
Report No. UIUCDCS-R-2006-2715 UILU-ENG-2006-1747

Tensor Space Model for Document Analysis

by

Deng Cai, Xiaofei He, and Jiawei Han

April 2006

Tensor Space Model for Document Analysis∗

Deng Cai† Xiaofei He‡ Jiawei Han†

† Department of Computer Science, University of Illinois at Urbana-Champaign

‡ Yahoo! Research Labs

Abstract

Vector Space Model (VSM) has been at the core of information retrieval for the past decades.

VSM considers the documents as vectors in high dimensional space. In such a vector space, tech-

niques like Latent Semantic Indexing (LSI), Support Vector Machines (SVM), Naive Bayes, etc.,

can be then applied for indexing and classification. However, in some cases, the dimensionality

of the document space might be extremely large, which makes these techniques infeasible due

to the curse of dimensionality. In this paper, we propose a novel Tensor Space Model for

document analysis. We represent documents as the second order tensors, or matrices. Corre-

spondingly, a novel indexing algorithm called Tensor Latent Semantic Indexing (TensorLSI)

is developed in the tensor space. Our theoretical analysis shows that TensorLSI is much more

computationally efficient than the conventional Latent Semantic Indexing, which makes it ap-

plicable for extremely large scale data set. Several experimental results on standard document

data sets demonstrate the efficiency and effectiveness of our algorithm.

1 Introduction

Document indexing and representation has been a fundamental problem in information retrieval

for many years. Most of previous works are based on the Vector Space Model (VSM, [9]). The

documents are represented as vectors, and each word corresponds to a dimension. Learning tech-

niques such as Latent Semantic Indexing (LSI, [2]), Support Vector Machines (SVM, [10]), Naive

Bayes, etc., can be then applied in such a vector space. The main reason of the popularity of VSM

is probably due to the fact that most of the existing learning algorithms can only take vectors as

their inputs, rather than tensors.

When VSM is applied, one if often confronted with a document space R
n with a extremely

large n. Let x ∈ R
n denotes the document vector. Let us consider n = 1, 000, 000 and learning

∗ The work was supported in part by the U.S. National Science Foundation NSF IIS-03-08215/IIS-05-13678. Any

opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not

necessarily reflect the views of the funding agencies.

1

a linear function g(x) = wTx. In most cases, learning g in such a space is infeasible in the sense

of computability. For example, when LSI is applied in such a space, one needs to compute eigen-

decomposition of a 1M × 1M matrix 1.

Different from traditional Vector Space Model based document indexing and representation, in

this paper, we consider documents as matrices, or the second order tensors. For a document set with

n words, we represent the documents as the second order tensors (or, matrices) in R
n1 ⊗R

n2 , where

n1 × n2 ≈ n. For examples, a 1, 000, 000-dimensional vector can be converted into a 1000 × 1000

matrix. Let X ∈ R
n1 ⊗R

n2 denotes the document matrix. Naturally, a linear function in the tensor

space can be represented as f(X) = uT Xv, where u ∈ R
n1 and v ∈ R

n2 . Clearly, f(X) has only

n1 + n2(=2000 in our case) parameters which is much less than n(= 1, 000, 000) of g(x).

Based on the tensor representation of documents, we propose a novel indexing algorithm called

Tensor Latent Semantic Indexing (TensorLSI) operated in the tensor space rather than vector

space. Sharing similar properties as the conventional Latent Semantic Indexing (LSI) [2], TensorLSI

tries to find the principal components of the tensor space. Let {ui}n1
i=1 be a set of basis functions

of R
n1 and {vj}n2

j=1 be a set of basis functions of R
n2 . It is easy to show that {uiv

T
j } forms a basis

of R
n1 ⊗ R

n2 . Thus, TensorLSI aims at finding bases {ui} and {vj} such that the projections of

the documents onto {uiv
T
j } can best represent the documents in the sense of reconstruction error.

It would be important to note that, while searching for the optimal bases {ui} and {vj}, we

need only to compute the eigen-decompositions of two n1×n1 and n2×n2 matrices. This property

makes our algorithm particularly applicable for the case when the number of words is extremely

large.

The rest of the paper is organized as follows: Section 2 provides a brief description of the

algebra of tensors and Latent Semantic Indexing. The TensorLSI approach for document indexing

and representation is described in Section 3. Section 4 provides some theoretical analysis on the

computational complexity of TensorLSI as well as the memory requirement and storage. The

experimental results on Reuters-21578 dataset are presented in Section 5. Finally, we provide some

concluding remarks and suggestions for future work in Section 6.

2 Preliminaries

The algorithm and analysis presented in this paper is fundamentally based on the algebra of tensors

and Latent Semantic Indexing. In this section, we provide a brief overview of them. For a detailed

treatment of tensor algebra please see [7].

1Note, we assume that the number of documents (m) is larger than n. When m < n, it suffices to compute the

eigen-decomposition of a m×m matrix.

2

2.1 The Algebra of Tensors

A tensor with order k is a real-valued multilinear function on k vector spaces:

T : R
n1 × · · · × R

nk → R

The number k is called the order of T . A multilinear function is linear as a function of each variable

separately. The set of all k-tensors on R
ni , i = 1, · · · , k, denoted by T k, is a vector space under the

usual operations of pointwise addition and scalar multiplication:

(aT)(a1, · · · ,ak) = a (T (a1, · · · ,ak)) ,

(T + T ′)(a1, · · · ,ak) = T (a1, · · · ,ak) + T ′(a1, · · · ,ak)

where ai ∈ R
ni . Given two tensors S ∈ T k and T ∈ T l, define a map:

S ⊗ T : R
n1 × · · · × R

nk+l → R

by

S ⊗ T (a1, · · · ,ak+l) = S(a1, · · · ,ak)T (ak+1, · · · ,ak+l)

It is immediate from the multilinearity of S and T that S ⊗ T depends linearly on each argument

ai separately, so it is a (k + l)-tensor, called the tensor product of S and T .

For the first order tensors, they are simply the covectors on R
n1 . That is, T 1 = Rn1 , where

Rn1 is the dual space of R
n1 . The second order tensor space is a product of two first order tensor

spaces, i.e. T 2 = Rn1 ⊗Rn2 . We have the following proposition:

Proposition 1 Let u1, · · · ,un1 be the standard basis of Rn1, and v1, · · · ,vn2 be the basis of Rn2.

{uiv
T
j }(i = 1, · · · , n1, j = 1, · · · , n2) forms a basis of Rn1 ⊗Rn2.

Proof Let < · > denote the standard inner product operator for matrices and tr the trace operator.

It suffices to show the following:

< uiv
T
j ,ukv

T
l >= 0, (i, j) 6= (k, l)

By simple algebra formulation, we have:

< uiv
T
j ,ukv

T
l >

= tr
(
(uiv

T
j)(ukv

T
l)T

)

= tr
(
uiv

T
j vlu

T
k

)

=
(
vT

j vl

)
tr
(
uiu

T
k

)

=
(
vT

j vl

) (
uT

i uk

)

Since (i, j) 6= (k, l), we have i 6= k or j 6= l, either of which makes < uiv
T
j ,ukv

T
l >= 0.

3

The above proposition shows that in order to find a basis of Rn1 ⊗Rn2 , one needs only to find a

basis of Rn1 and Rn2 .

Let e1, · · · , en1 be the corresponding dual basis of R
n1 , and ẽ1, · · · , ẽn2 be the corresponding

dual basis of R
n2 . We have,

ui(ej) = δij and vi(ẽj) = δij

where δij is the kronecker delta function. For any 2-tensor T , we can write it as:

T =
∑

1≤i≤n1
1≤j≤n2

Tijui ⊗ vj

This shows that every 2-tensor in Rn1 ⊗Rn2 uniquely corresponds to a n1 × n2 matrix.

Note that, in this paper our primary interest is focused on the second order tensors. However,

the algebra presented here and the algorithm presented in the next section can also be applied to

higher order tensors.

2.2 A Brief Review of Latent Semantic Indexing

Our proposed TensorLSI algorithm is fundamentally based on LSI. In this subsection, we give a

brief review of LSI.

LSI is originally motivated to deal with the problem of synonymy and polysemy. The mathe-

matics behind LSI is the Singular Value Decomposition (SVD). For a rank r term-document matrix

X = [x1,x2, · · · ,xm], LSI decompose the X using SVD as follow:

X = UΣV T

Where Σ = diag(σ1, · · · , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr are the singular values of X, U = [a1, · · · ,ar]

and ai is called left singular vectors, V = [v1, · · · ,vr] and vi is called right singular vectors. LSI

use the first k vectors in U as the transformation matrix to embed the original document into a k

dimensional subspace. It can be easily checked that the column vectors of U are the eigenvectors

of XXT . Thus, LSI tries to solve the maximum eigenvalue problem:

XXTa = λa (1)

LSI can also be interpreted in terms of reconstruction error minimization. Let a be the transfor-

mation vector and yi = aTxi. The objective function of LSI can be stated below:

aopt = arg min
a

‖X − aaTX‖2

= arg max
a

aTXXTa

with the constraint

aTa = 1

It is easy to see that the solutions are the eigenvectors of the matrix XXT . More details on

theoretical interpretations of LSI using SVD can refer to [3].

4

3 TensorLSI for Document Indexing and Representation

In this section, we introduce a novel method for document indexing and representation, called

TensorLSI.

3.1 Tensor Representation of Documents

In tensor space model, a document is represented as a tensor. Each element in the tensor corre-

sponds to a feature (word in our case). For a document x ∈ R
n, we can convert it to the second

order tensor (or matrix) X ∈ R
n1×n2 , where n1 ×n2 ≈ n. Figure 1 shows an example of converting

a vector to a tensor. There are two issues about converting a vector to a tensor.

The first one is how to choose the size of the tensor, i.e., how to select n1 and n2. In figure 1, we

present two possible tensors for a 9-dimensional vector. Suppose n1 ≥ n2, in order to have at least

n entries in the tensor while minimizing the size of the tensor, we have (n1−1)×n2 < n ≤ n1×n2.

With such requirement, there are still many choices of n1 and n2, especially when n is large.

Generally all these (n1, n2) combinations can be used. However, it is worth noticing that the

number of parameters of a linear function in the tensor space is n1 +n2. Therefore, one may try to

minimize n1 + n2. In other words, n1 and n2 should be as close as possible. Moreover, the values

of n1 and n2 determine the complexity of the learning algorithm which we will discuss later.

The second issue is how to sort the features in the tensor. In vector space model, we implicitly

assume that the features are independent. A linear function in vector space can be written as

g(x) = wTx. Clearly, the change of the order of the features has no impact on the function

learning. In tensor space model, a linear function can be written as f(X) = uT Xv. Thus, the

independency assumption of the features no longer holds for the learning algorithms in the tensor

space model. Different feature sorting will lead to different learning result in the tensor space

model.

In this paper, we empirically sort the features (words) according to their document frequency

and then convert the vector into a n1 ×n2 tensor such that n2 = 20. The better ways of converting

a document vector to a document tensor with theoretical guarantee will be left for our future work.

3.2 TensorLSI

TensorLSI is fundamentally based on LSI. It tries to project the data to the tensor subspace in which

the reconstruction error is minimized. Given a set of document matrices Xi ∈ R
n1×n2 , i = 1, · · · , m.

Let Yi = UT XiV denote its projection in the tensor subspace U ⊗ V. The reconstruction error for

Xi can be written as ‖Xi − UYiV
T ‖. Thus, the objective function of TensorLSI can be described

as follows:

min
U,V

m∑

i=1

‖Xi − UYiV
T ‖2 (2)

5

1

2

3

4

5

6

7

8

9

1 4 7

2 5 8

3 6 9

Vector to Tensor

Conversion

1 6

2 7

3 8

4 9

5 x

(a)

(b)

Figure 1: Vector to tensor conversion. 1∼9 denote the positions in the vector and tensor formats.

(a) and (b) are two possible tensors. The ‘x’ in tensor (b) is a padding constant.

which is equivalent to the following:

min
U,V

m∑

i=1

‖Xi − UUT XiV V T ‖2 (3)

6

Let tr(A) denote the trace of matrix A, we have ‖A‖2 = tr(AAT) and tr(AB) = tr(BA). Thus,

m∑

i=1

‖Xi − UUT XiV V T ‖2

=
m∑

i=1

tr
(
(Xi − UUT XiV V T)(Xi − UUT XiV V T)T

)

=
m∑

i=1

tr
(
XiX

T
i − UUT XiV V T XT

i −

Xi(UUT XiV V T)T + (UUT XiV V T)(UUT XiV V T)T
)

=
m∑

i=1

{
tr
(
XiX

T
i

)
− tr

(
UUT XiV V T XT

i

)
−

tr
(
XiV V T XT

i UUT
)

+ tr
(
UUT XiV V T V V T XT

i UUT
)}

=
m∑

i=1

{
tr
(
XiX

T
i

)
− 2tr

(
UUT XiV V T XT

i

)
+

tr
(
UUT XiV V T XT

i UUT
)}

=
m∑

i=1

{
tr
(
XiX

T
i

)
− 2tr

(
UT XiV V T XT

i U
)

+

tr
(
UT XiV V T XT

i UUT U
)}

=
m∑

i=1

tr
(
XiX

T
i

)
−

m∑

i=1

tr
(
UT XiV V T XT

i U
)

=
m∑

i=1

tr
(
XiX

T
i

)
−

m∑

i=1

tr
(
V T XT

i UUT XiV
)

Thus, minimizing the objective function (3) is equivalent to maximizing the following objective

functions:

max
U

tr
(
UT MV U

)
, MV =

m∑

i=1

XiV V T XT
i (4)

max
V

tr
(
V T MUV

)
, MU =

m∑

i=1

XT
i UUT Xi (5)

Adding the constraint that the column vectors of U and V have unit norm, the optimal solutions

of U and V are given by solving the following two eigenvector problems:

MV u = λuu

MUv = λvv

As can be seen, the above two equations are dependent on each other, thus can not be solved

independently. By noticing that the matrix MV is symmetric, it is easy to show that the solutions

7

{ui}(i = 1, · · · , n1) are orthonormal. That is, U is a orthogonal matrix, UUT = UT U = I.

Likewise, V is also a orthogonal matrix, V V T = V T V = I. Thus, we have

MV =
m∑

i=1

XiX
T
i (6)

and

MU =
m∑

i=1

XT
i Xi (7)

Therefore, the optimal U and V are given by solving the following two eigenvector problems:
(

m∑

i=1

XiX
T
i

)
u = λuu (8)

(
m∑

i=1

XT
i Xi

)
v = λvv (9)

As we discussed in the previous subsection, there are different kinds of tensors. Actually, a

vector x ∈ R
n itself can be regarded as a 2-tensor ∈ Rn ⊗R1. In such situation, the eigen-problem

(9) becomes trivial and the eigen-problem (8) reduces to the eigen-problem (1). Thus, TensorLSI

reduces to the traditional LSI.

After obtaining the basis vectors {ui} (i = 1, · · · , n1) and {vj} (i = 1, · · · , n2), each uiv
T
j

is a basis of the transformed tensor space, and uT
i Xtvj (t = 1, · · · , m) is the coordinate of Xt

corresponding to uiv
T
j in this tensor space. When we want to keep the first k principle component

of document in the transformed tensor space, we need to evaluate the importance of uiv
T
j with

respect to i and j.

The way choosing basis functions for the tensor subspace (TensorLSI) is slightly different from

that for the vector subspace (LSI). In LSI, we only have one set of transformation vectors {ai}
associated with a set of eigenvalues {λi}. The value of λi reflects the importance of ai in terms

of reconstruction error in vector space. In TensorLSI, we have two sets of transformation vectors

{ui} and {vj}. To evaluate the importance of uiv
T
j , we still use the objective function (4) while

replacing the U and V by ui and vj . Thus, we get

f(ui,vj) =

m∑

t=1

tr(uT
i Xtvjv

T
i XT

t uj) =

m∑

t=1

(uT
i Xtvj)

2 (10)

f(ui,vj) reflects the importance of the tensor basis uiv
T
j in terms of reconstruction error. When

we want to keep the first k principle component in the transformed tensor space, we sort f(ui,vj)

for all the i and j in decreasing order and choose the first k pairs.

4 Complexity Analysis

In this section, we provide complexity analysis in time, memory and storage for TensorLSI.

8

4.1 Time Complexity Analysis

The major computations in TensorLSI are listed below:

• The calculation of MV in Equation (6) costs O(m × n2
1 × n2); and the calculation of MU in

Equation (7) costs O(m × n2
2 × n1).

• The eigen-decomposition of MV ∈ R
n1×n1 takes O(n3

1) [4]; and the eigen-decomposition of

MU ∈ R
n2×n2 takes O(n3

2).

• Computing f(ui,vj) for all i = 1, · · · , n1 and all j = 1, · · · , n2 in Equation (10) costs O(n1 ×
n2 × m × (n1 + n2 + 1)).

• Sorting n1 × n2 values of f(ui,vj) needs O
(
(n1 × n2) log(n1 × n2)

)
.

Notice that n1 × n2 ≈ n, the total complexity of TensorLSI can be simplified as

O(mnn1 + mnn2 + n3
1 + n3

2 + mn(n1 + n2 + 1) + n log n)

= O(n3
1 + n3

2 + mn(2n1 + 2n2 + 1) + n log n)

For square tensors, we have n1 ≈ n2 ≈ √
n, thus the total complexity of TensorLSI can be simplified

as O(mn1.5).

The time complexity of traditional LSI is O
(
(m + n)q2

)
, where q = min(m, n) [6].

For a large scale data set, the document number m can be bigger than n. Thus the time

complexity of LSI becomes O(mn2 + n3). Under this situation, TensorLSI achieves a significant

improvement over LSI in time complexity.

For rectangular tensors, that is, we no longer have n1 ≈ n2 ≈ √
n, the time complexity of

TensorLSI will be larger that that of square tensor. However, in most cases, it is still faster than

LSI. Our experiments will show this.

4.2 Memory Requirement

The memory requirement of the TensorLSI algorithm can be analyzed through Equation (6, 7, 8,

9 and 10). The eigen-decomposition steps of Equation (8) and (9) only involve a single matrix

with dimension n1 × n1 or n2 × n2. The most space consuming steps are in Equation (6, 7 and

10), where all the Xi are involved. However, all these equations can be computed incrementally by

reading Xi sequentially. Thus the required memory for TensorLSI can be as low as O(max(n1, n2)×
max(n1, n2)). For square tensors, it is O(n).

Comparing to traditional LSI, in which the eigen-decompo-sition step requires at least O(q ×
q), q = min(m, n) memory, TensorLSI achieves a major advantage by computing the optimal solu-

tions without requiring all data points in the memory.

9

Table 1: Complexity Comparison of TensorLSI and LSI

Time complexity Minimum memory Storage size

TLSI O(mn1.5) O(n) O(2n)

LSI O((m + n)q2) O(q2) O(kn)

n is the number of features and m is the number of documents

q = min(m,n)

k is usually around several hundreds

4.3 Storage Size

The transformation vectors, a1, · · · ,ak in LSI and U, V in TensorLSI, should be stored for future

use. When a query or a new document comes, we should apply these transformation vectors on

them to do search or classification.

In TensorLSI, the storage size for U and V is O(n2
1 +n2

2), particularly, O(2n) for square tensors.

In LSI, the storage size for transformation vectors will be O(kn), where k is the number of reduced

dimension. In reality, k is around several hundreds. Thus, TensorLSI achieves significant storage

advantage over LSI.

5 EXPERIMENTS

In this section, several experiments were performed on Reuters-21578 to show the effectiveness of

our proposed algorithm. We compared our proposed algorithm TensorLSI with traditional LSI

both on accuracy and efficiency.

Both LSI and TensorLSI algorithms are implemented in Matlab 7.04. The eigen-problems in

LSI and TensorLSI are solved by using eig function in Matlab 7.04.

5.1 Data Corpora

Reuters-21578 corpus2 contains 21578 documents in 135 categories. The ModApte version of

Reuters-21578 is used in our experiments. Those documents with multiple category labels are

discarded, and the categories with more than 10 documents are kept. It left us with 8213 doc-

uments in 41 categories as described in Table 2. For ModeApte split, there are 5899 training

documents and 2314 testing documents. Note that, the training testing split is only used in the

last classification experiment.

Each document is represented as a term-frequency vector and each document vector is normalized

to 1. We simply removed the stop words, and no further preprocessing was done.

2Reuters-21578 corpus is at http://www.daviddlewis.com/resources/testcollections/reuters21578/

10

Table 2: 41 semantic categories from Reuters-21578 used in our experiments

ModeApte ModeApte

category Train Test category Train Test

earn 2673 1040 ipi 27 9

acq 1435 620 nat-gas 22 11

crude 223 98 veg-oil 19 11

trade 225 73 tin 17 10

money-fx 176 69 cotton 15 9

interest 140 57 bop 15 8

ship 107 35 wpi 12 8

sugar 90 24 pet-chem 13 6

coffee 89 21 livestock 13 5

gold 70 20 gas 10 8

money-supply 70 17 orange 12 6

gnp 49 14 retail 15 1

cpi 45 15 strategic-metal 9 6

cocoa 41 12 housing 13 1

alum 29 16 zinc 8 4

grain 38 7 lumber 7 4

copper 31 13 fuel 4 7

jobs 32 10 carcass 6 5

reserves 30 8 heat 6 4

rubber 29 9 lei 8 2

iron-steel 26 11

5.2 Similarity Evaluation

5.2.1 Data Preparation

From the <title> field of 300 TREC ad hoc topics (topic 251∼550), we chose 30 keywords that

appear in our data collection with highest frequencies, say, qi (i = 1, 2, · · · , 30). For each keyword

qi, let Di denote the set of the documents containing qi. Let D = D1 ∪ · · · ∪ D30. Finally, we get

30 document subsets and each subset contains multiple topics. Note that, these subsets are not

necessarily disjoint. The numbers of documents of these 30 document subsets ranged from 99 to

823 with an average of 316, and the number of topics ranged from 6 to 39 with an average of 24

(Table 3). The reason for generating such 30 document subsets is to split the data collection into

small subsets so that we can compare our algorithm TensorLSI to LSI on each subset. In fact,

the keywords can be thought of as queries in information retrieval. Thus, the comparison can be

thought of as being performed on different queries [1][5].

11

5.2.2 Similarity Measure

The accuracy of similarity measure plays a crucial role in most of the information processing

tasks, such as document clustering, classification, retrieval, etc. In this subsection, we evaluate the

accuracy of similarity measure using TensorLSI and LSI. The similarity measure we used is the

cosine similarity. In this experiment, we do not distinguish the training and testing data.

For the original document set D, we compute its lower dimensional representations DTLSI and

DLSI by using TensorLSI and LSI respectively. Similarly, DTLSI consists of 30 subsets, DTLSI,1,

· · · , DTLSI,30. DLSI also consists of 30 subsets, DLSI,1, · · · , DLSI,30.

For each document subset Di (or, DTLSI,i, DLSI,i), we evaluate the similarity measure between

the documents in Di. Intuitively, we expect that similarity should be higher for any document pair

related to the same topic (intra-topic pair) than for any pair related to different topics (cross-topic

pair). Therefore, we adopted the average precision used in TREC, regarding an intra-topic pair as

a relevant document and the similarity value as the ranking score. Specifically, we denote by pi

the document pair which has the i-th highest similarity value among all pairs of documents in the

document set Di. For each intra-topic pair pk, its precision is evaluated as follows:

precision(pk) =
of intra-topic pairs pj where j ≤ k

k

The average of the precision values over all intra-topic pairs in Di was computed as the average

precision of Di. Note that, the definition of precision we used here is the same as that used in [1][5].

5.2.3 Results

The experimental results on similarity are reported in this subsection. We compared TensorLSI

(corresponding to document set DTLSI) to LSI (corresponding to document set DLSI) and the

original document representation (corresponding to document set D as baseline algorithm).

In general, the performance of TesnorLSI and LSI varies with the number of dimensions. We

showed the best results obtained by them. For each document subset, Figure 2 listed the average

precision by using the baseline algorithm and the precision improvement by using LSI and Ten-

sorLSI. The computation time of LSI and TensorLSI are also listed in the right part of Figure 2.

As can be seen, Both of LSI and TensorLSI achieved better precision than baseline. From precision

point of view, LSI and TensorLSI are comparable. However, TensorLSI is much faster than LSI.

We perform the statistical significance t-test on the results, which are shown in Table 4. The t-test

results tell us that both TensorLSI and LSI are significantly outperform baseline. The TensorLSI

and LSI are comparable with respect to precision while TensorLSI is significantly faster than LSI.

12

Table 3: 30 document subsets
Query Num of Doc Query Num of Doc

agreement 802 industry 428

bank 823 investment 546

computer 134 levels 217

control 235 natural 110

country 178 petroleum 228

domestic 278 prices 657

economy 201 production 426

energy 232 rates 329

exploration 99 security 108

export 307 services 255

exports 343 systems 215

foreign 505 talks 294

formed 103 trade 636

germany 152 washington 137

home 121 world 388

Table 4: T-test for similarity evaluation

sysA sysB t-test

LSI Baseline ≫
Precision TLSI Baseline ≫

TLSI LSI ∼
Time TLSI LSI ≪

“≫” or “≪” means P-value ≤ 0.01

“>” or “<” means 0.01 < P-value ≤ 0.05

“∼” means P-value > 0.05

5.3 Clustering Evaluation

Document clustering is one of most crucial techniques to organize the documents in an unsupervised

manner. In this subsection, we investigate the use of indexing algorithms for document clustering.

We chose k-means as our clustering algorithm and compared three methods. These three meth-

ods are listed below:

• k-means on original term-document matrix (Baseline)

• k-means after LSI (LSI)

• k-means after TensorLSI (TLSI)

13

5.3.1 Evaluation Metric

The clustering result is evaluated by comparing the obtained label of each document with that

provided by the document corpus. The accuracy (AC) is used to measure the clustering performance

[11]. Given a document xi, let ri and si be the obtained cluster label and the label provided by the

corpus, respectively. The AC is defined as follows:

AC =

∑n
i=1 δ(si, map(ri))

n

where n is the total number of documents and δ(x, y) is the delta function that equals one if x = y

and equals zero otherwise, and map(ri) is the permutation mapping function that maps each cluster

label ri to the equivalent label from the data corpus. The best mapping can be found by using the

Kuhn-Munkres algorithm [8].

5.3.2 Clustering Results

The evaluations were conducted with different number of clusters, ranging from 2 to 10. For each

given cluster number k, 50 tests were conducted on different randomly chosen categories, and the

average performance was computed over these 50 tests. For each test, k-means algorithm was

applied 10 times with different start points and the best result in terms of the objective function

of k-means was recorded.

After LSI or TensorLSI, how to determine the dimensions of the subspace to perform clustering

is still an open problem. In our experiments, for each k, we randomly select 5 cases from the 50

tests. On these 5 selected cases, we iterate the dimension from 1 to 50 and get the dimension

corresponding to the best clustering accuracy. Then, all other 45 cases used this dimension.

Table 5 shows the average accuracy of baseline, LSI and TensorLSI. The running time on k-means

of baseline, LSI and TensorLSI are also recorded3. After dimension reduction, one would expect the

running time on k-means be shorter. Meanwhile, the dimension reduction step will also cost time.

Table 6 shows t-tests result on the clustering accuracy and k-means time for different methods.

Both LSI and TensorLSI are significantly better than baseline with respect to both clustering

accuracy and computation time. For k = (2, 3, 4, 5, 6), LSI and TensorLSI achieved almost same

clustering accuracy. For k = (8, 9, 10). Clustering using LSI is slightly better than clustering using

TensorLSI. However, in all cases, the computation time (time on dimension reduction plus time on

k-means) of TensorLSI is extremely shorter than that of LSI. Figure 3 and 4 clearly show this.

The experiments show that the dimension reduction is necessary for clustering from consideration

of both speed and accuracy.

3Note that, the time recorded here is the average over 10 k-means.

14

5.4 Classification Evaluation

The classification performance is evaluated by comparing the predicted label of each testing docu-

ment with that provided by the document corpus. Besides the ModApte split of the corpus, which

contains around 70% of training sample, we also tested on l = (5%, 10%, 30%, 50%) training sample

cases. For each given l, we average the results over 10 random splits.

For classification, the kNN algorithm is applied. We tried different values of k (1, · · · , 20) and

found that, in all cases, k = 4 achieved the best performance.

5.4.1 Classification Results

Table 7 records the accuracy of baseline, LSI and TensorLSI. The time spent on kNN search of

baseline, LSI and TensorLSI are also recorded. After dimension reduction, one would expect the

time spent on kNN search will be shorter. Meanwhile, the dimension reduction step will also cost

time. For classification, LSI and TensorLSI do not improve the accuracy very much. However,

after dimension reduction, the kNN search does speed up a lot. After summing the time spent on

dimension reduction and the time on kNN search, we can see the advantage of TensorLSI over LSI.

Figure 5 shows the overall time of baseline, LSI and TLSI. As the training sample increases, the

LSI spends a lot of time on dimension reduction, which makes the whole time of LSI very long.

The TensorLSI is very efficient that in all cases, TensorLSI approach is very fast.

For classification using dimension reduction, we have to store the transformation vectors for

transform the new coming (testing) data. Table 7 also records the storage size of transformation

vectors of both LSI and TLSI. Figure 6 shows that the storage size of TLSI is significantly smaller

than that of LSI.

6 Conclusions

A novel document representation and indexing method has been proposed in this paper, called

Tensor Latent Semantic Indexing. Different from conventional LSI which considers documents as

vectors, TensorLSI considers documents as the second order tensors, or matrices. Based on the

tensor representation, TensorLSI tries to find an optimal basis for the tensor subspace in terms

of reconstruction error. Also, our theoretical analysis shows that TensorLSI can be much more

efficient than LSI in time, memory and storage especially when the number of documents is larger

than the number of words.

There are several interesting problems that we are going to explore in the future work:

1. We empirically construct the tensor in this paper. The better ways of converting a document

vector to a document tensor with theoretical guarantee need to be studied.

15

2. In this paper, we only extended the latent semantic indexing idea in the tensor space model.

We expect more learning algorithms in vector space model can be extended to the tensor

space model.

References

[1] R.K. Ando. Latent semantic space: Iterative scaling improves precision of inter-document

similarity measurement. In Proc. of ACM SIGIR, 2000.

[2] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. harshman. In-

dexing by latent semantic analysis. Journal of the American Society of Information Science,

41(6):391–407, 1990.

[3] C. H. Ding. A similarity-based probability model for latent semantic indexing. In Proc. of

ACM SIGIR, 1999.

[4] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University Press, 3rd

edition, 1996.

[5] Xiaofei He, Deng Cai, Haifeng Liu, and Wei-Ying Ma. Locality preserving indexing for docu-

ment representation. In Proc. of ACM SIGIR, 2004.

[6] Michael T. Heath. Scientific computing: an introductory survey. McGraw-Hill, 2nd edition,

2002.

[7] John M. Lee. Introduction to Smooth Manifolds. Springer-Verlag New York, 2002.

[8] L. Lovasz and M. Plummer. Matching Theory. Akadémiai Kiadó, North Holland, Budapest,

1986.

[9] Gerard Salton, A. Wong, and C. S. Yang. A vector space model for information retrieval.

Communications of the ACM, 18(11):613–620, 1975.

[10] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

[11] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative matrix

factorization. In Proc. of ACM SIGIR, 2003.

16

Precision (%) Time (s)

Query Baseline LSI TLSI LSI TLSI

agreement 64.8 +4.9 +2.4 8.798 0.981

bank 35.7 +9.7 +8.3 8.608 0.848

computer 70.4 +5.6 +5.5 0.076 0.024

control 78.6 +0.1 +0.6 0.390 0.066

country 45.0 +0.7 +3.7 0.236 0.060

domestic 50.5 +3.6 +3.1 0.781 0.137

economy 42.7 +0.8 +4.1 0.359 0.091

energy 58.3 0 +5.7 0.373 0.064

exploration 56.9 +17.9 +8.3 0.041 0.015

export 61.7 +2.3 +4.3 0.917 0.125

exports 43.4 +2.9 +3.6 1.220 0.150

foreign 40.9 +8.7 +7.9 3.097 0.593

formed 72.8 0 +1.9 0.047 0.013

germany 54.3 0 +2.9 0.128 0.042

home 50.7 +5.5 +3.4 0.059 0.024

industry 42.8 +5.1 +2.8 2.242 0.291

investment 67.4 +0.7 +2.8 3.184 0.288

levels 51.0 0 +1.5 0.408 0.082

natural 55.2 +5.8 +2.7 0.053 0.020

petroleum 54.1 +0.3 +4.5 0.344 0.060

prices 45.5 +5.3 +4.1 5.776 0.845

production 47.7 +2.4 +3.8 2.022 0.224

rates 52.5 0 +0.8 0.942 0.118

security 51.4 +0.2 +7.7 0.053 0.024

services 52.7 +5.7 +5.2 0.461 0.069

systems 70.7 +3.3 +4.1 0.201 0.029

talks 68.5 +3.6 +1.6 0.808 0.115

trade 55.9 0 +2.2 5.305 0.741

washington 83.3 0 +1.9 0.088 0.036

world 55.3 +4.3 +3.6 1.818 0.254

Ave. 56.0 3.3 +3.8 1.628 0.214

Figure 2: Best average precision for each document set. For LSI and TLSI, improvements over

baseline are shown. Boldface indicates the algorithm with best performance for each category. The

two columns on the right list the running time of LSI and TLSI.

17

Table 5: Performance comparisons on clustering

Baseline LSI TLSI

k AC (%) t2 (s) Dim AC (%) t1 (s) t2 (s) t1 + t2 (s) Dim AC (%) t1 (s) t2 (s) t1 + t2 (s)

2 87.1 1.262 4 94.6 0.229 0.011 0.240 5 94.3 0.031 0.010 0.041

3 77.5 6.070 8 83.3 0.421 0.013 0.434 10 83.5 0.051 0.015 0.066

4 73.2 12.24 12 79.0 0.810 0.025 0.835 30 78.5 0.077 0.026 0.103

5 67.1 37.15 15 71.6 1.990 0.026 2.016 30 71.1 0.174 0.051 0.225

6 65.5 54.72 18 69.3 3.684 0.039 3.723 26 68.7 0.310 0.059 0.369

7 62.3 83.42 28 67.7 5.017 0.076 5.092 40 66.1 0.440 0.110 0.550

8 58.2 118.6 22 62.3 6.301 0.084 6.386 50 61.0 0.528 0.165 0.693

9 55.3 249.6 24 59.5 8.621 0.113 8.735 50 57.4 0.812 0.239 1.051

10 54.5 236.2 28 58.7 10.98 0.158 11.13 50 56.4 0.995 0.425 1.420

Ave. 66.7 88.82 71.8 4.228 0.061 4.288 70.8 0.380 0.122 0.502

t1 indicates time spent on dimensionality reduction using LSI or TLSI

t2 indicates time spent on k-means clustering

Table 6: T-test for clustering
k

sysA sysB 2 3 4 5 6 7 8 9 10

LSI Baseline ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫

AC TLSI Baseline ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫

TLSI LSI ∼ ∼ ∼ ∼ ∼ ≪ < ≪ ≪

LSI Baseline ≪ ≪ ≪ ≪ ≪ ≪ ≪ ≪ ≪

t1 + t2 TLSI Baseline ≪ ≪ ≪ ≪ ≪ ≪ ≪ ≪ ≪

TLSI LSI ≪ ≪ ≪ ≪ ≪ ≪ ≪ ≪ ≪

t1 = 0 for Baseline

2 4 6 8 10
50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Class Number

TensorLSI
LSI
Baseline

Figure 3: Clustering accuracy with respect to

the number of classes. As can be seen, Ten-

sorLSI performs comparably with LSI.

2 4 6 8 10
10

-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
(s

)

Class Number

TensorLSI
LSI
Baseline

Figure 4: Clustering time with respect to the

number of classes. As can been seen, TensorLSI

is much faster than LSI.

18

Table 7: Performance comparisons on classification

Baseline LSI TLSI

Train AC (%) t2 (s) Dim AC (%) t1 (s) t2 (s) t1 + t2 s (MB) Dim AC (%) t1 (s) t2 (s) t1 + t2 s (MB)

5% 81.1 123.6 400 82.5 1.069 4.570 5.638 7.620 1900 82.6 0.073 11.219 11.29 0.122

10% 84.3 139.9 800 85.1 6.324 14.10 20.43 23.98 2000 85.3 0.241 16.370 16.61 0.299

30% 87.7 177.2 800 88.3 115.1 27.76 142.8 53.47 2000 88.2 8.719 36.824 45.54 1.467

50% 89.1 177.2 900 89.5 455.1 31.66 486.7 83.13 2000 89.4 30.75 33.473 64.22 2.805

ModApte 88.1 142.3 800 89.6 884.9 26.43 911.3 93.91 1500 89.2 75.62 26.824 102.4 4.527

Ave. 86.1 152.0 87.0 292.5 20.90 313.4 52.42 86.9 23.08 24.942 48.02 1.844

t1 indicates time spent on dimensionality reduction using LSI or TLSI

t2 indicates time spent on KNN classification

s indicates storage size of the transformation vectors

5%10% 30% 50% ModApte

10
1

10
2

10
3

T
im

e
(s

)

Training sample ratio

TensorLSI
LSI
Baseline

Figure 5: Classification time with respect to

the training sample size. As can be seen, the

classification time of TensorLSI is less sensitive

to the training size.

5%10% 30% 50% ModApte

10
-1

10
0

10
1

10
2

S
to

ra
ge

 s
iz

e
(M

B
)

Training sample ratio

TensorLSI
LSI

Figure 6: Storage size of transformation vectors

with respect to training sample size. As can be

seen, TensorLSI requires much less storage than

LSI.

19

