6

2 42.7±3.8 5
2 38.7±4.3 5

2

Fisherfaces 56.2±3.7 9 39.3±4.1 14 31.4±4.7 14 25.9±4.3 14
ULDA 44.5±3.9 14 33.5±4.1 14 27.4±4.7 14 23.9±3.1 14
OLDA 44.7±4.3 14 33.0±3.7 14 27.2±4.3 14 22.8±3.8 14
2DLDA 54.6±6.9 6

2 42.2±4.7 6
2 37.1±5.6 7

2 33.2±4.3 5
2

Laplacianfaces 44.6±4.1 14 33.6±3.8 14 27.2±4.6 19 23.1±3.6 23
TSA 53.8±6.9 7

2 42.2±4.7 6
2 37.4±5.4 5

2 33.8±4.2 5
2

S-Laplacianfaces∗ 43.5±4.3 18 32.0±3.6 14 25.5±4.6 14 21.2±3.2 14

43.6±4.3 14 32.0±3.6 14 25.5±4.6 14 21.2±3.2 14
∗ The first row of S-Laplacianfaces indicates the best performance aswell as

the optimal subspace dimension. The second row indicates the performance
of S-Laplacianfaces at exactlyc − 1 dimension,c is the number of class.

TABLE II
RECOGNITION ERROR RATES ONORL DATABASE (MEAN±STD-DEV%)

Method 2 Train 3 Train 4 Train 5 Train
error dim error dim error dim error dim

Baseline 29.6±3.1 1024 21.1±2.5 1024 15.5±2.1 1024 11.9±2.1 1024
Eigenfaces 29.6±3.1 79 21.1±2.5 119 15.5±2.1 158 11.9±2.1 189

CSA 28.8±3.1 17
2 20.6±2.4 16

2 15.1±1.9 5
2 11.5±2.3 16

2

Fisherfaces 24.5±3.3 28 13.7±2.4 39 8.8±2.0 39 6.1±1.5 39
ULDA 20.0±2.7 39 12.5±2.1 39 8.2±1.8 39 6.0±1.5 39
OLDA 18.2±3.1 39 10.2±2.1 39 6.6±1.5 39 4.5±1.3 39
2DLDA 19.6±3.3 9

2 10.5±2.2 10
2 6.9±1.9 9

2 4.7±1.7 10
2

Laplacianfaces 20.1±2.7 39 12.8±2.2 39 8.7±1.6 39 6.3±1.7 39
TSA 19.6±3.3 9

2 10.5±2.2 10
2 6.8±1.9 9

2 4.8±1.7 10
2

S-Laplacianfaces∗ 15.6±2.8 77 8.7±1.7 113 4.9±1.5 82 3.0±1.2 39

16.6±2.8 39 9.0±1.8 39 5.0±1.5 39 3.0±1.2 39
∗ The first row of S-Laplacianfaces indicates the best performance aswell as

the optimal subspace dimension. The second row indicates the performance
of S-Laplacianfaces at exactlyc − 1 dimension,c is the number of class.

Laplacian penalized functional, the projection vectors obtained
by RLPP can be smoother than those obtained by the ordinary
LPP. This prior information significantly reduces the number
of degrees of freedom, and hence RLPP can perform better
than LPP. We applied our RLPP method to face recognition
and compared with Eigenface, Fisherface, Laplacianface and
their tensor extensions methods on Yale, ORL, PIE, and
Yale-B databases. Experimental results show that our method
consistently outperforms the other methods.

The primary focus of this paper is on images which are
two-dimensional signals. However, the analysis and algorithm
presented here can also be naturally extended to higher di-
mensional signals. For example, a video can be considered
as a three-dimensional signal, and thus a three-dimensional
discretized Laplacian functional can be applied to video. Other
examples include Bidirectional Texture Function (BTF) which
is a six-dimensional signal. We are currently investigating the
applicability of our algorithm for these problems.
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TABLE III
RECOGNITION ERROR RATES ON EXTENDEDYALE DATABASE B (MEAN±STD-DEV%)

Method 5 Train 10 Train 20 Train 30 Train
error dim error dim error dim error dim

Baseline 69.2±1.4 1024 55.5±1.0 1024 42.1±1.2 1024 34.6±1.2 1024
Eigenfaces 69.2±1.4 189 55.5±1.0 378 42.1±1.2 616 34.6±1.2 780

CSA 69.2±1.4 32
2 55.5±1.0 32

2 42.1±1.2 32
2 34.6±1.2 32

2

Fisherfaces 34.9±2.3 37 21.7±1.2 37 14.1±0.8 37 18.7±1.6 37
ULDA 33.2±4.7 37 23.1±2.9 37 25.9±7.8 37 17.8±1.6 37
OLDA 31.9±2.7 37 20.9±1.5 37 16.4±1.8 37 13.7±1.1 37
2DLDA 33.3±2.7 10

2 21.6±1.6 11
2 14.1±1.2 12

2 10.6±0.9 13
2

Laplacianfaces 32.1±3.9 71 19.5±1.9 76 18.0±4.0 75 13.6±1.2 76
TSA 30.2±1.8 14

2 17.7±1.3 16
2 10.7±0.9 15

2 7.9±0.7 15
2

S-Laplacianfaces∗ 29.3±2.0 69 16.2±1.3 280 8.2±0.9 273 5.0±0.7 387

29.6±2.1 37 16.5±1.2 37 8.6±0.9 37 5.5±0.7 37
∗ The first row of S-Laplacianfaces indicates the best performance aswell as

the optimal subspace dimension. The second row indicates the performance
of S-Laplacianfaces at exactlyc − 1 dimension,c is the number of class.

TABLE IV
RECOGNITION ERROR RATES ONPIE DATABASE (MEAN±STD-DEV%)

Method 5 Train 10 Train 20 Train 30 Train
error dim error dim error dim error dim

Baseline 76.6±0.6 1024 64.8±0.7 1024 48.6±0.7 1024 37.9±0.6 1024
Eigenfaces 76.6±0.6 334 64.8±0.7 654 48.6±0.7 982 37.9±0.6 1023

CSA 76.6±0.6 32
2 64.8±0.7 32

2 48.6±0.7 32
2 37.9±0.6 32

2

Fisherfaces 42.8±1.7 67 29.7±1.3 67 21.5±0.8 67 10.9±0.4 67

ULDA 37.9±1.5 67 31.8±1.1 67 20.5±0.8 67 10.9±0.5 67

OLDA 38.2±1.6 67 29.1±1.2 67 18.6±0.8 67 10.8±0.6 67

2DLDA 37.4±1.6 12
2 24.6±1.1 11

2 14.8±0.8 13
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Fig. 4. Model selection on Yale database. The curve shows thetest error of S-Laplacianface with respect toα/(1 + α). The solid line shows the test error
of S-Laplacianface withα = 0 which is exactly the ordinary Laplacianface approach. The dashed line shows the performance of S-Laplacianface withα
selection by cross validation on training set.
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Fig. 5. Model selection on ORL database. The curve shows the test error of S-Laplacianface with respect toα/(1 + α). The solid line shows the test error
of S-Laplacianface withα = 0 which is exactly the ordinary Laplacianface approach. The dashed line shows the performance of S-Laplacianface withα
selection by cross validation on training set.
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Fig. 6. Model selection on extended Yale database B. The curve shows the test error of S-Laplacianface with respect toα/(1+α). The solid line shows the
test error of S-Laplacianface withα = 0 which is exactly the ordinary Laplacianface approach. The dashed line shows the performance of S-Laplacianface
with α selection by cross validation on training set.
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