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Abstract

Previous work has demonstrated that the image variations of many objects (human faces in

particular) under variable lighting can be effectively modelled by low dimensional linear spaces.

The typical methods for learning a face subspace include Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), and Locality Preserving Projection (LPP). Theoretical

analysis shows that all these three methods can be obtained from different graph models which

correspond to different geometrical structures. In this paper, we systematically analyze the

relationship between these three subspace methods. We shows that LPP provides a more general

framework for subspace learning and a natural solution to the small sample issue in LDA.

Extensive experiments on face recognition and clustering are performed on Yale, ORL and PIE

databases.

1 Introduction

There is currently a great deal of interest in appearance-based approaches to face recognition [24],

[1], [7]. When using appearance-based approaches, we usually represent an image of size m1 × m2

pixels by a vector in R
m1×m2 . Throughout this paper, we denote by face space the set of all the

face images. The face space is generally a low dimensional manifold embedded in the ambient space

[19], [22]. The typical linear algorithms for learning such a face manifold for recognition include

Principal Component Analysis (PCA) [5], Linear Discriminant Analysis (LDA) [5], and Locality

Preserving Projection (LPP) [9].

PCA projects the data along the direction of maximal variance. It is optimal in the sense of

reconstruction error. The basis functions of PCA can be obtained by solving the eigenvectors of the

covariance matrix. They are generally called Eigenfaces [24]. Unlike PCA which is unsupervised,

LDA is supervised. PCA is optimal in representation, while LDA is optimal in discrimination.

∗ The work was supported in part by the U.S. National Science Foundation NSF IIS-02-09199/IIS-03-08215. Any

opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not

necessarily reflect the views of the funding agencies.
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LDA searches for the project axes on which the data points of different classes are far from each

other while requiring data points of the same class to be close to each other. The basis functions

obtained by LDA are generally called Fisherfaces [1].

LDA (Fisherfaces approach) is successfully applied in many applications. However, the singular-

ity of the within-class scatter matrix makes the computation of LDA complicated and less optimal,

especially for high dimensional data. Moreover, the number of available projection directions of

LDA is bounded by the class number. Many efforts have been devoted to improve the performance

of Fisherfaces. Among them, Null subspace methods are the most popular one and it effectively

applied the null subspace of the within-class scatter matrix [3], [27], [11]. However, the fundamental

problem and limitations in LDA are still not solved in theory.

LPP is a recently proposed linear dimensionality reduction algorithm [9]. LPP builds a graph

model which reflects the intrinsic geometrical structure of the data space, and finds a projection that

respects this graph structure. LPPs are linear approximations to the Laplace-Beltrami operator on

the face manifold. The basis functions obtained by LPP are generally called Laplacianfaces [7]. It

has been shown that both PCA, LDA and LPP arise from the same principle applied to different

choices of this graph structure [7].

It has been shown that LPP performs much better than PCA on face recognition and marginally

better than LDA [7]. However, the reason that LPP outperforms LDA is still unclear. In this paper,

we consider the following problems:

1. Under what situations LPP can outperform LDA?

2. What is the connection between LPP and null space LDA methods?

3. Finally, since LPP can be applied under either supervised, semi-supervised or unsupervised

mode, the Laplacianfaces method can be naturally used for face clustering. Thus, how is

Laplacianfaces compared with Eigenfaces? What is the relationship between clustering using

LPP and canonical spectral clustering algorithms [20][16][2]?

In this paper, we provide a systematical analysis of the properties of LPP in unsupervised and

supervised setting, the difference of which can be reflected on the constructions of the graphs.

For supervised situation, we analyze the relationship between LPP and LDA. We shows that LPP

provides a more general framework for subspace learning and a natural solution to the small sample

size problem [3] in LDA. For unsupervised situation, we analyze the connection between LPP and

spectral clustering. By constructing a nearest neighbor graph, LPP provides an unsupervised

approximation to the supervised LDA, which intuitively explains why LPP can outperform PCA

for clustering.

It is worthwhile to highlight several aspects of our analysis for LPP here:

1. LPP provides a general graph embedding approach for subspace learning, which can be per-

formed in supervised, semi-supervised and unsupervised mode. The graph construction is the

2



key step of LPP.

2. LDA is a special case of LPP under supervised mode. The general graph embedding approach

makes LPP more applicable and the small sample issue in LDA can be naturally solved in

LPP approach.

3. When performed in unsupervised mode, the p-nearest neighbor graph provides an approx-

imate to the label information of the data points. Thus LPP can outperform PCA in un-

supervised setting. Also, the connection between LPP and spectral clustering reveals that

Laplacianfaces approach is also suitable for face clustering.

The rest of this paper is organized as follows: Section 2 provides a brief review of PCA, LDA and

LPP. Section 3 gives the analysis of LPP in both supervised and unsupervised situation. Extensive

experiments for face recognition and face clustering on Yale, ORL and PIE face databases are

provided in Section 4. Finally, we provide some concluding remarks and suggestions for future

work in Section 5.

2 A Brief review of PCA, LDA and LPP

PCA is an eigenvector method designed to model linear variation in high-dimensional data. PCA

performs dimensionality reduction by projecting the original m-dimensional data onto the k(<< m)-

dimensional linear subspace spanned by the leading eigenvectors of the datas covariance matrix. Its

goal is to find a set of mutually orthogonal basis functions that capture the directions of maximum

variance in the data and for which the coefficients are pairwise decorrelated. Given a set of data

points x1,x2, · · · ,xn, let a be the transformation vector and yi = aTxi. The objective function of

PCA is as follows:

aopt = arg max
a

n
∑

i=1

(yi − y)2

= arg max
a

aT Ca

where y = 1
n

∑

yi and C is the data covariance matrix. The basis functions of PCA are the

eigenvectors of the data covariance matrix associated with the largest eigenvalues. For linearly em-

bedded manifolds, PCA is guaranteed to discover the dimensionality of the manifold and produces

a compact representation. Turk and Pentland [24] use Principal Component Analysis to describe

face images in terms of a set of basis functions, or “eigenfaces.”

While PCA seeks directions that are efficient for representation, Linear Discriminant Analysis

(LDA) seeks directions that are efficient for discrimination. LDA is a supervised learning algorithm,

it searches for the project axes on which the data points of different classes are far from each other

while requiring data points of the same class to be close to each other. Suppose we have a set of n
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samples x1,x2, · · · ,xn, belonging to c classes. The objective function of LDA is as follows:

aopt = arg max
a

aT SBa

aT SWa

SB =
c

∑

i=1

ni(m
(i)

− m)(m(i)
− m)T (1)

SW =
c

∑

i=1





ni
∑

j=1

(x
(i)
j − m(i))(x

(i)
j − m(i))T



 (2)

where m is the total sample mean vector, ni is the number of samples in the i-th class, m(i) is

the average vector of the i-th class, and x
(i)
j is the j-th sample in the i-th class. We call SW the

within-class scatter matrix and SB the between-class scatter matrix. The basis functions of LDA

are the eigenvectors of the following generalized eig-problem associated with the largest eigenvalues:

SBa = λSWa (3)

Unlike PCA which encodes information in an orthogonal linear space, LDA encodes discriminating

information in a linearly separable space using bases that are not necessarily orthogonal. It is

generally believed that algorithms based on LDA are superior to those based on PCA. However,

some recent work [14] shows that, when the training data set is small, PCA can outperform LDA,

and also that PCA is less sensitive to different training data sets.

Similar to LDA, LPP also aims to extract the most discriminative features. Given a affinity

matrix W , LPP can be obtained by solving the following minimization problem:

aopt = arg min
a

m
∑

i=1

(

aTxi − aTxj

)2
Wij

= arg min
a

aT XLXTa

with the constraint

aT XDXTa = 1

where L = D − W is the graph Laplacian [4] and Dii =
∑

j Wij . Dii measures the local density

around xi. LPP constructs the affinity matrix W as:

Wij =















1, if xi is among the p nearest neighbors of xj

or xj is among the p nearest neighbors of xi

0, otherwise.

Thus, the objective function in LPP incurs a heavy penalty if neighboring points xi and xj are

mapped far apart. Therefore, minimizing it is an attempt to ensure that if xi and xj are “close”

then yi (= aTxi) and yj (= aTxj) are close as well [8]. Finally, the basis functions of LPP are the

eigenvectors associated with the smallest eigenvalues of the following generalized eig-problem:

XLXTa = λXDXTa (4)
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3 Computational Analysis of LPP

The graph construction is the key of LPP. In this section, we systematically analysis the properties

of LPP under different graph. Particularly, we will show that LDA is a special case of LPP under

a specific supervised graph. LPP can naturally solve two intrinsic problem in tractional LDA, i.e.

small sample size problem and only has c− 1 available projection directions, where c is the number

of categories. We will also show LPP in unsupervised mode has direct connection with spectral

clustering. The graph model of LPP make it very easy to incorporate label information, thus, LPP

provides a more general general graph embedding approach for subspace learning, for supervised,

unsupervised and semi-supervised learning.

3.1 LPP in Supervised Mode

In section 2, we construct the affinity graph as: put edge between two nodes if they are neighbors

and the weight of each edge is set to 1. This is a very simple graph construction method. For

classification task, since the label information are available, we can utilize the label information to

construct a better graph with respect to discriminant information. In the following, we will discuss

two possible graph construction approaches which utilize the label information. One approach

makes LPP identical to LDA while do not suffer the small sample size problem; the other approach

makes LPP generate more than c − 1 valuable projection directions which will be useful for face

recognition.

3.1.1 LPP1

We construct the affinity matrix matrix as:

Wij =

{

1
nl

, if xi and xj both belong to the l-th class;

0, otherwise.
(5)

where nl is the number of samples in the l-th class. In such setting, we can easily check that D = I

and

L = D − W = I − W (6)

where I is a n × n identity matrix. Thus, the eig-problem of LPP in Eq. 4 becomes:

XLXTa = λXXTa (7)

In LDA, the within-class scatter matrix SB and the between-class scatter matrix SW are defined

as Eq. 1 and Eq 2. The data covariance matrix SC can be defined as:

SC =
n

∑

i=1

(xi − m)(xi − m)T
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and we have [23]

SC = SW + SB

He et. al. [7] proved that with the affinity matrix as Eq. 5, SW = XLXT . If we remove the

mean of the data at the preprocessing step, we have SC = XXT and SB = XWXT . Thus the

eig-problem of LDA in Eq. 3 becomes:

SBa = λSWa

⇒ (SC − SW )a = λSWa

⇒ SWa =
1

1 + λ
SCa

⇒ XLXTa =
1

1 + λ
XXTa

⇒ XLXTa = λ′XXTa (8)

where λ′ = 1/(1 + λ). Eq. 8 provides a graph embedding point of view of canonical LDA. Thus,

the eigenvector of the eig-problem (3) associated with largest eigenvalue λ (the solution of LDA)

is equivalent to the eigenvector of the eig-problem (8) associated with smallest eigenvalue λ′, the

latter is exactly the the solution of LPP in Eq. 7.

The above analysis shows that with specific constructed graph, W in Eq. 5 particularly, the

solution of LPP is identical to LDA. Thus, LDA is a special case of LPP.

It can also be proved that the rank of L in Eq. 6 is n − c thus the rank of within-class scatter

matrix SW = XLXT is at most n − c [7]. However, in many cases, in appearance-based face

recognition, the number of pixels in an face image (or, the dimensionality of the face space) is

larger than n− c, i.e., m > n− c. Thus, XLXT is singular. In order to overcome the complication

of a singular XLXT , Belhumeur et al. [1] proposed the Fisherface approach that the face images

are projected from the original image space to a subspace with dimensionality n−c using PCA and

then LDA is performed in this subspace. In small sample size situation, it is possible that n−c ≪ m,

the PCA projection step in Fisherface approach only keep the largest n − c principle components

and might lose a lot of information. In the LPP framework, the LDA can be written as a graph

embedding approach in Eq. 8, we only need to ensure XXT is full rank. Thus, we can keep all the

non-zero eigenvalue in the PCA step, that is, there will be no information loss in the PCA step,

even on small sample size situation. This is one of the main reasons why Laplacianface approach

can outperform Fisherface approach, which will be shown in the experiment part. Moreover, the

PCA step can be used to remove noise, as suggested in [7]. In the LPP framework, we can keep

any percentage of eigenvalue in the PCA step which gives us maximal flexibility.

3.1.2 LPP2

The affinity matrix W as Eq. 5 makes LPP identical to LDA. The number of effective projection

directions in such LPP are also c− 1. This happens due to the rank of W is only c, since row i and
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row j of W are exactly same if the data point i and j are belong to the same class.

To solve this problem, we can construct the W as

Wij =







e−
‖xi−xj‖

2

t , if xi and xj both belong to the same class;

0, otherwise.
(9)

Since it is hard to choose a suitable parameter t, we can also use the following W :

Wij =

{

x
T
i xj

‖xi‖·‖xj‖
, if xi and xj both belong to the same class;

0, otherwise.
(10)

In such setting, the D will be no longer identity matrix and the solution of the LPP will not

longer be same with the solution of the LDA. Our experiments show that in such W setting, the

recognition results of LPP using the first c−1 dimensions are nearly equal to the recognition results

of LDA. Moreover, row i and row j of W will not likely to be same even if the data point i and j

are belong to the same class. Thus, we can get more than c− 1 eigenvectors for the solution of Eq.

4 which will lead better results in some cases.

3.2 LPP in Unsupervised Mode

In unsupervised learning, like clustering, the label information is not available. We can construct

a p-nearest neighbor graph:

Wij =















x
T
i xj

‖xi‖·‖xj‖
, if xi is among the p nearest neighbors of xj

or xj is among the p nearest neighbors of xi

0, otherwise.

(11)

Since the neighboring data points probably belong to the same underlying class, the p-nearest

neighbor graph gives us an approximation to the supervised graph of LDA in Eq. 5. Therefore,

even though the label information is not available, we can still discover the discriminating structure

to some extent by using LPP.

3.2.1 Connection to Spectral Clustering

The LPP in unsupervised mode can naturally be used as the first step of clustering: the high di-

mensional data can be projected to low dimension by LPP and then traditional clustering algorithm

like K-means be applied. It is interesting to study what is the relation between K-means after LPP

and spectral clustering.

It would be important to note that spectral clustering algorithms [20][17] can be simply thought

of as a combination of Laplacian Eigenmaps [2] and K-means. Thus, the only difference between K-

means after LPP and spectral clustering lies the difference between LPP and Laplacian Eigenmaps.

The Laplacian Eigenmaps tries to solve the following minimum eigenvalue problem.

Ly = λDy (12)
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where L and D can be defined same as in Eq. 4. After the spectral embedding step, the eigenvector

y will be the low dimensional representation of original data points.

Recall the eigen-problem in LPP:

XLXTa = λXDXTa (13)

The eigenvector a will be the mapping function and XTa will be the low dimensional representation

of original data points. Thus, the LPP impose a constraint on Eqn. (12) that y should be the

linear combination of the column vectors of XT .

The eigenvalue problem of LPP scales with the number of dimensions (m), while that of Lapla-

cian Eigenmaps scales with the number of data points (n). The rank of X is no greater than

min(n, m). Thus, if m > n, we can reduce the data space into an n dimensional subspace without

losing any information by using Singular Value Decomposition (SVD). Correspondingly, the data

matrix X in such a subspace becomes a square matrix. We have the following proposition:

Proposition 1 If X is a full rank square matrix, then LPP and Laplacian Eigenmap have the

same result.

Proof Recall that the eigenvalue problem of LPP is as follows:

XLXTw = λXDXTw (14)

Let y = XTw. Equation (14) can be rewritten as follows:

XLy = λXDy (15)

Since X is a full rank square matrix, we get the following equation:

Ly = λDy (16)

which is just the eigenvalue problem of Laplacian Eigenmaps.

In many real world applications such as face clustering, the dimensionality of the face space is

typically much larger than the number of faces. In such a case, LPP and Laplacian Eigenmaps

will have the same embedding result if these face vectors are linearly independent. In such case,

clustering using LPP will be identical to the spectral clustering.

4 Experimental Results

In this section, we investigate the performance of LPP for face recognition and face clustering.

For face recognition, we focus on in which situation LPP in supervised mode (Laplacianface) can

outperform LDA (Fisherface [1]). For face clustering, we are interested in how LPP in unsupervised

mode can outperform PCA (Eigenface [24]).
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4.1 Experiments on Face Recognition

We compared four methods in the face recognition experiment:

• Eigenface method (PCA) [25]

• Fisherface method (PCA+LDA) [1], Tthere are at most c−1 nonzero generalized eigenvalues

and, so, an upper bound on the dimension of the reduced space is c − 1.

• LPP1. Construct the graph as Eq. 5. LPP in such graph setting is identical to LDA. The

upper bound on the dimension of the reduced space is still c− 1. The difference between this

LPP1 and Fisherface is that Fisherface keeps n − c dimensions in the PCA step while LPP1

keeps all the non-zero eigenvalues in the PCA step.

• LPP2. Construct the graph as Eq. 10. We can keep more than c − 1 dimensions since the

graph matrix W is no longer rank c.

Three face databases were tested. The first one is the Yale database1, the second is the ORL

(Olivetti Research Laboratory) datebase2, and the third is the PIE (pose, illumination, and ex-

pression) database from CMU [21]. In all the experiments, preprocessing to locate the faces was

applied. Original images were normalized (in scale and orientation) such that the two eyes were

aligned at the same position. Then, the facial areas were cropped into the final images for matching.

The size of each cropped image is 32 × 32 pixels, with 256 gray levels per pixel. Each image is

represented by a 1, 024-dimensional vector in image space. Different pattern classifiers have been

applied for face recognition, including nearest-neighbor [1], Bayesian [15], Support Vector Machine

[18], etc. In this paper, we apply the nearest-neighbor classifier for its simplicity. The Euclidean

metric is used as our distance measure.

In short, the recognition process has three steps. First, we calculate the face subspace from the

training samples; then the new face image to be identified is projected into d-dimensional subspace

by using PCA, LDA and LPP; finally, the new face image is identified by a nearest neighbor

classifier.

4.1.1 Yale Database

The Yale face database was constructed at the Yale Center for Computational Vision and Control.

It contains 165 gray scale images of 15 individuals. The images demonstrate variations in lighting

condition, facial expression (normal, happy, sad, sleepy, surprised, and wink). Figure 1 shows

the 11 images of one individual in Yale data base. A random subset with l(= 2, 3, 4, 5) images

per individual was taken with labels to form the training set, and the rest of the database was

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.uk.research.att.com/facedatabase.html

9



Figure 1: Sample face images from the Yale database. For each subject, there are 11 face images

under different lighting conditions with facial expression.
 

0 5 10 15 20 25

45

50

55

60

65

70

75

Dims

E
rr

or
 r

at
e 

(%
)

LPP1
LPP2
Fisherfaces
Eigenfaces
Baseline

(a) 2 Train

 

0 10 20 30 40
30

35

40

45

50

55

60

Dims

E
rr

or
 r

at
e 

(%
) LPP1

LPP2
Fisherfaces
Eigenfaces
Baseline

(b) 3 Train

 

0 10 20 30 40 50 60

25

30

35

40

45

50

55

Dims

E
rr

or
 r

at
e 

(%
)

LPP1
LPP2
Fisherfaces
Eigenfaces
Baseline

(c) 4 Train

 

0 20 40 60
20

25

30

35

40

45

50

Dims

E
rr

or
 r

at
e 

(%
)

LPP1
LPP2
Fisherfaces
Eigenfaces
Baseline

(d) 5 Train

Figure 2: Error rate vs. dimensionality reduction on Yale database

Table 1: Performance comparisons on the Yale database

Method 2 Train 3 Train 4 Train 5 Train

Baseline 56.5% 51.1% 47.8% 45.6%

Eigenfaces 56.5% (29) 51.1% (44) 47.8% (58) 45.2% (71)

Fisherfaces 54.3% (9) 35.5% (13) 27.3%( 14) 22.5% (14)

LPP1 43.3% (14) 32.7% (14) 25.1% (14) 22.3% (14)

LPP2 43.5% (14) 31.5% (14) 25.4% (14) 21.7% (14)

considered to be the testing set. For each given l, we average the results over 20 random splits. In

general, the performance of all these methods varies with the number of dimensions. We show the

best results and the optimal dimensionality obtained by Eigenface, Fisherface, LPP1, LPP2, and

baseline methods in Table 1. For the baseline method, the recognition is simply performed in the

original 1024-dimensional image space without any dimensionality reduction.

As can be seen, both two versions’ LPP outperform Fisherface, especially in small training sample

case. Figure 2 shows the plots of error rate versus dimensionality reduction. It is worthwhile to note

that when kept c − 1 dimensions in 2 training case, Fisherfaces is even worse than baseline. This

result is consistent with the observation in [14] that Eigenface method can outperform Fisherface

method when the training set is small. Our analysis in section 3.1 indicate the only difference

between LPP1 and Fisherface is that Fisherface keeps n−c dimensions in the PCA step while LPP1

keeps all the non-zero eigenvalues. In small training sample case, some essential information might

be lost when only keeping n − c dimensions. In LPP framework, we can keep all the information

in the PCA step, thus, can achieve better performance. Note that, although LPP2 can use more

than c − 1 projection directions, it seems that the extra dimensions are useless in this database.
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Figure 3: Sample face images from the ORL database. For each subject, there are 10 face images

with different facial expression and details.
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Figure 4: Error rate vs. dimensionality reduction on ORL database

Table 2: Performance comparisons on the ORL database

Method 2 Train 3 Train 4 Train 5 Train

Baseline 33.8% 24.6% 18.0% 14.1%

Eigenfaces 33.7% (78) 24.6% (119) 18.0% (159) 14.1% (199)

Fisherfaces 28.9% (22) 15.8% (39) 10.5% (39) 7.75% (39)

LPP1 23.9% (39) 13.3% (38) 9.33% (39) 7.30% (39)

LPP2 23.9% (39) 13.4% (39) 9.58% (39) 6.85% (40)

4.1.2 ORL Database

The ORL (Olivetti Research Laboratory) face database is used for this test. It contains 400 images

of 40 individuals. Some images were captured at different times and have different variations

including expression (open or closed eyes, smiling or non-smiling) and facial details (glasses or no

glasses). The images were taken with a tolerance for some tilting and rotation of the face up to

20 degrees. 10 sample images of one individual in the ORL database are displayed in Figure 3. A

random subset with l(= 2, 3, 4, 5) images per individual was taken with labels to form the training

set. The rest of the database was considered to be the testing set. For each given l, we average the

results over 20 random splits. The experimental protocol is the same as before. The recognition

results are shown in Table 2 and Figure 4. We can get a similar conclusion as before.

4.1.3 PIE Database

The CMU PIE face database contains 68 individuals with 41,368 face images as a whole. The face

images were captured by 13 synchronized cameras and 21 flashes, under varying pose, illumination,

and expression. We choose the five near frontal poses (C05, C07, C09, C27, C29) and use all
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Figure 5: Sample face images from the CMU PIE database. For each subject, there are 170 near

frontal face images under varying pose, illumination, and expression.
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Figure 6: Error rate vs. dimensionality reduction on PIE database

Table 3: Performance comparisons on the PIE database

Method 5 Train 10 Train 20 Train 30 Train

Baseline 69.9% 55.7% 38.2% 27.9%

Eigenfaces 69.9% (338) 55.7% (654) 38.1% (889) 27.9% (990)

Fisherfaces 31.5% (67) 22.4% (67) 15.4% (67) 7.77% (67)

LPP1 31.6% (67) 22.2% (67) 15.4% (67) 7.77% (67)

LPP2 30.8% (67) 21.1% (134) 14.1% (146) 7.13% (131)

the images under different illuminations, lighting and expressions which leaves us 170 near frontal

face images for each individual. Figure 5 shows several sample images of one individual with

different poses, expressions and illuminations. We randomly chose l(= 5, 10, 20, 30) images for

each individual as training data. We repeated this process 20 times and computed the average

performance. Table 3 shows the recognition results.

As can be seen, in 20 and 30 training sample cases, the LPP1 and Fisherfaces are identical. This

is because with so many training sample, n − c is larger than the feature number, which is 1024.

LPP2 approach, which can keep more than c − 1 projection directions, outperforms LPP1 in this

database. Figure 6 shows a plot of error rate versus dimensionality reduction.
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Figure 7: Sample face images from the CMU PIE database. For each subject, there are 22 face

images under different lighting conditions with fixed pose (C27) and expression.

4.2 Experiments on Face Clustering

In this subsection, we evaluate the use of our algorithm on face clustering [6] [10][12]. The CMU PIE

face database [21] is used in this experiment. In this experiment, we fixed the pose and expression.

Thus, for each subject, we got 22 images under different lighting conditions. Figure 7 shows some

sample images for a certain subject.

For each given number k, k classes were randomly selected from the face database. This process

was repeated 20 times (except for k = 68) and the average performance was computed. For each

single test (given k classes of faces), two algorithms, i.e. PCA and LPP are used to learn the face

subspace. The K-means was then performed in the subspace as well as the original face space. And

the K-means was repeated 10 times with different initializations and the best result in terms of the

objective function of K-means was recorded.

4.2.1 Evaluation Metrics

The clustering result is evaluated by comparing the obtained label of each data point with that

provided by the data corpus. Two metrics, the accuracy (AC) and the normalized mutual infor-

mation metric (MI) are used to measure the clustering performance [26]. Given a data point xi,

let ri and si be the obtained cluster label and the label provided by the data corpus, respectively.

The AC is defined as follows:

AC =

∑n
i=1 δ(si, map(ri))

n
(17)

where n is the total number of data points and δ(x, y) is the delta function that equals one if x = y

and equals zero otherwise, and map(ri) is the permutation mapping function that maps each cluster

label ri to the equivalent label from the data corpus. The best mapping can be found by using the

Kuhn-Munkres algorithm [13].

Let C denote the set of clusters obtained from the ground truth and C ′ obtained from our

algorithm. Their mutual information metric MI(C, C ′) is defined as follows:

MI(C, C ′) =
∑

ci∈C,c′j∈C′

p(ci, c
′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)

where p(ci) and p(c′j) are the probabilities that a data point arbitrarily selected from the corpus
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Figure 8: Clustering performance vs. dimensionality reduction on CMU PIE face database

Table 4: Clustering performance comparisons on CMU PIE face database

Accuracy (%) Mutual Information (%)

k Kmeans PCA+Kmeans LPP+Kmeans Kmeans PCA+Kmeans LPP+Kmeans

5 49.3 51.3 96.6 46.7 47.8 97.0

10 39.7 40.8 86.1 50.1 51.1 92.9

30 34.9 35.4 77.8 56.1 56.9 90.9

68 33.6 34.4 74.5 62.6 63.9 91.3

belongs to the clusters ci and c′j , respectively, and p(ci, c
′
j) is the joint probability that the arbitrarily

selected data point belongs to the clusters ci as well as c′j at the same time. In our experiments,

we use the normalized mutual information MI as follows:

MI(C, C ′) =
MI(C, C ′)

max(H(C), H(C ′))
(18)

where H(C) and H(C ′) are the entropies of C and C ′, respectively. It is easy to check that

MI(C, C ′) ranges from 0 to 1. MI = 1 if the two sets of clusters are identical, and MI = 0 if the

two sets are independent.
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4.2.2 Results

We compared Laplacianface (LPP) with Eigenface (PCA) for clustering. Several tests were per-

formed with different numbers of clusters (k=5, 10, 30, 68). In all the tests, the graph is constructed

as Eq. 11 and the number of nearest neighbors in LPP is taken to be 5. The experimental results

are shown in Fig. 8 and Table 4. As can be seen, in all these cases, LPP+K-means performs

much better than K-means and PCA+K-means. Little improvement can be gained by PCA based

clustering. This is because that, PCA can extract the most representative features, but it fails to

extract the most discriminative features.

5 Conclusions

In this paper, we systematically analysis the properties of LPP both in unsupervised and supervised

setting, the difference of which can be reflected on the constructions of the graphs. For supervised

situation, we analyze the relationship between LPP and LDA. We shows that LPP provides a

more general framework for subspace learning and a natural solution to the small sample size

problem [3] in LDA. For unsupervised situation, we analyze the connection between LPP and

spectral clustering. By constructing a nearest neighbor graph, LPP provides an unsupervised

approximation to the supervised LDA, which intuitively explains why LPP can outperform PCA

for clustering.

Several questions remain to be investigated in our future work:

1. As we show in section 3.2, LPP in unsupervised mode provides an optimal approximation

to LDA which is supervised. Specifically, we approximate the graph defined in Eq. by a

p-nearest neighbor graph. The more accurate the approximation is, the more discriminating

power LPP has. However, it is unclear if there exists better approximation and how to obtain

it.

2. Face recognition is an supervised learning process and clustering is inherently an unsupervised

learning process. Sometimes, despite the large amount of unlabeled data, a small set of labeled

data points might be available. In such a case, the unsupervised learning becomes semi-

unsupervised (or, semi-supervised) learning. Thus, the optimal projection can be obtained

by preserving locality as well as separating the data points with different labels. It is unclear

how to obtain such constraint LPP, though it seems to be promising.
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