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Abstract

Recently the problem of dimensionality reduction has received a lot of interests in many fields

of information processing, including data mining, information retrieval, and pattern recognition. We

consider the case where data is sampled from a low dimensional manifold which is embedded in

high dimensional Euclidean space. The most popular manifold learning algorithms include Locally

Linear Embedding, ISOMAP, and Laplacian Eigenmap. However, these algorithms are nonlinear and

only provide the embedding results of training samples. In this paper, we propose a novel linear

dimensionality reduction algorithm, called Isometric Projection. Isometric Projection constructs a

weighted data graph where the weights are discrete approximations of the geodesic distances on the

data manifold. A linear subspace is then obtained by preserving the pairwise distances. Our algorithm

can be performed in either original space or reproducing kernel Hilbert space, which leads to Kernel

Isometric Projection. In this way, Isometric Projection can be defined everywhere. Comparing to

Principal Component Analysis (PCA) which is widely used in data processing, our algorithm is more

capable of discovering the intrinsic geometrical structure. Specially, PCA is optimal only when the

data space is linear, while our algorithm has no such assumption and therefore can handle more

complex data space. We present experimental results of the algorithm applied to synthetic data set

as well as real life data. These examples illustrate the effectiveness of the proposed method.

1 Introduction

Dimensionality reduction has been a key problem in many fields of information processing, such as

data mining, information retrieval, and pattern recognition. When data is represented as points in a

high-dimensional space, one is often confronted with tasks like nearest neighbor search. Many methods

have been proposed to index the data for fast query response, such as K-D tree, R tree, R* tree, etc

[7]. However, these methods can only operate with small dimensionality, typically less than 100. The
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effectiveness and efficiency of these methods drop exponentially as the dimensionality increases, which is

commonly referred to as the “curse of dimensionality”.

During the last decade, with the advances in computer technologies and the advent of the World Wide

Web, there has been an explosion in the amount and complexity of digital data being generated, stored,

analyzed, and accessed. Much of this information is multimedia in nature, including text, image, and

video data. The multimedia data is typically of very high dimensionality, ranging from several thousands

to several hundreds of thousand. Learning in such a high dimensional in many cases is almost infeasible.

Thus, learnability necessitates dimensionality reduction. Once the high-dimensional data is mapped into

lower-dimensional space, conventional indexing schemes can then be applied.

One of the most popular dimensionality reduction algorithms might be Principal Component Analysis

(PCA) [12]. PCA performs dimensionality reduction by projecting the original n-dimensional data onto

the d(≪ n)-dimensional linear subspace spanned by the leading eigenvectors of the data’s covariance

matrix. Its goal is to find a set of mutually orthogonal basis functions that capture the directions of

maximum variance in the data so that the pairwise Euclidean distances can be best preserved. If the

data is embedded in a linear subspace, PCA is guaranteed to discover the dimensionality of the subspace

and produces a compact representation. PCA has been widely applied in data mining [16], information

retrieval [5], multimedia [14], etc.

In many real world databases, however, there is no evidence that the data is sampled from a linear

subspace. For example, it is always believed that the face images are sampled from a nonlinear low-

dimensional manifold which is embedded in the high-dimensional ambient space [9]. This motivates us

to consider manifold based techniques for dimensionality reduction. Recently, various manifold learning

techniques, such as ISOMAP [21], Locally Linear Embedding (LLE) [18] and Laplacian Eigenmap [2] have

been proposed which reduce the dimensionality of a fixed training set in a way that maximally preserve

certain inter-point relationships. LLE and Laplacian Eigenmap are local methods which attempt to

preserve local geometry of the data; essentially, they seek to map nearby points on the manifold to nearby

points in the low-dimensional representation. ISOMAP is a global method which attempts to preserve

geometry at all scales, mapping nearby points on the manifold to nearby points in low-dimensional space,

and faraway points to faraway points. One of the major limitations of these methods is that they do not

generally provide a functional mapping between the high and low dimensional spaces that are valid both

on and off the training data. Moreover, these methods are computationally expensive and may not be

able to handle large scale databases.

In this paper, we propose a novel dimensionality reduction algorithm called Isometric Projection

(IsoProjection), which explicitly takes into account the manifold structure. To model the manifold

structure, we first construct a nearest neighbor graph of the observed data. We then compute shortest

paths in the graph for all pairs of data points. The shortest-paths computation gives an estimate of

the global metric structure. Using techniques from Multi-Dimensional Scaling (MDS) and requiring the

mapping function to be linear, we finally obtain Isometric Projection. IsoProjection can operate in either

original data space or reproducing kernel Hilbert space (RKHS) which leads to Kernel IsoProjection.
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With a nonlinear kernel, kernel IsoProjection is capable of discovering nonlinear structure of the data

manifold. More crucially, kernel IsoProjection is defined everywhere.

The points below highlight several aspects of the paper:

• IsoProjection provides an optimal linear approximation to the true isometric embedding of the

underlying data manifold. It tends to give a more faithful representation of the data’s global

structure than PCA does.

• IsoProjection is linear. It is computationally tractable. It can be obtained by solving an eigenvector

problem.

• IsoProjection, as well as its nonlinear extension, is defined everywhere. Therefore, query points can

also be mapped into the low-dimensional representation space in which retrieval, clustering and

classification may be performed.

• IsoProjection is fundamentally based on ISOMAP [21], but ISOMAP does not have properties (2)

and (3) above.

The remainder of the paper is organized as follows. In Section 2, we provide some back materials

for manifold based dimensionality reduction. Section 3 introduces our proposed IsoProjection algorithm.

Section 4 describes its nonlinear extension, kernel IsoProjection. The extensive experimental results are

presented in Section 5. Finally, we provide some concluding remarks and suggestions for future work in

Section 6.

2 Background

In this section, we provide mathematical background of manifold based dimensionality reduction, as well

as its effect on some potential applications like retrieval, clustering and classification. For a detailed

treatment of manifolds, please see [10].

2.1 Manifold based Dimensionality Reduction

Data are generally represented as points in high-dimensional vector space. For example, a 32× 32 image

can be represented by a 1024-dimensional vector. Every element of the vector corresponds to a pixel.

A text document can be represented by a term vector. In many cases of interests, the data may not

fill the whole ambient space, but reside on or near a submanifold embedded in the ambient space. One

hopes then to estimate geometrical and topological properties of the submanifold from random samples

(“scattered data”) lying on this unknown submanifold. The formal definition of manifold is as follows.

Definition An p-dimensional manifold (denoted byMp) is a topological space that is locally Euclidean.

That is, around every point, there is a neighborhood that is topologically the same as the open unit ball

in R
p.
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Figure 1: Examples of one-dimensional manifold (a) and two-dimensional manifold (b). Both of them

are embedded in the three-dimensional ambient space.

Figure 1 gives examples of manifold with dimensionality 1 and 2. In order to compute distances on

the manifold, one needs to equip a metric to the topological manifold. A manifold possessing a metric is

called Riemannian Manifold, and the metric is commonly referred to as Riemannian Metric.

Definition Suppose for every point x in a manifoldM, an inner product 〈·, ·〉x is defined on a tangent

space TxM of M at x. Then the collection of all these inner products is called the Riemannian metric.

Once the Riemannian metric is defined, one is allowed to measure the lengths of the tangent vectors

v ∈ TxM:

‖v‖2 = 〈v,v〉

For every smooth curve r : [a, b]→M, we have tangent vectors:

r′(t) =
dr

dt
∈ Tr(t)M

and can therefore use the Riemannian metric (inner product of the tangent spaces) to define their lengths.

We can then define the length of r from a to b:

length(r) =

∫ b

a

‖
dr

dt
‖dt =

∫ b

a

‖r′(t)‖dt

Note that, a Riemannian metric is not a distance metric onM. However, for a connected manifold, it is

the case that every Riemannian metric induces a distance matric onM, i.e. Geodesic Distance.

Definition The geodesic distance dM(a, b) is defined as the length of the shortest curve connecting a

and b.

In the plane, the geodesics are straight lines. On the sphere, the geodesics are great circles (like the

equator). Suppose Mp is embedded in a n-dimensional Euclidean space R
n (p ≤ n). Let us consider

a low dimensional map, f : R
n → R

d(d ≤ n), and the f has a support on a submanifold Mp, i.e.
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supp(f) = Mp. Note that, p ≤ d ≤ n, and p is generally unknown. Let dRd denote the standard

Euclidean distance measure in R
d. In order to preserve the intrinsic (invariant) geometrical structure of

the data manifold, we seek a function f such that:

dMp(x,y) = dRd(f(x), f(y)) (1)

In this paper, we are particularly interested in linear mappings, i.e. projections. The reason is for

its simplicity. And more crucially, the same derivation can be performed in reproducing kernel Hilbert

space (RKHS) which naturally leads to its nonlinear extension.

2.2 Potential Applications

Dimensionality reduction is often considered as a data pre-processing. After that, retrieval, clustering

and classification can be performed in the lower dimensional subspace.

In information retrieval, the most commonly used strategy is query by example. Give a dataset

X = {x1, · · · ,xm}, the query-by-example process can be formally stated below:

1. The user submits a query q.

2. Compute the distance between xi and q according to some pre-defined distance measure d, i =

1, · · · , m. Sort d(q,xi) in increasing order. Let r(xi) be the rank of xi.

3. Return the top k matches, R(k,q,X ) = {xi|r(xi) ≤ k}.

As can be seen, a key step of the above process is the distance measure. In practice, one can only

consider simple distance measures for fast query response, such as Euclidean distance, although it may

not reflect the intrinsic geometrical structure. In this paper, however, by using Isometric Projection, the

Euclidean distances in the low dimensional subspace provide a faithful approximation to the geodesic

distances on the intrinsic data manifold.

Clustering is an unsupervised learning problem. It aims at grouping objects with some common

properties. For example, document clustering aims at grouping documents sharing the same topics. The

K-means algorithm is one of the most popular iterative descent clustering methods. Let C(i) be an

assignment of class label of xi, i = 1, · · · , m. K-means tries to minimize the following objective function:

min
K

∑

k=1

∑

C(i)=k

d(xi,mk)

where mk is the center of the k-th cluster. The performance of K-means is essentially determined by

the choice of the distance measure. Recently, there has been considerable interest in spectrally based

techniques to data clustering due to their good performance [15], [20]. Spectral clustering has very close

tie to spectral dimensionality reduction. In fact, spectral clustering can be though of as a combination of

spectral dimensionality reduction and traditional clustering algorithms such as K-means. The rationale
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behind spectral clustering reside in the fact that, after dimensionality reduction, Euclidean distances in

the subspace can better describe the intrinsic relationships between objects than those in the original

ambient space. Therefore, it is expected that good clustering performance can be achieved in the subspace

obtained by our Isometric Projection algorithm.

3 Isometric Projection

In this section, we introduce a novel dimensionality reduction algorithm, called Isometric Projection. We

begin with a formal definition of the problem of dimensionality reduction.

3.1 The Problem

The generic problem of dimensionality reduction is the following. Given a set of points x1, · · · ,xm in

R
n, find a mapping function that maps these m points to a set of points y1, · · · ,ym in R

d (d << n),

such that yi “represents” xi, where yi = f(xi). Our method is of particular applicability in the special

case where x1,x2, · · · ,xm ∈M andM is a nonlinear manifold embedded in R
n.

In this section, we consider that f is linear. In the next section, we will describe its nonlinear extension

using kernel techniques.

3.2 The Objective Function of Isometric Projection

We define X = (x1,x2, · · · ,xm) and f(x) = aTx. Sometimes the rank of X is less than the number of

dimensions (n). In this case, we can apply Singular Value Decomposition (SVD) to project them into a

lower dimensional subspace without losing any information. We have:

X = UΣV T

where Σ = diag(σ1, · · · , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 are the singular values of X, U = [u1, · · · ,ur]

and ui is called left singular vectors, V = [v1, · · · ,vr] and vi is called right singular vectors. We project

the data points xi (i = 1, · · · , m) into the SVD subspace by throwing away the components corresponding

to zero singular value. We denote by WSV D the transformation matrix of SVD, WSV D = U . By SVD

projection, The rank of the new data matrix is equal to the number of features (dimensions). Note that,

this step is used to guarantee that matrix XXT is non-singular. When the number of data points (m)

is large than the number of features (n), XXT is usually non-singular. In such case, this step is not

necessary. For the sake of simplicity, we still use X to denote the data in the SVD subspace in the

following.

Let dM be the geodesic distance measure on M and d the standard Euclidean distance measure in

R
d. Isometric Projection aims to find a Euclidean embedding such that Euclidean distances in R

d can
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provide a good approximation to the geodesic distances onM. That is,

fopt = arg min
f

∑

i,j

(

dM(xi,xj)− d
(

f(xi), f(xj)
)

)2
(2)

In real life data set, the underlying manifold M is often unknown and hence the geodesic distance

measure is also unknown. In order to discover the intrinsic geometrical structure ofM, we first construct

a graph G over all data points to model the local geometry. There are two choices1:

1. ǫ-graph: we put an edge between i and j if d(xi,xj) < ǫ.

2. kNN -graph: we put an edge between i and j if xi is among k nearest neighbors of xj or xj is

among k nearest neighbors of xi.

Once the graph is constructed, the geodesic distances dM(i, j) between all pairs of points on the manifold

M can be estimated by computing their shortest path distances dG(i, j) on the graph G. The procedure

is as follows: initialize dG(xi,xj) = d(xi,xj) if xi and xj are linked by an edge; dG(xi,xj) =∞ otherwise.

Then for each value of p = 1, 2, · · · , m in turn, replace all entries dG(xi,xj) by

min
{

dG(xi,xj), dG(xi,xp) + dG(xp,xj)
}

.

The matrix of final values DG = {dG(xi,xj)} will contain the shortest path distances between all pairs of

points in G. This procedure is named Floyd-Warshall algorithm [4]. More efficient algorithms exploiting

the sparse structure of the neighborhood graph can be found in [8].

In the following, we apply techniques from Multi-Dimensional Scaling (MDS) to convert distances to

inner products, which uniquely characterize the geometry of the data in a form that supports efficient

optimization [12]. We have the following theorem:

Theorem 1 Let D be the distance matrix such that Dij is the distance between xi and xj. Define matrix

Sij = D2
ij and H = I − 1

m
ee

T where I is the identity matrix and e is the vector of all ones. It can be

shown that τ(D) = −HSH/2 is the inner product matrix. That is, D2
ij = τ(D)ii + τ(D)jj − 2τ(D)ij,

∀ i, j.

Proof We have:

τ(D) = −
1

2
HSH = −

1

2
(I −

1

m
eeT )S(I −

1

m
eeT )

= −
1

2
(S −

1

m
eeT S −

1

m
SeeT +

1

m2
eeT SeeT )

and

τ(D)ij = −
1

2



Sij −
1

m

m
∑

i=1

Sij −
1

m

m
∑

j=1

Sij +
1

m2

m
∑

i=1

m
∑

j=1

Sij



 .

1Under supervised situation, more restrictions can be imposed that require the edge only be put between data points

which share the same label.
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Since

Sij = D2
ij = ‖xi − xj‖

2 = (xi − xj)
T (xi − xj)

= xT
i xi − 2xT

i xj + xT
j xj

m
∑

i=1

Sij =
m

∑

i=1

xT
i xi − 2xT

j

m
∑

i=1

xi + mxT
j xj

m
∑

j=1

Sij = mxT
i xi − 2xT

i

m
∑

j=1

xj +

m
∑

j=1

xT
j xj

m
∑

i=1

m
∑

j=1

Sij = m

m
∑

i=1

xT
i xi − 2

m
∑

j=1

xT
j

m
∑

i=1

xi + m

m
∑

j=1

xT
j xj

and note that
m

∑

i=1

xT
i xi =

m
∑

j=1

xT
j xj

and

x̄ =
1

m

m
∑

i=1

xi =
1

m

m
∑

j=1

xj ,

we have:

τ(D)ij = xT
i xj − xT

i x̄− xT
j x̄ + x̄T x̄ = (xi − x̄)T (xj − x̄)

Thus, we have:

D2
ij = τ(D)ii + τ(D)jj − 2τ(D)ij ,∀ i, j

The matrix H is often called “centering matrix”. Let DY denote the Euclidean distance matrix in the

reduced subspace, and τ(DY ) be the corresponding inner product matrix. Thus, the objective function

(2) becomes minimizing the following:

‖τ(DG)− τ(DY )‖L2 (3)

where ‖A‖L2 is the L2 matrix norm
√

∑

i,j A2
i,j .

3.3 Learning Isometric Projections

Consider a linear function f(x) = aTx. Let yi = f(xi) and Y = (y1, · · · , ym) = aT X. Thus, we have

τ(DY ) = Y T Y = XTaaT X

The optimal projection is given by solving the following minimization problem:

a∗ = min
a

‖τ(DG)−XTaaT X‖2 (4)
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Following some algebraic steps and noting tr(A) = tr(AT ), we see that:

‖τ(DG)−XTaaT X‖2

= tr

(

(

τ(DG)−XTaaT X
)(

τ(DG)−XTaaT X
)T

)

= tr
(

τ(DG)τ(DG)T −XTaaT Xτ(DG)T −

τ(DG)XTaaT X + XTaaT XXTaaT X
)

Note that, the magnitude of a is of no real significance because it merely scales yi. Therefore, we can

impose a constraint as follows:

aT XXTa = 1

Thus, we have

tr
(

XTaaT XXTaaT X
)

= tr
(

aT XXTaaT XXTa
)

= 1

And,

‖τ(DG)−XTaaT X‖2

= tr
(

τ(DG)τ(DG)T
)

− 2tr
(

aT Xτ(DG)XTa
)

+ 1

Now, the minimization problem (4) can be written as follows:

arg max
a

aT XXT a= 1

aT Xτ(DG)XTa (5)

We will now switch to a Lagrangian formulation of the problem. The Lagrangian is as follows

L = aT Xτ(DG)XTa− λaT XXTa

Requiring that the gradient of L vanish gives the following eigenvector problem:

X[τ(DG)]XTa = λXXTa (6)

It is easy to show that the matrices X[τ(DG)]XT and XXT are both symmetric and positive semi-

definite. The vectors ai(i = 1, 2, · · · , l) that minimize the objective function are given by the eigenvectors

corresponding to the maximum eigenvalues of the generalized eigen-problem. Let A = [a1, · · · ,al], the

linear embedding is as follows:

x→ y = W Tx

W = WSV DA

where y is a l-dimensional representation of the high dimensional data point x. W is the transformation

matrix.
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4 Kernel IsoProjection

In this Section, we describe a method to conduct IsoProjection in the reproducing kernel Hilbert space

into which the data points are mapped. This gives rise to Kernel IsoProjection.

Suppose X = {x1,x2, · · · ,xm} ∈ X is the training sample set. We consider the problem in a feature

space F induced by some nonlinear mapping

φ : X → F

For a proper chosen φ, an inner product 〈, 〉 can be defined on F which makes for a so-called reproducing

kernel Hilbert space (RKHS). More specifically,

〈φ(x), φ(y)〉 = K(x,y)

holds where K(., .) is a positive semi-definite kernel function. Several popular kernel functions are:

Gaussian kernel K(x,y) = exp(−‖x−y‖2/σ2); polynomial kernel K(x,y) = (1+ 〈x,y〉)d; Sigmoid kernel

K(x,y) = tanh(〈x,y〉+ α).

Given a set of vectors {vi ∈ F|i = 1, 2, · · · , d} which are orthonormal (〈vi,vj〉 = δi,j), the projection

of φ(xi) ∈ F to these v1, · · · ,vd leads to a mapping from X to Euclidean space R
d through

yi =
(

〈v1, φ(xi)〉, 〈v2, φ(xi)〉, · · · , 〈vd, φ(xi)〉
)T

We look for such {vi ∈ F|i = 1, 2, · · · , d} that helps {yi|i = 1, · · · , m} preserve geodesic distances on

the data manifold. A typical scenario is X = R
n,F = R

θ with d << n < θ.

Let φ(X) denote the data matrix in RKHS:

φ(X) = [φ(x1), φ(x2), · · · , φ(xm)]

Now, the eigenvector problem in RKHS can be written as follows:

(

φ(X)[τ(DG)]φT (X)
)

v = λ
(

φ(X)φT (X)
)

v (7)

Because the eigenvector of (7) are linear combinations of φ(x1), φ(x2), · · · , φ(xm), there exist coeffi-

cients αi, i = 1, 2, · · · , m such that

v =
m

∑

i=1

αiφ(xi) = φ(X)ααα

where ααα = (α1, α2, · · · , αm)T ∈ R
m.

Following some algebraic formulations, we get:

(

φ(X)[τ(DG)]φT (X)
)

v = λ
(

φ(X)φT (X)
)

v

⇒
(

φ(X)[τ(DG)]φT (X)
)

φ(X)ααα = λ
(

φ(X)φT (X)
)

φ(X)ααα

⇒ φT (X)
(

φ(X)[τ(DG)]φT (X)
)

φ(X)ααα

= λφT (X)
(

φ(X)φT (X)
)

φ(X)ααα

⇒ K[τ(DG)]Kααα = λKKααα (8)
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where K is the kernel matrix, Kij = K(xi,xj). Let the column vectors ααα1,ααα2, · · · ,αααm be the solutions

of equation (8). For a test point x, we compute projections onto the eigenvectors vk according to

(vk · φ(x)) =
m

∑

i=1

αk
i (φ(x) · φ(xi)) =

m
∑

i=1

αk
iK(x,xi)

where αk
i is the ith element of the vector αααk. For the original training points, the map can be obtained

by y = Kααα, where the ith element of y is the one-dimensional representation of xi.

In some situations, IsoProjection, kernel IsoProjection and Isomap [21] may give the same embedding

results. We have the following proposition.

Proposition 2 If X in equation (6) is a full rank square matrix, then IsoProjection and Isomap have

the same embedding results on training points; and if K in equation (8) is positive definite, then kernel

IsoProjection and Isomap have the same embedding results on training points.

Proof Recall that the eigen-problem of IsoProjection is as follows:

X[τ(DG)]XTw = λXXTw. (9)

For the original training points, the embedding results can be obtained by y = XTw, where the ith

element of y is the one-dimensional embedding of xi. Replace XTw by y, equation (9) can be rewritten

as follows:

X[τ(DG)]y = λXy (10)

Since X is a full rank square matrix, the inverse of X always exists. Thus, the above equation can be

changed to

X−1X[τ(DG)]y = λX−1Xy. (11)

Finally, we get

[τ(DG)]y = λy (12)

which is just the eigen-problem of Isomap.

In kernel IsoProjection, the map of the training points can be obtained by y = Kααα, where the ith

element of y is the one-dimensional embedding of xi. Replace Kααα by y, equation (8) can be rewritten

as:

K[τ(DG)]y = λKy. (13)

Similarly, if K is positive definite, the above equation can be reduced to

[τ(DG)]y = λy (14)

which again is the eigen-problem of Isomap.

This proposition illustrates three interesting points:
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1. When the number of features (m) is larger than the number of samples (n), X will be a full rank

square matrix after SVD transformation if all the data vectors are linearly independent. In this

case, IsoProjection provides the same embedding result on training points as Isomap. However,

IsoProjection has the projection functions which can be applied to testing data. In many real world

applications such as information retrieval, the dimensionality of the document space is typically

much larger than the number of documents. It falls into this case if these document vectors are

linearly independent.

2. Kernel IsoProjection with a positive definite kernel matrix yields the same results as Isomap on the

training points. Moreover, Kernel IsoProjection is defined everywhere while Isomap is only defined

on the training samples. In reality, when the number of samples is much larger than the number of

features (such as data in Figure 2), kernel IsoProjection might have more power than IsoProjection

to discover the nonlinear manifold structure.

3. Based on (1) and (2), a general guideline for choosing IsoProjection or kernel IsoProjection could

be: when the number of features (m) is larger than the number of samples (n), IsoProjection is

preferred; otherwise, kernel IsoProjection is preferred.

5 Experimental Results

5.1 A Toy Problem

We first take the synthetic “Swiss roll” data to examine our algorithm. The 1000 data points are sampled

from a 2-dimensional manifold which is embedded in 3-dimensional ambient space (Figure 2(a)). Since

the number of data points (m = 1000) is much larger than the number of features (n = 3), we use

kernel IsoProjection with Gaussian kernel. The kernel matrix is positive definite thus the embedding

result (Figure 2(c)) of training data (1000 points) is the same as that in Isomap [21]. However, kernel

IsoProjection provides a mapping function that we can use to project new testing data (Figure 2(d)(e)).

Kernel IsoProjection correctly recover the intrinsic dimensionality and geometric structure of the data.

The Euclidean distance in the embedding space (Figure 2(c)) can accurately approximate the geodesic

distance on the manifold. For comparison, we also demonstrate the embedding result of kernel PCA [19]

on the same data, as shown in Figure 2(f). Clearly, kernel PCA failed to illustrate the low-dimensional

manifold structure.

5.2 Experiments on Clustering

In this subsection, we investigate the use of dimensionality reduction algorithms for document clustering.

Latent Semantic Indexing (LSI) [5] is the most popular dimensionality reduction algorithm for document

analysis. LSI is essentially equivalent to PCA provided that the data points have a zero mean. In this

experiment, we compared our IsoProjection with LSI.
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5.2.1 Data Corpora

Reuters-21578 corpus2, which contains 21578 documents in 135 categories, was used in our experiments.

In our experiments, we discarded those documents with multiple category labels, and selected the largest

30 categories. It left us with 8,067 documents as described in Table 1. Each document is represented

as a term-frequency vector and each document vector is normalized to 1. We simply removed the stop

words, and no further preprocessing was done.

5.2.2 2-D Visualization of Document Set

As we described previously, LSI and IsoProjection are different dimensionality reduction algorithms. In

this subsection, we use them to project the documents into a 2-dimensional subspace for visualization.

We randomly selected four classes for this test. Figure 3 shows the 2D embedding results. As can be seen,

LSI fails to distinguish the different classes, and the four classes are mixed together. The four classes

can be easily separated in IsoProjection embedding. This illustrative example shows that IsoProjection

can have more discriminating power than LSI.

5.2.3 Evaluation Metric of Clustering

We chose K-means as our clustering algorithm and compared three methods. These three methods are

listed below:

• K-means on original term-document matrix (Baseline)

• K-means after LSI (LSI)

• K-means after IsoProjection (IsoP)

In IsoProjection, the parameter k (number of nearest neighbors) was set to 15.

We tested these algorithms on several cases. For each case, K(= 2 ∼ 10) classes were randomly selected

from the document corpus. The documents and the cluster number K are provided to the clustering

algorithms. The clustering result is evaluated by comparing the obtained label of each document with

that provided by the document corpus. Two metrics, the accuracy (AC) and the normalized mutual

information metric (MI) are used to measure the clustering performance [3]. Given a document xi, let

ri and si be the obtained cluster label and the label provided by the corpus, respectively. The AC is

defined as follows:

AC =

∑n
i=1 δ(si, map(ri))

n

where n is the total number of documents and δ(x, y) is the delta function that equals one if x = y and

equals zero otherwise, and map(ri) is the permutation mapping function that maps each cluster label ri

2Reuters-21578 corpus is at http://www.daviddlewis.com/resources/testcollections/reuters21578/

13



to the equivalent label from the data corpus. The best mapping can be found by using the Kuhn-Munkres

algorithm [11].

Let C denote the set of clusters obtained from the ground truth and C ′ obtained from our algorithm.

Their mutual information metric MI(C, C ′) is defined as follows:

MI(C, C ′) =
∑

ci∈C,c′j∈C′

p(ci, c
′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)

where p(ci) and p(c′j) are the probabilities that a document arbitrarily selected from the corpus belongs

to the clusters ci and c′j , respectively, and p(ci, c
′
j) is the joint probability that the arbitrarily selected

document belongs to the clusters ci as well as c′j at the same time. In our experiments, we use the

normalized mutual information MI as follows:

MI(C, C ′) =
MI(C, C ′)

max(H(C), H(C ′))

where H(C) and H(C ′) are the entropies of C and C ′, respectively. It is easy to check that MI(C, C ′)

ranges from 0 to 1. MI = 1 if the two sets of clusters are identical, and MI = 0 if the two sets are

independent.

5.2.4 Results

The evaluations were conducted with different numbers of clusters. For each given class number K, K

classes were randomly selected from the database. This process were repeated 50 times, and the average

performance was computed. For each single test (given K classes of documents), we applied the above

three methods. For each method, the K-means step was repeated 10 times with different initializations

and the best result in terms of the objective function of K-means was recorded. For IsoProjection and

LSI, they both need to estimate the dimensionality of the subspace. In general, their performance varies

with the dimensionality of the subspace. Figure 4 show the clustering performance of these algorithms

as a function of the dimensionality of the subspace. Table 2 shows the best performance obtained by

each algorithm. The paired T-test on the 50 random tests are reported in Table 3.

As can be seen, our clustering algorithm consistently outperformed LSI and baseline. LSI learned a

compact representation for documents, however, there is no significant performance improvement over

baseline. This shows that LSI fails to discover the intrinsic class structure of the document corpus.

5.3 Experiments on Classification

In this subsection, we investigate the performance of our proposed IsoProjection algorithm for classi-

fication task, particularly, face recognition. In classification, the label information of training data is

available which can be incorporate into the graph construction of our algorithm. The most well known

supervised dimensionality reduction method is Linear Discriminate Analysis (LDA)[6]. Both PCA [22]
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and LDA [1] are popular linear methods for subspace learning in face recognition. Thus, our algorithm

is compared with these two algorithms.

5.3.1 Dataset and Experimental Design

In this study, we use the Yale face database3. The Yale face database was constructed at the Yale Center

for Computational Vision and Control. It contains 165 gray scale images of 15 individuals. The images

demonstrate variations in lighting condition, facial expression (normal, happy, sad, sleepy, surprised, and

wink). Figure 6 shows the 11 images of one individual in Yale data base.

In the experiments, preprocessing to locate the faces was applied. Original images were manually

aligned (two eyes were aligned at the same position), cropped, and then re-sized to 32× 32 pixels, with

256 gray levels per pixel. Each image is represented by a 1, 024-dimensional vector in image space.

Different pattern classifiers have been applied for face recognition, such as nearest-neighbor [1], Bayesian

[13], Support Vector Machine [17]. In this paper, we apply the nearest-neighbor classifier for its simplicity.

The Euclidean metric is used as our distance measure.

In short, the recognition process has three steps. First, we calculate the face subspace from the

training samples; then the new face image to be identified is projected into d-dimensional subspace by

using our algorithm; finally, the new face image is identified by a nearest neighbor classifier.

5.3.2 Results

A random subset with l(= 2, 3, 4, 5, 6, 7, 8) images per individual was taken with labels to form the

training set, and the rest of the database was considered to be the testing set. For each given l, we

average the results over 50 random splits. Note that, for LDA, there are at most c−1 nonzero generalized

eigenvalues and, so, an upper bound on the dimension of the reduced space is c−1, where c is the number

of individuals [1]. The graph in IsoProjection is built based on the label information.

In general, the performance of all these methods varies with the number of dimensions. We show

the best results and the optimal dimensionality obtained by PCA, LDA, IsoProjection and baseline

methods in Table 4. The paired T-test on the 50 random splits are reported in Table 5. For the baseline

method, the recognition is simply performed in the original 1024-dimensional image space without any

dimensionality reduction.

As can be seen, our algorithm performed the best in all the cases. There is no improvement over

baseline for PCA method. The performance of LDA is very sensitive to the training size. When the

training size is small, LDA can be even worse than PCA. As the training sample increases, LDA achieves

similar performance to IsoProjection.

3http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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6 Concluding Remarks and Future Work

In this paper, we propose a new linear dimensionality reduction algorithm called Isometric Projection.

It can be performed in either original space or reproducing kernel Hilbert space, which leads to Kernel

Isometric Projection. Both IsoProjection and kernel IsoProjection are based on the same variational

principle that gives rise to the Isomap [21]. As a result they are capable of discovering the nonlinear

degree of freedom that underlie complex natural observations. Our approaches has a major advantage

over recent nonparametric techniques for global nonlinear dimensionality reduction such as [18][21][2]

that the functional mapping between the high and low dimensional spaces are valid both on and off the

training data. Performance improvement of this method over Principal Component Analysis and Linear

Discriminant Analysis is demonstrated through several experiments.

There are several interesting problems that we are going to explore in the future work:

1. In this paper, the geodesic distance of two points is approximated by the length of the shortest

path on the nearest neighbor graph. It is unclear if there are more efficient and better ways to do

it.

2. In most of previous algorithms on manifold learning, either an eigen-problem or a generalized eigen-

problem need to be solved. Thus, all these algorithms will be failed to handle extremely large data

set. The tradeoff between effectiveness and efficiency might be needed in such case. It is interesting

to develop a flexible algorithm which can make the tradeoff under different situations.
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The IsoProjection Algorithm

Input: Data matrix X = [x1, · · · ,xm], xi ∈

R
n

ǫ for ǫ-graph or k for kNN -graph

Output: Transformation matrix

W = [w1, · · · ,wl], wj ∈ R
n

Step 1: SVD projection:

X = UΣV , Σ = diag(σ1, · · · , σr)

σ1 ≥ · · · ≥ σr > 0 and r ≤

m

X ← UT X

Step 2: Construct neighborhood graph:

Define graph G over all data points

by connecting points i ad j if ‖xi −

xj‖ < ǫ, or if i and j are among the

k nearest neighbors of each other. Set

edge lengths equal to ‖xi − xj‖.

Step 3: Compute shortest paths:

Calculate the shortest path distances

dG(i, j) between all pairs of points in

G, let DG = {dG(i, j)}.

Step 4: Isometric projection :

Define S, {Sij = DG
2
ij}; H = I −

1
m

eeT .

Define τ(DG) = −1
2HSH.

Solve the generalized eigen-problem:

X[τ(DG)]XTa = λXXTa

Suppose a1, · · · ,al are the eigenvec-

tors corresponding to the largest l

eigenvalues. Let A = [a1, · · · ,al].

W = UA.
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Figure 2: The “Swiss roll” data set, illustrating how Kernel IsoProjection exploits geodesic distance for

nonlinear dimensionality reduction as well as provides a projection function which is defined everywhere.

(a) For two arbitrary points (circled) on a nonlinear manifold, their Euclidean distance in the high-

dimensional input space (length of dashed line) may not accurately reflect their intrinsic similarity, as

measured by geodesic distance along the low-dimensional manifold (length of solid blue curve). (b) The

neighborhood graph G constructed in IsoProjection (with k=7) allows an approximation (black segments)

to the true geodesic path to be efficiently computed as the shortest path in G. (c) The two-dimensional

embedding of Kernel IsoProjection best preserves the shortest path distances in the neighborhood graph.

The straight dashed line (red) in the lower dimensional Euclidean space is a good approximation to the

geodesic on the data manifold (d) Three new points (test points) are injected into the system. Similarly,

their Euclidean distances in the high-dimensional input space (length of dashed lines) can not accurately

reflect their intrinsic similarity. (e) Using the mapping function learned by Kernel IsoProjection, we

map these three test points into the two-dimensional space where the Euclidean distances can accurately

reflect their intrinsic relationship. (f) The embedding results of Kernel PCA on the same data set.

Clearly, Kernel PCA failed to capture the low-dimensional manifold structure.
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Table 1: 30 semantic categories from Reuters-21578 used in our experiments

category num of doc category num of doc

earn 3713 grain 45

acq 2055 copper 44

crude 321 jobs 42

trade 298 reserves 38

money-fx 245 rubber 38

interest 197 iron-steel 37

ship 142 ipi 36

sugar 114 nat-gas 33

coffee 110 veg-oil 30

gold 90 tin 27

money-supply 87 cotton 24

gnp 63 bop 23

cpi 60 wpi 20

cocoa 53 pet-chem 19

alum 45 livestock 18

 

(a) LSI

 

(b) IsoProjection

Figure 3: 2D visualization of a document set
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Figure 4: The average accuracy over different number of classes. The clustering performance was eval-

uated at different dimensionality. As can be seen, the clustering performance of both IsoProjection

and LSI are not sensitive to the reduced dimensionality. Clustering performances after IsoProjection in

all cases are consistently better than baseline, while clustering after LSI does not show any significant

improvement over baseline.
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Figure 5: The average accuracy on 10 classes

21



Table 2: Clustering Results on Reuters-21578

Accuracy (%) Mutual Information (%)

k Baseline LSI IsoP Baseline LSI IsoP

2 87.13 87.50 93.91 59.98 60.75 73.64

3 77.53 77.83 81.50 56.68 56.98 61.60

4 73.23 74.01 76.89 59.80 60.35 62.38

5 67.11 67.34 69.55 56.31 56.22 58.18

6 65.48 65.95 68.54 57.90 58.09 59.63

7 62.31 62.53 66.28 57.27 57.40 60.20

8 58.19 58.75 61.55 55.61 55.89 57.41

9 55.26 55.62 59.02 54.88 55.20 56.87

10 54.50 55.15 57.39 55.16 55.45 56.81

Ave. 66.75 67.18 70.51 57.07 57.37 60.75

Table 3: T-test on clustering

LSI vs. Baseline IsoP vs. LSI

k Accuracy Mutual Info. Accuracy Mutual Info.

2 ∼ ∼ ≫ ≫

3 ∼ ∼ ≫ ≫

4 ∼ ∼ ≫ ≫

5 ∼ ∼ ≫ ≫

6 ∼ ∼ ≫ ≫

7 ∼ ∼ ≫ ≫

8 ∼ ∼ ≫ ≫

9 ∼ ∼ ≫ ≫

10 ∼ ∼ ≫ ≫

“≫” or “≪” means P-value ≤ 0.01

“>” or “<” means 0.01 < P-value ≤ 0.05

“∼” means P-value > 0.05

Figure 6: Sample face images from the Yale database. For each subject, there are 11 face images under

different lighting conditions with facial expression.
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Table 4: Recognition accuracy on the Yale database

Train Num Baseline PCA LDA IsoProjection

2 0.46 0.46 (29) 0.44 (9) 0.56 (14)

3 0.52 0.52 (44) 0.61 (14) 0.67 (14)

4 0.55 0.55 (59) 0.69 (14) 0.73 (14)

5 0.58 0.58 (74) 0.74 (14) 0.77 (14)

6 0.61 0.61 (89) 0.77 (14) 0.79 (14)

7 0.62 0.62 (36) 0.80 (14) 0.81 (14)

8 0.65 0.65 (116) 0.81 (14) 0.82 (14)

Table 5: T-test on classification
Train Num LDA vs. Baseline IsoProjection vs. LDA

2 ≪ ≫

3 ≫ ≫

4 ≫ ≫

5 ≫ ≫

6 ≫ ≫

7 ≫ ∼

8 ≫ ∼
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