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Abstract

A novel approach to linear dimensionality reduction is introduced that is based on Locality Pre-

serving Projections (LPP) with a discretized Laplacian smoothing term. The choice of penalty allows

us to incorporate prior information that some features may be correlated. For example, an n1 × n2

image represented in the plane is intrinsically a matrix. The pixels spatially close to each other may

be correlated. Even though we have n1 × n2 pixels per image, this spatial correlation suggests the

real number of freedom is far less. However, most of the previous methods consider an image as a

vector in R
n1×n2 . They do not take advantage of the spatial correlation in the image, and the pixels

are considered as independent pieces of information. In this paper, we introduce a Regularized LPP

model using a Laplacian penalty to constrain the coefficients to be spatially smooth. By preserving

the local geometrical structure of the image space, we can obtain a linear subspace which is optimal

for image representation in the sense of local isometry. Recognition, clustering and retrieval can be

then performed in the image subspace. Experimental results on face representation and recognition

demonstrate the effectiveness of our method.

1 Introduction

Recently there are considerable interest in geometrically motivated approaches to visual analysis. The

visual data like image and video is generally of very high dimensionality, ranging from several thousands

to several hundreds of thousands. For example, a typical image of face is of size 32 × 32, resulting in a

1024-dimensional vector. However, the intrinsic degrees of freedom is far less. Various researchers (see

[3], [5], [28], [30], [37]) have considered the case when the data lives on or close to a submanifold of the

ambient space. One hopes then to estimate geometrical and topological properties of the submanifold

from random points (“scattered data”) lying on this unknown submanifold.

∗ The work was supported in part by the U.S. National Science Foundation NSF IIS-03-08215/IIS-05-13678. Any

opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily

reflect the views of the funding agencies.
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Previous works have demonstrated that the face recognition performance can be improved significantly

in lower dimensional linear subspaces [2], [17], [21], [23], [31], [34]. Two of the most popular appearance-

based face recognition methods include Eigenface [31] and Fisherface [17]. Eigenface is based on Principal

Component Analysis (PCA) [10]. PCA projects the face images along the directions of maximal variances.

It also aims to preserve the Euclidean distances between face images. For linearly embedded manifolds,

PCA is guaranteed to discover the dimensionality of the manifold and produces a compact representation.

Fisherface is based on Linear Discriminant Analysis (LDA) [10]. Unlike PCA which is unsupervised, LDA

is supervised. When the class information is available, LDA can be used to find a linear subspace which

is optimal for discrimination. Some extensions and variants of PCA and LDA have also been proposed,

such as Penalized Discriminant Analysis [14], Kernel PCA [29], Kernel LDA [1], [35], etc.

Recently, the Locality Preserving Projection (LPP) algorithm is proposed to discover the local geo-

metrical structure of the data space [16]. LPP is derived by finding the optimal linear approximations

to the eigenfunctions of the Laplace Beltrami operator on the data manifold. The Laplace Beltrami op-

erator takes the second order derivatives of the functions on the manifolds. It measures the smoothness

of the functions. Therefore, LPP can discover the nonlinear manifold structure to some extent. LPP

has demonstrated its effectiveness in face recognition. The basis functions obtained by LPP is generally

referred to as Laplacianfaces [17].

Most of previous methods consider a face image as a high dimensional vector. They do not take

advantage of the spatial correlation in the image, and the pixels are considered as independent pieces

of information. However, a n1 × n2 face image represented in the plane is intrinsically a matrix. Even

though we have n1 × n2 pixels per iamge, this spatial correlation suggests the real number of freedom

is far less. In this paper, we introduce a Regularized LPP (RLPP) model using a Laplacian penalty to

constrain the coefficients to be spatially smooth. Instead of considering the basis function as a n1 × n2-

dimensional vector, we consider it as a matrix, or a discrete function defined on a n1×n2 lattice. Thus, the

discretized Laplacian can be applied to the basis functions to measure their smoothness along horizontal

and vertical directions. The discretized Laplacian operator is a finite difference approximation to the

second derivative operator, summed over all directions. The choice of Laplacian penalty allows us to

incorporate the prior information that neighboring pixels are correlated.

Once we obtain compact representations of the images, classification and clustering can be performed

in the lower dimensional subspace.

The points below highlight several aspects of the paper:

1. When the number-of-dimensions to sample-size ratio is too high, it is difficult for LPP to discover

the intrinsic geometrical structure. Since the image data generally has a large number of dimensions

(pixels), natural methods of regularization emerge.

2. Even if the sample size were sufficient to estimate the intrinsic geometrical structure, coefficients

of spatially smooth features (pixels) tend to be spatially rough. Since we hope to interpret these

coefficients, we would prefer smoother versions, especially if they do not compromise the fit.
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3. The primary focus of this paper is on face images. However, our method can be naturally extended

to higher order tensors, such as videos which are intrinsically the third order tensors. Our results

may also be of interest to researchers in computer graphics who have considered the question of

modeling the Bidirectional Texture Function (BTF) whose observational data is of six dimensions

(i.e. sixth order tensor), two variables for surface location, two variables for view direction and

two variables for illumination direction [22]. Researchers in computer vision, pattern recognition,

molecular biology, information retrieval, and other areas where large amount of higher order tensor

(rather than vector) based data are available may find some use of the algorithm and analysis of

this paper.

The remainder of the paper is organized as follows. In Section 2, we provide a brief review of PCA,

LDA and LPP. Section 3 describes the discretized Laplacian smoothing for image analysis. Section 4

introduces our proposed Regularized LPP algorithm. The extensive experimental results are presented

in Section 5. Finally, we provide some concluding remarks and suggestions for future work in Section 6.

2 PCA, LDA and LPP

Suppose we have m n1 × n2 face images. Let {xi}
m
i=1

⊂ R
n (n = n1 × n2) denote their vector represen-

tations and X = (x1, · · · ,xm).

2.1 PCA

PCA is a canonical linear dimensionality reduction algorithm. The basic idea of PCA is to project the

data along the directions of maximal variances so that the reconstruction error can be minimized. Let

w be the transformation vector and yi = aTxi. Let µµµ = 1

m

∑
xi and y = 1

m

∑
yi. The objective function

of PCA is as follows:

aopt = arg max
a

m∑

i=1

(yi − y)2

= arg max
a

m∑

i=1

aT (x −µµµ) (x −µµµ)T a

= arg max
a

aT Ca

where C = 1

m

∑m
i=1

(x −µµµ) (x −µµµ)T is the data covariance matrix. The basis functions of PCA are the

eigenvectors of the data covariance matrix associated with the largest eigenvalues.

2.2 LDA

Unlike PCA which is unsupervised, LDA is supervised. Suppose we have c classes and the i-th class

have mi samples, m1 + · · · + mc = m. Let µµµi be the sample mean vector of the i-th class. LDA aims to
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maximize the ratio of between-class variance to the within-class variance thereby guaranteeing maximal

separability. The objective function of LDA is as follows:

max
a

aT Sba

aT Swa
(1)

where Sb is the between-class scatter matrix and Sw is the within-class scatter matrix. They are defined

as follows:

Sb =
c∑

i=1

mi

(
µµµi −µµµ

) (
µµµi −µµµ

)T

Sw =
c∑

i=1




mi∑

j=1

(
xi

j −µµµi
) (

xi
j −µµµi

)T




where xi
j is the j-th sample in the i-th class. Thus, the basis functions of LDA that maximize the

objective function is given by the maximum eigenvalue solution to the generalized eigenvalue problem:

Sba = λSwa (2)

We can define the total scatter matrix as:

St =
m∑

i=1

(xi −µµµ) (xi −µµµ)T = mC

It is easy to verify that St = Sb + Sw [11], thus:

Sba = λSwa

⇒ (St − Sw)a = λSwa

⇒ Swa =
1

1 + λ
Sta

⇒ Sba = λ(St − Sb)a

⇒ Sba =
λ

1 + λ
Sta

Therefore, LDA can also be obtained by solving the following minimum eigenvalue problem:

Swa = λSta (3)

or the following maximum eigenvalue problem:

Sba = λSta (4)
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2.3 LPP

Different from PCA and LDA which aim to discover the Euclidean structure, LPP aims to discover the

local manifold structure. Given a similarity matrix S, the optimal projections can be obtained by solving

the following minimization problem [16]:

aopt = arg min
a

∑

ij

(
aTxi − aTxj

)2
Sij

= arg min
a

aT XLXTa (5)

where L = D−S is the graph Laplacian [9] and Dii =
∑

j Sij . The matrix D provides a natural measure

on the data points. The bigger the value Dii (corresponding to yi) is, the more “important” is yi.

Therefore, we impose a constraint as follows:

yT Dy = 1 ⇒ aT XDXTa = 1,

where y = (y1, · · · , ym)T = XTa.

Finally, the minimization problem reduces to finding:

arg min
a

a
T XDXT

a=1

aT XLXTa (6)

The transformation vector a that minimizes the objective function is given by the minimum eigenvalue

solution to the generalized eigenvalue problem:

XLXTa = λXDXTa (7)

It is easy to see that:

XLXTa = λXDXTa

⇒ XDXTa − XSXTa = λXDXTa

⇒ XSXTa = (1 − λ)XDXTa

Therefore, LPPs can also be obtained by solving the following maximum eigenvalue problem:

XSXTa = λXDXTa (8)

For the detailed derivation of LPP and the choices of S, please see [16].

2.4 Connections between PCA, LDA and LPP

In this subsection, we provide a discussion on connections between PCA, LDA and LPP. Our analysis is

based on the different choices of graph structure that is inferred on the data points.
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Connections between LDA and LPP

When the label information is available, it can be incorporated into the graph structure. We have the

following proposition:

Proposition 1 Suppose the data points have a zero mean vector. That is,
∑

i xi = 0. With the weight

matrix defined as follows:

Sij =

{
1/mk, if xi and xj both belong to the k-th class;

0, otherwise.

LPP gives the same eigenvector solutions to LDA since XSXT = Sb, XLXT = Sw and XDXT = St.

Proof Please see [17] for the proof.

Proposition 1 shows that LDA tries to preserve the label information.

Proposition 2 Suppose the data points have a zero mean vector. We have:

rank(XSXT ) ≤ c − 1

Proof Since the data points have a zero mean vector, Xe = 0 where e = (1, · · · , 1)T is a vector of all

ones. Thus,

X(
1

m
eeT )XT = 0

⇒ XSXT = X(S −
1

m
eeT )XT

Let

S −
1

m
eeT = (s1

1, · · · , s1
m1

, s2
1, · · · , s2

m2
, · · · , sc

1, · · · , sc
mc

)

It is easy to see that

si
1 = · · · = si

mi
, i = 1, · · · , c

and

s1
1 + s2

1 + · · · + sc
1 = 0

Therefore,

rank(XSXT ) ≤ c − 1.

The singularity of XSXT is generally referred to as null space problem in LDA [33], [36]. Our analysis

indicates that the singularity of XSXT results from the choices of the graph model. In this sense, a

more reasonable S can be defined as follows:

Sij =

{
x

T
i xj

‖xi‖·‖xj‖
, if xi and xj share the same label;

0, otherwise.
(9)
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or

Sij =





e−
‖xi−xj‖

2

t , if xi and xj share the same label;

0, otherwise.
(10)

Clear, the above choices of S no longer suffer from the null space problem.

Connections Between LPP and PCA

Let x and y be two independent random variables in the data space. We first define a ǫ Covariance

matrix Cǫ as follows.

Definition ǫ Covariance Matrix:

Cǫ =
1

2
E

[
(x − y) (x − y)T |‖x − y‖ < ǫ

]

Let us recall the standard covariance matrix:

Definition Covariance Matrix: C = E
[
(x − E[x]) (x − E[x])T

]

We have the following propositions:

Proposition 3 limǫ→∞ Cǫ = C

Proposition 4 With the weight matrix defined as follows:

Sij =

{
1, if ‖xi − xj‖ < ǫ

0, otherwise.
(11)

We have: limm→∞
1

m2β
XLXT = Cǫ, where β = Prob(‖x − y‖ < ǫ).

Please see [15] for the proofs of the above propositions. These propositions indicate that the matrix

XLXT provides a statistical estimation of the ǫ covariance matrix. Especially, when ǫ tends to infinity,

XLXT is just the sample covariance matrix.

Our analysis indicates that the choices of different graph structure play the central role of LPP. In

some situations, one may incorporate prior information into the graph structure. For example, for web

graph, one may connect two pages if there is a hyperlink between them [26]. In general, one can apply

(9) for supervised learning and (11) for unsupervised learning.

3 Regularized LPP with Two-Dimensional Discretized Laplacian Smooth-

ing

In this section, we describe how to apply Laplacian penalized functional to measure the smoothness of

the basis vectors of the face space, which plays the key role in the regularized LPP with two-dimensional

discretized laplacian smoothing algorithm. We begin with a general description of Laplacian smoothing.
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3.1 Laplacian Smoothing

Let f be a function defined on a region of interest, Ω ⊂ R
d. The Laplacian operator L is defined as

follows [19]:

Lf(t) =
d∑

j=1

∂2f

∂t2j
(12)

The Laplacian penalty functional, denoted by J , is defined by:

J (f) =

∫

Ω

[
Lf

]2
dt (13)

Intuitively, J (f) measures the smoothness of the function f over the region Ω. In this paper, our primary

interest is in image. An image is intrinsically a two-dimensional signal. Therefore, we take d to be 2 in

the following.

3.2 Discretized Laplacian Smoothing

As we described previously, n1 × n2 face images can be represented as vectors in R
n, n = n1 × n2. Let

ai ∈ R
n be the basis vectors (transformation vectors) obtained by LPP. Without loss of generality, ai

can also be considered as functions defined on a n1 × n2 lattice.

For a face image, the region of interest Ω is a two-dimensional rectangle, which for notational con-

venience we take to be [0, 1]2. A lattice is defined on Ω as follows. Let h = (h1, h2) where h1 = 1/n1

and h2 = 1/n2. Ωh consists of the set of two-dimensional vectors ti = (ti1 , ti2) with tij = (ij − 0.5) · hj

for 1 ≤ ij ≤ nj and 1 ≤ j ≤ 2. There are a total of n = n1 × n2 grid points in this lattice. Let Dj be

an nj × nj matrix that yields a discrete approximation to ∂2/∂t2j . Thus if u = (u(t1), · · · , u(tnj
)) is an

nj-dimensional vector which is a discretized version of a function u(t), then Dj has the property that:

[Dju]i ≈
∂2u(ti)

∂t2

for i = 1, · · · , nj . There are many possible choices of Dj [6]. In this work, we apply the modified Neuman

discretization [25]:

Dj =
1

h2
j




−1 1 0

1 −2 1

1 −2 1

· · ·

1 −2 1

1 −2 1

0 1 −1




Give Dj , a discrete approximation for two-dimensional Laplacian L is the n × n matrix:

∆ = D1 ⊗ I2 + I1 ⊗ D2 (14)
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 1: The first five ( a∼e ) and last five ( f∼j ) eigenvectors of ∆T ∆. ∆ is the discrete approximation

for two-dimensional Laplacian as defined in Equation (14). Here n1 = n2 = 32 and thus ∆ is a 1024×1024

matrix. All the eigenvectors are 1024-dimensional vectors and are displayed here as 32× 32 images. The

smoothness of eigenvectors can be measured by their corresponding eigenvalues. The smaller of the

eigenvalue, the smoother of the eigenvector. The first five eigenvectors are spatially smooth while the

last five eigenvectors are spatially rough.

where Ij is nj × nj identity matrix for j = 1, 2. ⊗ is the kronecker product defined below [18]:

Definition Let A be a n × n matrix and B be a m × m matrix. Then the kronecker product of A and

B is the mn × mn block matrix

A ⊗ B =




a11B · · · a1nB
...

. . .
...

an1B · · · annB




For a n1×n2 dimensional vector a, ‖∆a‖ provide a measure of smoothness of a on the n1×n2 lattice.

3.3 The Algorithm

Given a pre-defined graph structure with weight matrix S, the Regularized LPP is defined as the mini-

mizer of ∑

ij

(
aTxi − aTxj

)2
Sij + αJ (a), (15)

where J is the discretized Laplacian regularization functional:

J (a) = ‖∆a‖2 = aT ∆T ∆a. (16)

The parameter α > 0 controls the smoothness of the estimator.

By simple algebraic formulations [16], we have:

∑

ij

(aTxi − aTxj)
2Sij = aT XLXTa.

With the same constraint as the standard LPP [16], finally the minimization problem reduces to finding:

arg min
a

a
T XDXT

a=1

aT
(
XLXT + α∆T ∆

)
a. (17)
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We will now switch to a Lagrangian formulation of the problem. The Lagrangian is as follows

L = aT
(
XLXT + α∆T ∆

)
a − λaT XDXTa. (18)

Requiring that the gradient of L vanish gives the following eigenvector problem:

(
XLXT + α∆T ∆

)
a = λXDXTa. (19)

It is easy to show that the matrices XLXT , XDXT and ∆T ∆ are all symmetric and positive semi-

definite. Since α > 0, the matrix XLXT + α∆T ∆ is also symmetric and positive semi-definite. The

vectors ai (i = 0, 1, · · · , l − 1) that minimize the objective function (17) are given by the minimum

eigenvalue solutions to the above generalized eigenvalue problem.

4 Theoretical Analysis

In this section, we provide some theoretical analysis of the two-dimensional discrete Laplacian ∆ as well

as our regularized LPP algorithm.

Given a projection vector a ∈ R
n1×n2 , its spatial smoothness can be measured as ‖∆a‖. To remove

the impact of the norm of a, we have the following definition:

Definition Let a ∈ R
n, n = n1 × n2 be a projection vector. The Discretized Laplacian Smoothing

Function S is defined as follows.

S(a) =
‖∆a‖2

‖a‖2
=

aT ∆T ∆a

aTa
(20)

S(a) measures the smoothness of the projection vector a over the n1 × n2 lattice. The smaller S(a) is,

the smoother a is.

It is easy to see that the “smoothest” a which minimizes S(a) is the eigenvector of ∆T ∆ corresponding

to the smallest eigenvalue. Figure 1 shows the first five and the last five eigenvectors of ∆T ∆. The

eigenvalues of ∆T ∆ are exactly the values of S(a), where a’s are the corresponding eigenvectors. As can

be seen, the first five eigenvectors are spatially smoother than the last five eigenvectors. Particularly, the

first eigenvector is a vector of all ones.

We have the following theorem:

Theorem 5 The smallest eigenvalue of ∆T ∆ is 0 and the corresponding eigenvector is e = (1, · · · , 1)T ,

which is a vector of all ones.

Proof ∆T ∆ is positive semi-definite. All the eigenvalues of ∆T ∆ are non-negative. It is sufficient to
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show that e is the eigenvector of ∆T ∆ corresponding to eigenvalue 0. We have:

∆ · e = (D1 ⊗ I2 + I1 ⊗ D2) · e

= (D1 ⊗ I2) · e + (I1 ⊗ D2) · e

=
1

h2
1




−I2 I2 0

I2 −2I2 I2

· · ·

I2 −2I2 I2

0 I2 −I2




e +




D2 0

D2

·

D2

0 D2




e

= 0 + 0 = 0

Thus,

∆T ∆ · e = 0 = 0 · e,

e is the eigenvector of ∆T ∆ corresponding to eigenvalue 0.

Let λLPP and λRLPP be the smallest eigenvalues of equations (7) and (19), respectively,

λLPP = min
a

a
T XDXT

a=1

aT XLXTa (21)

and

λRLPP = min
a

a
T XDXT

a=1

aT
(
XLXT + α∆T ∆

)
a (22)

Let aLPP and aRLPP be the corresponding eigenvectors. By definition (21), it is easy to see that:

aT
LPP XLXTaLPP ≤ aT

RLPP XLXTaRLPP

This indicates that LPP has more locality preserving power than RLPP. As to the smoothness of the

eigenvectors, we have the following theorem:

Theorem 6 ‖∆aRLPP ‖ ≤ ‖∆aLPP ‖

Proof By definition (21), we have:

aT
LPP XLXTaLPP ≤ aT

RLPP XLXTaRLPP

By definition (22), we have:

aT
RLPP

(
XLXT + α∆T ∆

)
aRLPP

≤ aT
LPP

(
XLXT + α∆T ∆

)
aLPP

≤ aT
RLPP XLXTaRLPP + αaT

LPP ∆T ∆aLPP

Subtracting aT
RLPP XLXTaRLPP from both sides and noticing that α > 0, we get:

‖∆aRLPP ‖
2 = aT

RLPP ∆T ∆aRLPP ≤ aT
LPP ∆T ∆aLPP = ‖∆aLPP ‖

2
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Theorem (6) indicates that the basis functions obtained by RLPP are spatially smoother than those

obtained by LPP.

5 Learning Smooth Laplacianfaces for Representation

Based on Regularized LPP with two-dimensional discretized laplacian smoothing, we describe our Smooth

Laplacianfaces method for face representation in this section. In recent years, there has been a growing

interest in 2-d laplacian smoothing, as well as other higher order smoothing methods. These methods

have been used in image de-noising [4], image reconstruction [7], [8] and image warping [13].

In the face analysis and recognition problem, one is confronted with the difficulty that the matrix

XDXT is sometimes singular. This stems from the fact that sometimes the number of images in the

training set (m) is much smaller than the number of pixels in each image (n). In such a case, the rank

of XDXT is at most m, while XDXT is a n × n matrix, which implies that XDXT is singular. To

overcome the complication of a singular XDXT , we first project the image set to a PCA subspace so

that the resulting matrix XDXT is nonsingular. The algorithmic procedure of Smooth Laplacianfaces

is formally stated below:

1. PCA Projection: We project the face images xi into the PCA subspace by throwing away the

components corresponding to zero eigenvalue. We denote the transformation matrix of PCA by

WPCA. By PCA projection, the extracted features are statistically uncorrelated and the rank of

the new data matrix is equal to the number of features (dimensions). We denote as:

X̃ = W T
PCAX and ∆̃ = ∆ · WPCA (23)

2. Constructing the Adjacency Graph: Let G denote a graph with n nodes. The i-th node

corresponds to the face image xi. We put an edge between nodes i and j if xi and xj are “close”,

i.e. xi is among k nearest neighbors of xj or xj is among k nearest neighbors of xi. Note that, if

the class information is available, we simply put an edge between two data points belonging to the

same class.

3. Choosing the Weights: If node i and j are connected, put

Sij = e−
‖xi−xj‖

2

t

Otherwise, put Sij = 0. The weight matrix S of graph G models the local structure of the face

manifold. The justification of this weight can be traced back to [3].

4. Eigenmap: Compute the eigenvectors and eigenvalues for the generalized eigenvector problem:
(
X̃LX̃T + α∆̃T ∆̃

)
a = λX̃DX̃Ta (24)

where D is a diagonal matrix whose entries are column (or row, since S is symmetric) sums of S,

Dii =
∑

j Sji. L = D − S is the Laplacian matrix [9].
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Let a0,a1, · · · ,al−1 be the solutions of (24), ordered according to their eigenvalues, 0 ≤ λ0 ≤ λ1 ≤

· · · ≤ λl−1. These eigenvalues are equal to or greater than zero because the matrix X̃LX̃T + α∆̃T ∆̃ is

symmetric and positive semi-definite and X̃DX̃T is symmetric and positive definite. Thus, the embedding

is as follows:

x → y = W Tx (25)

W = WPCAWRLPP (26)

WRLPP = [a0,a1, · · · ,al−1] (27)

where y is a l-dimensional vector and W is the transformation matrix. This linear mapping not only

preserves the manifold’s estimated intrinsic geometry in a linear sense but also considers the spatial

correlation of image pixels. The column vectors of W are the so-called Smooth Laplacianfaces.

6 Experimental Results

In this section, several experiments are carried out to show the effectiveness of our proposed Smooth

Laplacianfaces method for face representation and recognition.

6.1 Face Representation Using Smooth Laplacianfaces

As we described previously, a face image can be represented as a point in image space. A typical image

of size n1 × n2 describes a point in n1 × n2-dimensional image space. However, due to the unwanted

variations resulting from changes in lighting, facial expression, and pose, the image space might not be

an optimal space for visual representation.

In Section 5, we have discussed how to learn a spatially smooth locality preserving face subspace. The

images of faces in the training set are used to learn such a subspace. The subspace is spanned by a set

of eigenvectors of Eqn. (24), i.e., a0,a1, · · · ,al−1. We can display the eigenvectors as special ghost-like

images. These images may be called Smooth Laplacianfaces (S-Laplacianfaces). Using the Yale face

database as the training set, we present the first 5 S-Laplacianfaces in Fig. (2), together with Eigenfaces,

Fisherfaces and Laplacianfaces. Note that there is a parameter α which controls the smoothness in

S-Laplacianfaces. Fig. (2) shows three groups S-Laplacianfaces with α = 0.5, 5 and 50. For each face

(eigenvector a), we also calculated the ‖∆a‖. Since each eigenvector is normalized, ‖∆a‖ can measure

the smoothness of a as we discussed in Section (4).

We can see that S-Laplacianfaces is smoother than Laplacianfaces. With bigger α, S-Laplacianfaces

become much smoother. The Fisherfaces and Laplacianfaces are somehow similar to each other since

they share similar graph structure as we described in Section 2. The Eigenfaces is the smoothest among

all the faces. However, Eigenfaces do not encode discriminating information thus will not optimal for

recognition. S-Laplacianfaces consider both the discriminating power and the spatial correlation among
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‖∆a‖ = 0.87 1.22 1.25 1.65 1.95
(a) Eigenfaces

‖∆a‖ = 16.1 14.3 13.4 14.1 12.8
(b) Fisherfaces

‖∆a‖ = 14.7 16.4 15.8 14.8 14.9
(c) Laplacianfaces

‖∆a‖ = 10.7 10.8 11.8 11.6 12.4
(d) Smooth Laplacianfaces (α = 0.5)

‖∆a‖ = 7.56 7.19 7.91 7.45 8.27
(e) Smooth Laplacianfaces (α = 5)

‖∆a‖ = 3.89 3.82 4.39 4.29 4.26
(f) Smooth Laplacianfaces (α = 50)

Figure 2: The first 5 Eigenfaces, Fisherfaces, Laplacianfaces, and Smooth Laplacianfaces calculated from

the face images in the Yale database. For each face (eigenvector a), we also calculated the ‖∆a‖. Since

each eigenvector is normalized, ‖∆a‖ can measure the smoothness of a as we discussed in Section (4). S-

Laplacianfaces is smoother than Laplacianfaces and Fisherfaces. With bigger α, S-Laplacianfaces become

much smoother. It is also interesting to note that the eigenvectors of PCA corresponding to the largest

eigenvalues are smoothest.
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Figure 3: Sample face images from the Yale database. For each subject, there are 11 face images under

different lighting conditions with facial expression.

the pixels on the face image, thus might achieve better performance on recognition. The recognition

experiments in next section will demonstrate this.

6.2 Face Recognition Using Smooth Laplacianfaces

In this section, we investigate the performance of our proposed Smooth Laplacianface method for face

recognition. The system performance is compared with the Eigenface (PCA) [32], Fisherface (LDA)

[2], and Laplacianface (LPP) [17]. We use the same graph structures in the Laplacianface and our

S-Laplacianface, which is built based on the label information.

Four face databases were used, i.e. Yale1, ORL 2, Yale-B3 and PIE (Pose, Illumination, and Ex-

pression)4. In all the experiments, preprocessing to locate the faces was applied. Original images were

normalized (in scale and orientation) such that the two eyes were aligned at the same position. Then,

the facial areas were cropped into the final images for matching. The size of each cropped image in

all the experiments is 32 × 32 pixels, with 256 gray levels per pixel. Each image is represented by a

1, 024-dimensional vector in image space. Many pattern classifiers have been applied to face recognition,

like nearest-neighbor classifier [31], Bayesian [24], and support vector machines [27], etc. In this work,

we apply nearest neighbor classifier for its simplicity.

In short, the recognition process has three steps. First, we calculate the face subspace from the

training set of face images; then the new face image to be identified is projected into d-dimensional

subspace; finally, the new face image is identified by nearest neighbor classifier.

6.2.1 Yale Database

The Yale face database was constructed at the Yale Center for Computational Vision and Control. It

contains 165 gray scale images of 15 individuals. The images demonstrate variations in lighting condition,

facial expression (normal, happy, sad, sleepy, surprised, and wink). Fig. (3) shows the 11 images of one

individual in Yale data base. A random subset with l (= 2, 3, 4, 5) images per individual was taken with

labels to form the training set, and the rest of the database was considered to be the testing set.

The training set is utilized to learn the subspace representation of the face manifold by using Eigenface,

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.cl.cam.ac.uk/Research/DTG/attarchive/facesataglance.html
3http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
4http://www.ri.cmu.edu/projects/project 418.html
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Figure 4: Error rate vs. dimensionality reduction on Yale database

Fisherface, Laplacianface and our algorithm. The testing images are projected into the face subspace in

which recognition is then performed. For each given l, we average the results over 50 random splits. The

cross validation in the training set was used to select the parameter α in our S-Laplacianface algorithm.

Figure 4 shows the plots of error rate versus dimensionality reduction for the Eigenface, Fisherface,

Laplacianface, S-Laplacianface and baseline methods. For the baseline method, the recognition is simply

performed in the original 1024-dimensional image space without any dimensionality reduction. Note

that, the upper bound of the dimensionality of Fisherface is c − 1 where c is the number of individuals

[2]. As can be seen, the performance of the Eigenface, Fisherface, Laplacianface, and S-Laplacianface

algorithms varies with the number of dimensions. We show the best results obtained by them in Table

1 and the corresponding face subspaces are called optimal face subspace for each method.

It is interesting to note that S-Laplacianface reaches the best performance almost always at c − 1

dimensions. Table 1 lists the performance of S-Laplacianface at dimensionality c − 1. This property

shows that S-Laplacianface does not suffer from the problem of dimensionality estimation which is a

crucial problem for most of the subspace learning based face recognition methods.
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Table 1: Performance comparison on Yale database

Method 2 Train 3 Train 4 Train 5 Train

error dim error dim error dim error dim

Baseline 54.0% 1024 48.2% 1024 45.1% 1024 41.9% 1024

Eigenfaces 54.0% 29 48.2% 44 45.1% 158 41.9% 74

Fisherfaces 56.2% 9 39.3% 14 31.4% 14 25.9% 14

Laplacianfaces 44.6% 14 33.6% 14 27.2% 19 23.1% 23

S-Laplacianfaces∗ 43.5% 18 32.0% 14 25.5% 14 21.2% 14

43.6% 14 32.0% 14 25.5% 14 21.2% 14
∗ The first row of S-Laplacianfaces indicates the best performance as well as

the optimal subspace dimension. The second row indicates the performance

of S-Laplacianfaces at exactly c − 1 dimension, c is the number of class.

Figure 5: Sample face images from the ORL database. For each subject, there are 10 face images with

different facial expression and details.

S-Laplacianface outperforms the other four methods with different numbers of training samples (2,

3, 4, 5) per individual. The Eigenface method performs the worst in most the cases. It does not obtain

any improvement over the baseline method. The Laplacianface method perform slightly better than

Fisherface method. It is worthwhile to note that in the cases where only two training samples are

available, Fisherfaces method works even worse than baseline and Eigenfaces method. This result is

consistent with the observation in [23] that Eigenface method can outperform Fisherface method when

the training set is small. Moreover, in this case, the best performance of Fisherface is no longer obtained

in a c − 1(= 14) dimensional subspace, but a 9-dimensional subspace.

6.2.2 ORL Database

The ORL (Olivetti Research Laboratory) face database is used in this test. It consists of a total of 400

face images, of a total of 40 people (10 samples per person). The images were captured at different

times and have different variations including expressions (open or closed eyes, smiling or non-smiling)

and facial details (glasses or no glasses). The images were taken with a tolerance for some tilting and

rotation of the face up to 20 degrees. 10 sample images of one individual are displayed in Figure 5. For

each individual, l(= 2, 3, 4, 5) images are randomly selected for training and the rest are used for testing.

The experimental design is the same as that in the last subsection. For each given l, we average the

results over 50 random splits. Figure 6 shows the plots of error rate versus dimensionality reduction for

the Eigenface, Fisherface, Laplacianface, S-Laplacianface and baseline methods. The best result obtained
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Figure 6: Error rate vs. dimensionality reduction on ORL database

in the optimal subspace are shown in Table 2. It would be interesting to note that, when there are only

two training samples for each individual, the best performance of Fisherface is no longer obtained in a

c − 1(= 39) dimensional subspace, but a 28-dimensional subspace.

As can be seen, our S-Laplacianface algorithm performs the best for all the cases and it reaches the best

performance with c − 1 dimensions. The Fisherface and Laplacianface methods perform comparatively

to each other, while the Eigenface method performs poorly.

6.2.3 Extended Yale Database B

The Extended Yale face database B contains 16128 images of 28 human subjects under 9 poses and 64

illumination conditions [12][20]. In this experiment, we choose the frontal pose and use all the images

under different illumination, thus we get 64 images for each person. All the faces are manually aligned,

cropped and resize to 32 × 32 pixels. 30 sample images of one individual are presented in Figure 7. For

each individual, l(= 5, 10, 20, 30) images are randomly selected for training and the rest are used for
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Table 2: Performance comparison on ORL database

Method 2 Train 3 Train 4 Train 5 Train

error dim error dim error dim error dim

Baseline 29.6% 1024 21.1% 1024 15.5% 1024 11.9% 1024

Eigenfaces 29.6% 79 21.1% 119 15.5% 158 11.9% 189

Fisherfaces 24.5% 28 13.7% 39 8.8% 39 6.1% 39

Laplacianfaces 20.1% 39 12.8% 39 8.7% 39 6.3% 39

S-Laplacianfaces∗ 15.6% 77 8.7% 113 4.9% 82 3.0% 39

16.6% 39 9.0% 39 5.0% 39 3.0% 39
∗ The first row of S-Laplacianfaces indicates the best performance as well as

the optimal subspace dimension. The second row indicates the performance

of S-Laplacianfaces at exactly c − 1 dimension, c is the number of class.

Figure 7: Sample face images from the extended Yale database B. For each subject, we use 64 frontal

face images under varying illumination condition.

testing.

The experimental design is the same as that in the last subsection. For each given l, we average the

results over 50 random splits. Table 3 shows the recognition results. As can be seen, our S-Laplacianface

algorithm performs significantly better than the other algorithms. Fisherface and Laplacianface perform

worse than S-Laplacianface, but much better than Eigenface. Figure 8 shows a plot of error rate versus

dimensionality reduction. S-Laplacianface achieves a reasonably good performance with c−1 dimensions.

There is no significant improvement if more dimensions are used.

6.2.4 PIE Database

The CMU PIE face database contains 68 subjects with 41,368 face images as a whole. The face im-

ages were captured by 13 synchronized cameras and 21 flashes, under varying pose, illumination and

expression. We choose the five near frontal poses (C05, C07, C09, C27, C29) and use all the images

under different illuminations and expressions, thus we get 170 images for each individual. Figure 9 shows

some of the faces with pose, illumination and expression variations. For each individual, l(= 5, 10, 20, 30)

images are randomly selected for training and the rest are used for testing.

The experimental design is the same as that in the last subsection. For each given l, we average the

results over 50 random splits. Figure 10 shows the plots of error rate versus dimensionality reduction for
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Figure 8: Error rate vs. dimensionality reduction on extended Yale database B

the Eigenface, Fisherface, Laplacianface, S-Laplacianface and baseline methods. The best results and

the corresponding optimal face subspace for each method are shown in Table 4.

6.2.5 Discussion

Four experiments on Yale, ORL, Yale-B and PIE databases have been systematically performed. These

experiments reveal a number of interesting points:

1. Five face recognition methods are compared, among which our S-Laplacianface algorithm performs

the best. The Fisherface, Laplacianface and S-Laplacianface methods perform significantly better

than the baseline method. This indicates that subspace learning is important for face recognition.

The Eigenface method fails to gain improvement over the baseline method. This is probably due

to the fact that the Eigenface method does not encode discriminating information.

2. All these algorithms can take advantage of more training samples, which is important to the real-

world face recognition systems.
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Table 3: Performance comparison on extended Yale database B

Method 5 Train 10 Train 20 Train 30 Train

error dim error dim error dim error dim

Baseline 69.2% 1024 55.5% 1024 42.1% 1024 34.6% 1024

Eigenfaces 69.2% 189 55.5% 378 42.1% 616 34.6% 780

Fisherfaces 34.9% 37 21.7% 37 14.1% 37 18.7% 37

Laplacianfaces 32.1% 71 19.5% 76 18.0% 75 13.6% 76

S-Laplacianfaces∗ 29.3% 69 16.2% 280 8.2% 273 5.0% 387

29.6% 37 16.5% 37 8.6% 37 5.5% 37
∗ The first row of S-Laplacianfaces indicates the best performance as well as

the optimal subspace dimension. The second row indicates the performance

of S-Laplacianfaces at exactly c − 1 dimension, c is the number of class.

Figure 9: Sample face images from the CMU PIE database. For each subject, there are 170 near frontal

face images under varying pose, illumination, and expression.

3. Comparing to the Laplacianface method, S-Laplacianface explicitly takes into account the spatial

relationship between the pixels in an image. The use of spatial information significantly reduces

the number of degrees of freedom. Therefore, S-Lapalcianface can have good performance even

when there is only a small number of training samples available.

7 Conclusions

In this paper, we propose a new linear dimensionality reduction method called Regularized Locality

Preserving Projections (RLPP). RLPP explicitly considers the spatial relationship between the pixels in

images. By introducing a Laplacian penalized functional, the projection vectors obtained by RLPP can

be smoother than those obtained by the ordinary LPP. This prior information significantly reduces the

number of degrees of freedom, and hence RLPP can perform better than LPP when there is no sufficient

training samples. We applied our RLPP method to face recognition and compared with Eigenface,

Fisherface and Laplacianface methods on Yale, ORL, PIE, and Yale-B databases. Experimental results

show that our method consistently outperforms the other methods.

The primary focus of this paper is on images which are two-dimensional signals. However, the analysis
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Figure 10: Error rate vs. dimensionality reduction on PIE database

and algorithm presented here can also be naturally extended to higher dimensional signals. For example, a

video can be considered as a three-dimensional signal, and thus a three-dimensional discretized Laplacian

functional can be applied to video. Other examples include Bidirectional Texture Function (BTF) which

is a six-dimensional signal. We are currently investigating the applicability of our algorithm for these

problems.
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