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Abstract Linear Discriminant Analysis (LDA) has been
a popular method for dimensionality reduction which

preserves class separability. The projection vectors are

commonly obtained by maximizing the between class
covariance and simultaneously minimizing the within

class covariance. LDA can be performed either in the

original input space or in the reproducing kernel Hilbert
space (RKHS) into which data points are mapped, which

leads to Kernel Discriminant Analysis (KDA). When

the data are highly nonlinear distributed, KDA can

achieve better performance than LDA. However, com-
puting the projective functions in KDA involves eigen-

decomposition of kernel matrix, which is very expen-

sive when a large number of training samples exist.
In this paper, we present a new algorithm for kernel

discriminant analysis, called Spectral Regression Ker-

nel Discriminant Analysis (SRKDA). By using spectral
graph analysis, SRKDA casts discriminant analysis into

a regression framework which facilitates both efficient

computation and the use of regularization techniques.

Specifically, SRKDA only needs to solve a set of regu-
larized regression problems and there is no eigenvector

computation involved, which is a huge save of computa-

tional cost. The new formulation makes it very easy to
develop incremental version of the algorithm which can
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fully utilize the computational results of the existing
training samples. Moreover, it is easy to produce sparse

projections (Sparse KDA) with a L1-norm regularizer.

Extensive experiments on spoken letter, handwritten
digit image and face image data demonstrate the effec-

tiveness and efficiency of the proposed algorithm.

Keywords Kernel Discriminant Analysis · Regres-
sion · Subspace Learning · Dimensionality Reduction

1 Introduction

Dimensionality reduction has been a key problem in
many fields of information processing, such as data min-

ing, information retrieval, and pattern recognition. When

data is represented as points in a high-dimensional space,
one is often confronted with tasks like nearest neighbor

search. Many methods have been proposed to index the

data for fast query response, such as K-D tree, R tree,
R* tree, etc [16]. However, these methods can only op-

erate with small dimensionality, typically less than 100.

The effectiveness and efficiency of these methods drop

exponentially as the dimensionality increases, which is
commonly referred to as the “curse of dimensionality”.

During the last decade, with the advances in com-
puter technologies and the advent of the World Wide

Web, there has been an explosion in the amount and

complexity of digital data being generated, stored, ana-
lyzed, and accessed. Much of this information is multi-

media in nature, including text, image, and video data.

The multimedia data are typically of very high dimen-

sionality, ranging from several thousands to several hun-
dreds of thousands. Learning with such high dimension-

ality in many cases is almost infeasible. Thus, learnabil-

ity necessitates dimensionality reduction [8,30,33,34].
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Once the high-dimensional data is mapped into lower-

dimensional space, conventional indexing schemes can
then be applied [20,28,29].

One of the most popular dimensionality reduction
algorithms might be Linear Discriminant Analysis (LDA).

LDA is a supervised method that has proved successful

on classification problems [9,15]. The projection vec-

tors are commonly obtained by maximizing the be-
tween class covariance and simultaneously minimizing

the within class covariance. The classical LDA is a lin-

ear method and fails for nonlinear problems. To deal
with this limitation, nonlinear extensions of LDA through

“kernel trick” have been proposed. The main idea of

kernel-based methods is to map the input data to a
feature space through a nonlinear mapping, where the

inner products in the feature space can be computed by

a kernel function without knowing the nonlinear map-

ping explicitly [27]. Kernel Fisher Discriminant Analy-
sis (KFD) in [22] and Generalized Discriminant Anal-

ysis (GDA) in [1] are two independently developed ap-

proaches for kernel-based nonlinear extensions of LDA.
They are essentially equivalent. To avoid confusion, we

will refer this approach as Kernel Discriminant Analysis

(KDA) hereafter.

When solving the optimization problem of KDA,

we need to handle the possible singularity problem of

the total scatter matrix. There are two approaches try-
ing to address this issue either by using regularization

techniques [22] or by applying singular value decom-

position [1,26][35]. Both of these two approaches for
solving optimization problem of KDA involve the eigen-

decomposition of the kernel matrix which is computa-

tionally expensive. Moreover, due to the difficulty of de-

signing an incremental solution for the eigen-decomposition
on the kernel matrix, there has been little work on de-

signing incremental KDA algorithms that can efficiently

incorporate new data examples as they become avail-
able.

In [23], S. Mika et al. made a first attempt to speed

up KDA through a greedy approximation technique.
However, their algorithm was developed to handle the

binary classification problem. For a multi-class prob-

lem, the authors suggested the one against the rest
scheme by considering all two-class problems. Recent

studies [4–7,9] show that various linear dimensionality

reduction algorithms can be formulated as regression
problems and thus have efficient computational solu-

tions. Particularly, our previous work [6] has demon-

strated that LDA can be formulated as a regression

problem and be efficiently solved. The similar idea has
been applied to unsupervised dimensionality reduction

algorithms [7] and semi-supervised dimensionality re-

duction algorithms [5]. However, it is not clear that how

these similar techniques can be applied on non-linear

dimensionality reduction algorithms which use kernel
techniques.

In this paper, we propose a new algorithm for kernel

discriminant analysis, called Spectral Regression Kernel

Discriminant Analysis (SRKDA). Our analysis essen-
tially follows our previous idea for speeding up LDA

[6]. By using spectral graph analysis, SRKDA casts dis-

criminant analysis into a regression framework which
facilitates both efficient computation and the use of reg-

ularization techniques. Specifically, SRKDA only needs

to solve a set of regularized regression problems and
there is no eigenvector computation involved, which is

a huge save of computational cost. Moreover, the new

formulation makes it very easy to develop incremen-

tal version of the algorithm which can fully utilize the
previous computational results on the existing training

samples.

The points below highlight the contributions of this
paper:

– KDA in the binary-class case has been shown to be

equivalent to regularized kernel regression with the
class label as the output [27]. Our paper extends

this relation to multi-class case.

– We provides a new formulation of KDA optimiza-
tion problem. With this new formulation, the KDA

optimization problem can be efficiently solved by

avoiding the eigen-decomposition of the kernel ma-

trix. Theoretical analysis shows that the new ap-
proach can achieve 27-times speedup over the ordi-

nary KDA approaches.

– Moreover, SRKDA can be naturally performed in
the incremental manner. The computational results

on the existing training samples can be fully uti-

lized when new training samples are injected into
the system. Theoretical analysis shows that SRKDA

in the incremental mode has only quadratic-time

complexity, which is a huge improvement comparing

to the cubic-time complexity of the ordinary KDA
approaches.

– Since SRKDA uses regression as a building block,

various kinds of regularization techniques can be
easily incorporated (e.g ., L1-norm regularizer to pro-

duce sparse projections). Our approach provides a

huge possibility to develop new variations of kernel
discriminant analysis.

– A short version of this work has been published in

ICDM [3]. In this journal version, we provide two

new sections on theoretical analysis (Section 3.1)
and sparse KDA (Section 5). Moreover, we have

added significant amount of the experimental re-

sults.
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The remainder of the paper is organized as follows.

In Section 2, we provide a brief review of LDA and
KDA, plus a detailed computational analysis of KDA.

Section 3 introduces our proposed Spectral Regression

Kernel Discriminant Analysis algorithm. The incremen-
tal version of SRKDA is introduced in Section 4 and the

extensive experimental results are presented in Section

5. Finally, we provide some concluding remarks in Sec-
tion 6.

2 A Brief Review of LDA and KDA

Linear Discriminant Analysis (LDA) seeks directions on

which the data points of different classes are far from

each other while requiring data points of the same class
to be close to each other [15]. Suppose we have a set of

m samples x1,x2, · · · ,xm ∈ R
n, belonging to c classes.

The objective function of LDA is as follows:

aopt = argmax
aTSba

aTSwa
, (1)

Sb =

c∑

k=1

mk(µµµ
(k) −µµµ)(µµµ(k) −µµµ)T ,

Sw =

c∑

k=1

(
mk∑

i=1

(x
(k)
i −µµµ(k))(x

(k)
i −µµµ(k))T

)
,

where µµµ is the global centroid, mk is the number of
samples in the k-th class, µµµ(k) is the centroid of the k-

th class, and x
(k)
i is the i-th sample in the k-th class.

We call Sw the within-class scatter matrix and Sb the
between-class scatter matrix.

Define the total scatter matrix St =
∑m

i=1(xi −
µµµ)(xi − µµµ)T , we have St = Sb + Sw [15]. The objec-

tive function of LDA in Eqn. (1) is equivalent to

aopt = argmax
aTSba

aTSta
. (2)

The optimal a’s are the eigenvectors corresponding to

the non-zero eigenvalue of eigen-problem:

Sba = λSta. (3)

Since the rank of Sb is bounded by c − 1, there are

at most c − 1 eigenvectors corresponding to non-zero
eigenvalues [15].

For the sake of clarity, we provide in a summary

for notations usage in Table 1. To extend LDA to the

nonlinear case, we consider the problem in a feature
space F induced by some nonlinear mapping

φ : Rn → F

Table 1 Notations

Notations Descriptions

m the number of total training data points
n the number of features
c the number of classes

mk the number of data points in k-th class

xi the i-th data point

x
(k)
i

the i-th data point in the k-th class

µµµ the total sample mean vector

µµµ(k) the mean vector of the k-th class

X the data matrix
Sb the between-class scatter matrix

Sw the within-class scatter matrix

St the total scatter matrix

ααα the transformation vector

For a proper chosen φ, an inner product 〈, 〉 can be

defined on F which makes for a so-called reproducing
kernel Hilbert space (RKHS). More specifically,

〈φ(x), φ(y)〉 = K(x,y)

holds whereK(., .) is a positive semi-definite kernel func-
tion. Several popular kernel functions are: Gaussian ker-

nel K(x,y) = exp(−‖x − y‖2/2σ2); polynomial ker-

nel K(x,y) = (1 + xTy)d; Sigmoid kernel K(x,y) =
tanh(xTy+ α).

Let Sφ
b , S

φ
w and Sφ

t denote the between-class, within-

class and total scatter matrices in the feature space,

respectively. We have

Sφ
b =

c∑

k=1

mk(µµµ
(k)
φ −µµµφ)(µµµ

(k)
φ −µµµφ)

T ,

Sφ
w =

c∑

k=1

(
mk∑

i=1

(
φ(x

(k)
i )−µµµ

(k)
φ

)(
φ(x

(k)
i )−µµµ

(k)
φ

)T
)
,

Sφ
t =

m∑

i=1

(
φ(xi)−µµµφ

)(
φ(xi)−µµµφ

)T
,

where µµµ
(k)
φ and µµµφ are the centroids of the k-th class and

the global centroid, respectively, in the feature space.

Let ννν denote the projective function in the feature

space, the corresponding objective function (2) in the
feature space is

νννopt = argmax
νννTSφ

b ννν

νννTSφ
t ννν

, (4)

which can be solved by the eigen-problem:

Sφ
b ννν = λSφ

t ννν.

Because the eigenvectors are linear combinations of φ(xi)

[1][27], there exist coefficients αi such that

ννν =
m∑

i=1

αiφ(xi).
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Let ααα = [α1, · · · , αm]T , it can be proved [1] that Eqn.

(4) is equivalent to:

αααopt = argmax
αααTKWKααα

αααTKKααα
, (5)

and the corresponding eigen-problem is:

KWKααα = λKKααα. (6)

where K is the kernel matrix (Kij = K(xi,xj)) and W
is defined as:

Wij =





1/mk, if xk and xj both belong to

the k-th class;

0, otherwise.

(7)

Each eigenvector ααα gives a projective function ννν in
the feature space. For a data example x, we have

〈ννν, φ(x)〉 =
m∑

i=1

αi〈φ(xi), φ(x)〉

=

m∑

i=1

αiK(xi,x)

= αααTK(:,x)

whereK(:,x)
.
= [K(x1,x), · · · ,K(xm,x)]T . Let {ααα1, · · · ,αααc−1}

be the c − 1 eigenvectors of the eigen-problem in Eqn.

(6) with respect to the non-zero eigenvalues. The trans-
formation matrix Θ = [ααα1, · · · ,αααc−1] is an m× (c− 1)

matrix and a data sample x can be embedded into c−1

dimensional subspace by

x → z = ΘTK(:,x).

The above approach extends LDA into RKHS by

using “kernel trick” is independently developed by Mika

et al . [22] and Baudat et al . [1]. This algorithm was

named as Kernel Fisher Discriminant (KFD) in [22] and
Generalized Discriminant Analysis (GDA) in [1].

2.1 Computational Analysis of KDA

To get a stable solution of the eigen-problem in Eqn.

(6), the matrix KK is required to be non-singular [17].

When K is singular, there are two methods to solve this

problem. The first method is by using eigen-decomposition
of K, which was proposed in [1].

Suppose the rank of K is r(r ≤ m) and the eigen-

decomposition of K is as follows:

K = UΣUT = UrΣrU
T
r

where Σ = diag(σ1, · · · , σm) is the diagonal matrix

of sorted eigenvalues (σ1 ≥ · · · ≥ σm ≥ 0) and U is

the matrix of normalized eigenvectors associated to Σ.

Σr = diag(σ1, · · · , σr) is the diagonal matrix of nonzero

eigenvalues and Ur is the first r columns of U . ThusΣ−1
r

exists and UT
r Ur = I, where I is the identity matrix.

Substituting K in Eqn. (5), we get

αααopt = argmax

(
ΣrU

T
r ααα
)T

UT
r WUr

(
ΣrU

T
r ααα
)

(
ΣrUT

r ααα
)T

UT
r Ur

(
ΣrUT

r ααα
) .

We proceed to variable modification using βββ = ΣrU
T
r ααα

and get:

βββopt = argmax
βββTUT

r WUrβββ

βββTβββ
,

Thus, the optimal βββ’s are the leading eigenvectors of

matrix UT
r WUr. Once βββ’s are calculated, ααα can be com-

puted as ααα = UrΣ
−1
r βββ.

The second method is using the idea of regulariza-

tion, by adding constant values to the diagonal elements

of KK, as KK + γI, for γ > 0. It is easy to see that
KK + γI is nonsingular. This method is used in [22].

By noticing that

KK + γI = UΣUTUΣUT + γI = U(Σ2 + γI)UT ,

we define Σ̃ = (Σ2 + γI)1/2, the objective function of

regularized KDA can be written as:

max
αααTKWKααα

αααT (KK + γI)ααα

=max
αααTUΣUTWUΣUTααα

αααTUΣ̃Σ̃UTααα

=max
βββT Σ̃−1ΣUTWUΣΣ̃−1βββ

βββTβββ

where βββ = Σ̃UTααα. The optimal βββ’s are the leading
eigenvectors of matrix Σ̃−1ΣUTWUΣΣ̃−1. With this

formulation, the above two methods can be computed

in exactly the same way.

To reduce the computation in calculating βββ, we shall

exploit the special structure of W . Without loss of gen-

erality, we assume that the data points are ordered ac-
cording to their labels. It is easy to check that the ma-

trix W has a block-diagonal structure

W =




W (1) 0 · · · 0

0 W (2) · · · 0
...

...
. . .

...

0 0 · · · W (c)


 (8)

where {W (k)}ck=1 is an mk × mk matrix with all the

elements equal to 1/mk.
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We partition them×r matrix Ur as [U
(1)
r , · · · , U (c)

r ]T ,

where U
(k)
r ∈ R

r×mk . Let v
(k)
i be the i-th column vector

of U
(k)
r , we have:

UT
r WUr =

c∑

k=1

U (k)
r W (k)(U (k)

r )T

=

c∑

k=1

1

mk

(
mk∑

i=1

v
(k)
i

mk∑

i=1

(v
(k)
i )T

)

=
c∑

k=1

mkv̄
(k)(v̄(k))T

=HHT

where H =
[√

m1v̄
(1), · · · ,√mcv̄

(c)
]
∈ R

r×c and v̄(k)

is the average vector of v
(k)
i .

To calculate the c leading eigenvectors of HHT , it

is not necessary to work on matrix HHT which is of

size r× r. We can use a much more efficient algorithm.
Suppose the Singular Value Decomposition of H is

H = PΓQT ,

it is easy to check that the column vectors of P are
the eigenvectors of HHT and the column vectors of Q

are the eigenvectors of HTH [32]. Moreover, if P or

Q is given, we can recover the other via the formula

HQ = PΓ and PTH = ΓQT . Since c ≪ r, we can
calculate the c eigenvectors of HTH and then recover

the eigenvectors of HHT , which are βββ’s.

We use the term flam [31], a compound operation

consisting of one addition and one multiplication, to
measure the operation counts. All the kernel methods

need to compute the kernel matrix K which requires

O(m2n) flam, where n is the number of features. The
eigen-decomposition of K requires 9

2m
3 flam [32,17];

Calculating the c − 1 eigenvectors βββ’s requires 9
2c

3 +
3
2mc2 flam; Computing ααα’s from βββ’s requires m2c flam.
Finally, we conclude the time complexity of KDA mea-

sured by flam is

9

2
m3 +m2c+O(m2n) +

3

2
mc2 +

9

2
c3.

Considering m ≫ c, the above time complexity can be

simplified as

9

2
m3 +m2c+O(m2n). (9)

For a large scale problem, we have m ≫ n. Thus, the
time complexity of KDA is determined by 9

2m
3, which

is the cost of eigen-decomposition of size m×m kernel

matrix K.

3 Efficient KDA via Spectral Regression

In order to solve the KDA eigen-problem in Eqn. (6)

efficiently, we use the following theorem:

Theorem 1 Let y be the eigenvector of eigen-problem

Wy = λy (10)

with eigenvalue λ. If Kααα = y, then ααα is the eigenvector

of eigen-problem in Eqn. (6) with the same eigenvalue
λ.

Proof We have Wy = λy. At the left side of Eqn. (6),

replace Kααα by y, we have

KWKααα = KWy = Kλy = λKy = λKKααα

Thus, ααα is the eigenvector of eigen-problem Eqn. (6)

with the same eigenvalue λ.

Theorem 1 shows that instead of solving the eigen-
problem Eqn. (6), the KDA projective functions can be

obtained through two steps:

1. Solve the eigen-problem in Eqn. (10) to get y.

2. Find ααα which satisfies Kααα = y. The kernel matrix

K is positive semi-definite. When K is non-singular

(positive definite), for any given y, we have a unique
ααα = K−1y which satisfies the above linear equations

system. When K is singular, the system may have

no solution or have infinite many solutions (the lin-
ear equations system is underdetermined) [17]. A

possible way is to approximate ααα by solving the fol-

lowing linear equations:

(K + δI)ααα = y (11)

where I is the identity matrix and δ ≥ 0 is the
regularization parameter.

The advantages of this two-step approach are as fol-
lows:

1. We will show later how the eigen-problem in Eqn.
(10) is trivial and we can directly get those eigen-

vectors y.

2. The eigen-decomposition of K is avoided. Since the

matrix K + δI is positive definite, the Cholesky de-
composition can be used to efficiently solve the lin-

ear equations in Eqn. (11) [17], [31]. The computa-

tional complexity analysis will be provided in the
later section.

The linear equations system in Eqn. (11) has a close
connection with regularized regression [36]. We denote

the projective function in the feature space as:

f(x) = 〈ννν, φ(x)〉 =
m∑

i=1

αiK(x,xi)
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It can be easily verified that the solution ααα∗ = (K +

δI)−1y given by equations in Eqn. (11) is the optimal
solution of the following regularized regression problem

[36]:

min
f∈F

m∑

i=1

(
f(xi)− yi

)2
+ δ‖f‖2K (12)

where yi is the i-th element of y, F is the RKHS as-
sociated with Mercer kernel K and ‖ ‖K is the corre-

sponding norm.

Now let us analyze the eigenvectors of W which is

defined in Eqn. (7) and (8). The W is block-diagonal,

thus, its eigenvalues and eigenvectors are the union of

the eigenvalues and eigenvectors of its blocks (the latter
padded appropriately with zeros). It is straightforward

to show that W (k) has eigenvector e(k) ∈ R
mk asso-

ciated with eigenvalue 1, where e(k) = [1, 1, · · · , 1]T .
Also there is only one non-zero eigenvalue of W (k) be-

cause the rank of W (k) is 1. Thus, there are exactly c

eigenvectors of W with the same eigenvalue 1. These
eigenvectors are

yk = [ 0, · · · , 0
︸ ︷︷ ︸

∑
k−1

i=1
mi

, 1, · · · , 1
︸ ︷︷ ︸

mk

, 0, · · · , 0
︸ ︷︷ ︸

∑
c

i=k+1
mi

]T k = 1, · · · , c (13)

Since 1 is a repeated eigenvalue of W , we can just pick

any other c orthogonal vectors in the space spanned by

{yk}, and define them to be our c eigenvectors. The
vector of all ones e is naturally in the spanned space.

This vector is useless since the corresponding projec-

tive function will embed all the samples to the same

point. Therefore, we pick e as our first eigenvector of
W and use Gram-Schmidt process to orthogonalize the

remaining eigenvectors. The vector e can then be re-

moved, which leaves us exactly c−1 eigenvectors of W .
We denote them as:

{ȳk}c−1
k=1, (ȳT

k e = 0, ȳT
i ȳj = 0, i 6= j) (14)

The above two-step approach essentially combines
the spectral analysis of the matrix W and regression

techniques. Therefore, we name this new approach as

Spectral Regression Kernel Discriminant Analysis (SRKDA).

In the following several subsections, we will provide
the theoretical and computational analysis on SRKDA.

Please see [6] for applying the similar technique on Lin-

ear Discriminant Analysis to obtain an efficient algo-
rithm.

3.1 Theoretical Analysis

SRKDA calculates the projective functions through the

linear equations system in Eqn. (11). When the kernel

matrix K is positive definite and the δ = 0, Theorem 1

shows that the c− 1 solutions αααk = K−1yk are exactly
the eigenvectors of the KDA eigen-problem in Eqn. (6)

with respect to the eigenvalue 1. In this case, SRKDA is

equivalent to ordinary KDA. Thus, it is interesting and
important to see when the positive semi-definite kernel

matrix K will be positive definite.

One of the most popular kernels is the Gaussian
RBF kernel, K(xi,xj) = exp(−‖xi − xj‖2/2σ2). Our

discussion in this section will only focus on Gaussian

kernel. Regarding the Gaussian kernel, we have the fol-

lowing lemma:

Lemma 1 (Full Rank of Gaussian RBF Gram

Matrices [21]) Suppose that x1, · · · ,xm are distinct

points, and σ 6= 0. The matrix K given by

Kij = exp(−‖xi − xj‖2/2σ2)

has full rank.

Proof See [21] and Theorem 2.18 in [27].

In other words, the kernel matrix K is positive definite
(provided no two xi are the same).

Thus, we have the following theorem:

Theorem 2 If all the sample vectors are different and

the Gaussian RBF kernel is used, all c − 1 projective
functions in SRKDA are eigenvectors of eigen-problem

in Eqn. (6) with respect to eigenvalue 1 when δ = 0. In

other words, the SRKDA and ordinary KDA are equiv-

alent.

Proof This theorem can be easily proofed by combining

Lemma 1 and Theorem 1.

It is easy to check that the values of the i-th and j-

th entries of any vector y in the space spanned by {yk}
in Eqn. (13) are the same as long as xi and xj belong
to the same class. Thus the i-th and j-th rows of Ȳ are

the same, where Ȳ = [ȳ1, · · · , ȳc−1]. Theorem (1) shows

that when the kernel matrix is positive definite, the c−1
projective functions of KDA are exactly the solutions

of the c − 1 linear equations systems Kαααk = ȳk. Let

Θ = [ααα1, · · · ,αααc−1] be the KDA transformation matrix
which embeds the data points into the KDA subspace

as:

ΘT [K(:,x1), · · · ,K(:,xm)] = Ȳ T .

The columns of matrix Ȳ T are the embedding results

of data samples in the KDA subspace. Thus, the data
points with the same label are corresponding to the

same point in the KDA subspace when the kernel ma-

trix K is positive definite.

These projective functions are optimal in the sense
of separating training samples with different labels. How-

ever, they usually overfit the training set thus may not

be able to perform well for the test samples.
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3.2 Computational Analysis

The computation of SRKDA involves two steps: re-

sponses (ȳk in Eqn. 14) generation and regularized re-
gression. The cost of the first step is mainly the cost

of Gram-Schmidt method, which requires (mc2 − 1
3c

3)

flam [31].

To solve the c− 1 linear equations systems in Eqn.

(11), we can use the Cholesky decomposition, which

uniquely factorizes the positive definite matrix K + δI
in the form K+δI = RTR, where R is upper triangular

with positive diagonal elements. The Cholesky decom-

position requires 1
6m

3 flam [31]. With this Cholesky
decomposition, the c− 1 linear equations can be solved

within m2c flam [31]. Besides solving the SRKDA opti-

mization problem, we also need to compute the kernel

matrix K which requires O(m2n) flam, where n is the
number of features. Thus, the computational cost of

SRKDA is

1

6
m3 +m2c+O(m2n) +mc2 − 1

3
c3,

which can be simplified as

1

6
m3 +m2c+O(m2n).

Comparing to the computational cost of ordinary KDA

in Eqn. (9), SRKDA reduces the dominant part, which

is 9
2m

3 of ordinary KDA, to 1
6m

3; achieves a 27-times
speedup.

4 Incremental KDA via Spectral Regression

Due to the difficulty of designing an incremental so-
lution for the eigen-decomposition on the kernel ma-

trix in KDA, there has been little work on designing

incremental KDA algorithms that can efficiently incor-
porate new data examples as they become available.

The SRKDA algorithm uses regression instead of eigen-

decomposition to solve the optimization problem, which
provides us the chance to develop incremental version

of SRKDA.

The major cost in SRKDA computation is the step
of Cholesky decomposition which requires 1

6m
3 flam.

Fortunately, the Cholesky decomposition can be easily

implemented in the incremental manner [31]. Actually,
Sherman’s march, one of the most popular Cholesky

decomposition algorithms, is implemented in the incre-

mental manner [31].

The procedure of Sherman’s march is illustrated

graphically in Figure 1. The gray area represents the

part of the Cholesky decomposition that has already

Fig. 1 Sherman’s march (Cholesky decomposition)

been computed with R and RT separated by a diag-

onal line1. The white area represents untouched ele-

ments of the original matrix. The thin vertical box rep-
resents the column of R about to be computed. The

algorithm is easy to derive. We show how to proceed

from (m− 1)× (m− 1) submatrix to a m×m matrix.
We have

Km =

(
Km−1 k1m

kT
1m kmm

)

=

(
RT

m−1 0

rT1m rmm

)(
Rm−1 r1m
0 rmm

)
,

which leads to

Km−1 =RT
m−1Rm−1

k1m =RT
m−1r1m

kmm =rT1mr1m + r2mm

When the Cholesky decomposition of the (m − 1) ×
(m− 1) submatrix Km−1 is known, it is easy to get the
Cholesky decomposition of the m×m Km. For detailed

derivation, please see [31].

Now, let us consider the additional computational
cost of incremental SRKDA when ∆m new data sam-

ples are injected to the system which already has m

samples. Comparing to the batch mode of SRKDA, we
can get computational saving on two steps:

1. We only need to calculate the additional part of ker-

nel matrix which requires O(nm∆m+n∆m2) flam;

2. The incremental Cholesky decomposition requires
1
6 (m+∆m)3 − 1

6m
3 flam [31].

Thus, the computation cost of incremental SRKDAmea-

sured by flam is

1

2
m2∆m+

1

2
m∆m2 +

1

6
∆m3 + (m+∆m)2c

+ O(nm∆m+ n∆m2) + (m+∆m)c2 − 1

3
c3.

When ∆m ≪ m and c ≪ m, the above cost can be

simplified as

(
∆m

2
+ c)m2 +O(nm∆m).
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Table 2 Computational complexity of KDA and SRKDA

Algorithm operation counts (flam [31])

Batch mode
KDA 9

2
m3 + cm2 +O(nm2)

SRKDA 1
6
m3 + cm2 +O(nm2)

Incremental KDA 9
2
m3 + cm2 +O(nm∆m)

mode SRKDA (∆m

2
+ c)m2 +O(nm∆m)

m: the number of data samples

n: the number of features
c: the number of classes

∆m: the number of new data samples

We summarize our complexity analysis results in

Table 2. The main conclusions include:

– The ordinary KDA needs to perform eigen-decomposition

on the kernel matrix, which is very computation-

ally expensive. Moreover, it is difficult to develop
incremental algorithm based on the ordinary KDA

formulation. In both batch and incremental modes,

ordinary KDA has the dominant part of the cost as
9
2m

3.

– SRKDA performs regression instead of eigen-decomposition.

In the batch mode, it only has the dominant part

of the cost as 1
6m

3, which is a 27-times speedup of
ordinary KDA. Moreover, it is easy to develop incre-

mental version of SRKDA which only has quadratic-

time complexity with respect to m. This computa-
tional advantage makes SRKDA much more practi-

cal in real world applications.

5 Sparse KDA via Spectral Regression

Since SRKDA uses regression as a building block, vari-

ous kinds of regularization techniques can be easily in-
corporated which makes SRKDA more flexible. In this

section, we will discuss the usage of L1-norm regularizer

to produce a sparse KDA solution.

Recently, there are considerable interests on devel-

oping sparse subspace learning algorithms, i.e., the pro-

jective vectors are sparse. While the traditional linear
subspace learning algorithms (e.g ., PCA, LDA) learn

a set of combined features which are linear combina-

tions of all the original features, sparse linear subspace

learning algorithms can learn the combined features
which are linear combinations of part of the original

features (important ones). Such parsimony not only pro-

duces a set of projective functions that are easy to in-
terpret but also leads to better performance [37,25].

1 Actually, we only need to store R.

Zou et al . [37] proposed an elegant sparse PCA al-

gorithm (SPCA) using their “Elastic Net” framework
for L1-penalized regression on regular principle com-

ponents, solved very efficiently using least angle regres-

sion (LARS) [13]. Subsequently, d’Aspremont et al . [11]
relaxed the hard cardinality constraint and solved for

a convex approximation using semi-definite program-

ming. In [24,25], Moghaddam et al . proposed a spectral
bounds framework for sparse subspace learning. Partic-

ularly, they proposed both exact and greedy algorithms

for sparse PCA and sparse LDA.

The projective function of a kernel subspace learn-
ing algorithm can be written as

f(x) = αααTK(:,x) =

m∑

i=1

αiK(xi,x). (15)

In the ordinary kernel subspace learning algorithms, αi

are usually nonzero and the projective function is de-

pendent on all the samples in the training set. When

we aim at learning a sparse function (sparse ααα), many

αi will equal to zero. Thus, the projective function will
only depend on part of the training samples. From this

sense, the sparse kernel subspace learning algorithms

share the similar idea of Support Vector Machines [36].
Those samples with non-zero αi can also be called as

support vectors. One advantage of this parsimony is

that it requires less storage for the model and less com-
putational time in the testing phase.

Following [25], the objective function of Sparse Ker-

nel Discriminant Analysis (SparseKDA) can be defined

as the following cardinality-constrained optimization:

max αααTKWKααα
αααTKKααα

subject to card(ααα) = k
(16)

The feasible set is all sparse ααα ∈ R
m with k non-zero

elements and card(ααα) as their L0-norm. Unfortunately,

this optimization problem is NP-hard and generally in-
tractable .

In [24,25], Moghaddam et al . proposed a spectral

bounds framework for sparse subspace learning. Partic-

ularly, they proposed both exact and greedy algorithms
for sparse PCA and sparse LDA. Their spectral bounds

framework is based on the following optimal condition

of the sparse solution.
For simplicity, we define A = KWK and B = KK.

A sparse vector ααα ∈ R
m with cardinality k yielding the

maximum objective value in Eqn. (16) would necessar-
ily imply that

λmax =
αααTAααα

αααTBααα
=

βββTAkβββ

βββTBkβββ

where βββ ∈ R
k contains the k non-zero elements in ααα and

the k × k principle sub-matrices of A and B obtained
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by deleting the rows and columns corresponding to the

zero indices of ααα. The k-dimensional quadratic form in
βββ is equivalent to a standard unconstrained generalized

Rayleigh quotient, which can be solved by a generalized

eigen-problem.
The above observation gives the exact algorithm for

sparse subspace learning: a discrete search for the k in-

dices which maximize λmax of the subproblem (Ak, Bk).
However, such observation does not suggest an efficient

algorithm because an exhaustive search is still NP-hard.

To solve this problem, Moghaddam et al . proposed an

efficient greedy algorithm which combines backward elim-
ination and forward selection [24,25]. However, there

are two major drawbacks of their approach:

1. Even their algorithm is a greedy one, the cost of

backward elimination is with complexity O(m4)[25].

2. In reality, more than one projective functions are
usually necessary for subspace learning. However,

the optimal condition of the sparse solution only

gives the guide to find ONE sparse “eigenvector”,
which is the first projective function. It is unclear

how to find the following projective functions. Al-

though [24] suggests to use recursive deflation, the

sparseness of the following projective functions is
not guaranteed.

Our SRKDA algorithm uses the regression instead

of eigen-decomposition to solve the optimization prob-
lem. Thus, it provides us the chance to develop more

efficient sparse KDA algorithm.

Recall the second step of SRKDA, which is solving
the linear equations system Kααα = y. Essentially, we try

to solve a regression problem:

min
ααα

m∑

i=1

(
K(:,xi)

Tααα− yi

)2

where K(:,xi) is the i-th column of K and yi is the i-th

element of y. We can add different regularizers to get

different solutions with desired properties. The SRKDA

algorithm we described in the previous section essen-
tially adds a L2-norm regularizer. We can also use a

L1-norm regularizer:

min
ααα

(
m∑

i=1

(
K(:,xi)

Tααα− yi

)2
+ δ

m∑

i=1

|αi|
)

(17)

which is usually referred as lasso regression [18]. Due to

the nature of the L1 penalty, some coefficients αi will

be shrunk to exact zero if δ is large enough. Therefore,

the lasso produces a sparse projective function, which
is exactly what we want.

By using the Least Angel Regression (LARS) algo-

rithm [13], the entire solution path (the solutions with

Table 3 Statistics of the three data sets

dataset dim (n)
train test # of

size (m) size classes (c)

Isolet 617 6238 1559 26

USPS 256 7291 2007 10

PIE 1024 8000 3554 68

all the possible cardinality on ααα) of the regression prob-

lem in Eqn. (17) can be computed in O(m3). Thus,

SRKDA with a L1-norm regularizer provides us an ef-
ficient algorithm to compute the sparse KDA solution.

6 Experimental Results

In this section, we investigate the performance of our

proposed SRKDA algorithm in batch mode, incremen-
tal mode and sparse mode. All of our experiments have

been performed on a P4 3.20GHz Windows XP machine

with 2GB memory. For the purpose of reproducibility,
we provide all the algorithms used in these experiments

at:

http://www.zjucadcg.cn/dengcai/Data/data.html

6.1 Datasets

Three datasets are used in our experimental study, in-

cluding spoken letter, handwritten digit image, and face
image data sets. The important statistics of three datasets

are summarized below (see also Table 3):

– The Isolet spoken letter recognition database2 was

first used in [14]. It contains 150 subjects who spoke

the name of each letter of the alphabet twice. The
speakers are grouped into sets of 30 speakers each,

and are referred to as isolet1 through isolet5. In the

past usage [14][12], isolet1&2&3&4 were used as the
training set and isolet5 was used as the test set.

For the purposes of our experiment, we also choose

isolet5 as the test set and perform several runs with
isolet1, isolet1&2, isolet1&2&3, and isolet1&2&3&4

as the training set respectively.

– The USPS handwritten digit database is described

in [19]. A popular subset 3 contains 9298 16 × 16
handwritten digit images in total, which is then split

into 7291 training images and 2007 test images. In

our experiment, we train all the algorithms on the
first 1500 (3000, 4500, 6000, and 7291) images in the

training set and test on the 2007 test images.

2 http://www.ics.uci.edu/∼mlearn/MLSummary.html
3 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html#usps
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– The CMU PIE face database4 contains 68 subjects

with 41,368 face images as a whole. The face images
were captured under varying pose, illumination and

expression. In our experiment, the five near frontal

poses (C05, C07, C09, C27, C29) under different il-
luminations and expressions are used which leaves

us 11,554 face images. All the images are manually

aligned and cropped. The cropped images are 32×32
pixels, with 256 gray levels per pixel5. Among the

11,554 images, 8,000 images are used as the train-

ing set and the remaining 3,554 images are used for

testing. We also run several cases by training all the
algorithms on the first 2000, 3000, · · · , 8000 images

in the training set.

6.2 Compared algorithms

Four algorithms which are compared in our experiments

are listed below:

1. Linear Discriminant Analysis (LDA) [15], which pro-

vides us a baseline performance of linear algorithms.

We can examine the usefulness of kernel approaches

by comparing the performance of KDA and LDA.
2. Kernel Discriminant Analysis (KDA) as discussed

in Section 2. We test the regularized version and

choose the regularization parameter δ by five fold
cross-validation on the training set.

3. Spectral Regression Kernel Discriminant Analysis

(SRKDA), our approach proposed in this paper.
The regularization parameter δ is also chosen by

five fold cross-validation on the training set.

4. Support Vector Machine (SVM) [36], which is be-

lieved as one of the state-of-the-art classification al-
gorithms. Specifically, we use the LibSVM system

[10] which implements the multi-class classification

with one versus one strategy. SVM is used to get the
sense that how good the performance of KDA is.

We use the Gaussian RBF kernel for all the kernel-

based methods. We tune the kernel width parameter σ
and large margin parameter C in SVM to achieve best

testing performance for SVM. Then, the same kernel

width parameter σ is used in all the other kernel-based
algorithms.

6.3 Results

The classification error rate as well as the training time
(second) for each method on the three data sets are

reported on the Table (4 ∼ 6) respectively.

4 http://www.ri.cmu.edu/projects/project 418.html
5 http://www.zjucadcg.cn/dengcai/Data/FaceData.html

The main observations from the performance com-

parisons include:

– The Kernel Discriminant Analysis model is very ef-

fective in classification. SRKDA has the best per-

formance for almost all the cases in all the three
data sets (even better than SVM). For Isolet data

set, previous study [12] reported the minimum error

rate training on Isolet1+2+3+4 by OPT6 with 30

bit ECOC is 3.27%. KDA (SRKDA) achieved better
performance in our experiment for this train/test

split. For USPS data set, previous studies [27] re-

ported error rate 3.7% for KDA and 4.0% for SVM,
slightly better than the results in our experiment.

For all the cases, KDA (SRKDA) achieved signif-

icantly better performance than LDA, which sug-
gests the effectiveness of kernel approaches.

– Since the eigen-decomposition of the kernel matrix

is involved, the ordinary KDA is computationally

expensive in training. SRKDA uses regression in-
stead of eigen-decomposition to solve the optimiza-

tion problem, and thus achieves significant speedup

comparing to ordinary KDA. The empirical results
are consistent with the theoretical estimation of the

efficiency. The time of training SRKDA is compa-

rable with that of training SVM. SRKDA is faster
than SVM on Isolet and PIE data sets, while slower

than SVM on USPS data set. This is because the

time of training SVM is dependant with the number

of support vectors [2]. For some data sets with lots
of noise (e.g ., USPS), the number of support vectors

is far less than the number of samples. In this case,

SVM can be trained very fast.

6.4 Experiments on Incremental KDA

In this experiment, we study the computational cost

of SRKDA performing in the incremental manner. The
USPS and PIE data sets are used. We start from the

training set with the size of 1000 (the first 1000 sam-

ples in the whole training set) and increase the training

size by 200 for each step. SRKDA is then performed in
the incremental manner. It is important to note that

SRKDA in the incremental manner gives the exactly

same projective functions as the SRKDA in the batch
mode. Thus, we only care about the computational

costs in this experiment.

Figure 2 and 3 shows log-log plots of how CPU-time
of KDA (SRKDA, incremental SRKDA) increases with

the size of the training set on USPS and PIE data set

respectively. Lines in a log-log plot correspond to poly-

nomial growth O(md), where d corresponds to the slope

6 Conjugate-gradient implementation of back-propagation
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Table 4 Performance comparisons on Isolet dataset

Error (%) Time (s)
Speedup

Training Set LDA KDA SRKDA SVM LDA KDA SRKDA SVM

Isolet1 15.27 11.74 12.89 12.51 1.93 18.86 1.21 4.75 15.6

Isolet1+2 6.61 3.79 3.85 4.11 2.14 134.6 5.51 13.79 24.4
Isolet1+2+3 5.90 2.99 3.08 3.34 2.37 451.6 14.09 23.84 32.1

Isolet1+2+3+4 5.71 2.82 2.89 3.27 2.56 991.2 27.86 34.82 35.6
∗Column labeled “Speedup” shows how many times faster the SRKDA is

(comparing to ordinary KDA).

Table 5 Performance comparisons on USPS dataset

Error (%) Time (s)
Speedup

Training Set LDA KDA SRKDA SVM LDA KDA SRKDA SVM

1500 10.61 6.58 5.88 6.85 0.21 14.97 0.92 0.78 16.3

3000 9.77 5.53 5.38 5.58 0.27 111.9 4.35 2.20 25.7

4500 9.52 5.53 4.88 5.13 0.34 354.3 11.29 4.06 31.4

6000 9.92 5.03 4.43 5.08 0.40 825.3 22.74 6.22 36.3
7291 10.26 4.83 4.04 4.83 0.47 1553.6 37.59 8.18 41.3

Table 6 Performance comparisons on PIE dataset

Error (%) Time (s)
Speedup

Training Set LDA KDA SRKDA SVM LDA KDA SRKDA SVM

2000 5.29 5.18 4.81 6.30 8.77 36.51 2.47 24.13 14.8
3000 4.61 4.25 3.94 4.70 9.06 116.9 5.39 43.99 21.7

4000 4.14 5.53 3.24 3.74 9.42 256.6 10.35 68.43 24.8
5000 3.85 3.23 2.90 3.29 9.73 502.3 17.40 96.26 28.9

6000 3.57 2.91 2.53 2.84 10.06 830.7 27.21 125.6 30.5
7000 3.40 2.65 2.19 2.64 10.39 1340.9 38.65 155.6 34.7

8000 3.35 2.41 2.17 2.34 10.79 1908.1 53.75 186.7 35.5

of the line. The ordinary KDA scales roughly O(m2.9),

which is slightly better than the theoretical estimation.
SRKDA in the batch mode has better scaling, which

is also better than theoretical estimation with roughly

O(m2.6) over much of the range. This explains why

SRKDA can be more than 27 times faster than ordi-
nary KDA in the previous experiments. The SRKDA

in the incremental mode has the best scaling, which is

(to some surprise) better than quadratic with roughly
O(m1.8) over much of the range.

6.5 Experiments on Sparse KDA

In this experiment, we study the performance of SRKDA

performing in the sparse mode, i.e., the SRKDA with
L1-norm regularizer to produce the sparse KDA solu-

tion. To the best of our knowledge, there is no other

published method to generate a sparse KDA solution.
Moghaddam’s sparse LDA approach [25] can be mod-

ified to generate the sparse KDA solution. However,

as we pointed out in the last section, their approach

can only generate ONE sparse projective function and
is only suitable for binary class problem, while all the

three data sets studied in this paper are multi-class data

sets.
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Fig. 2 Computational cost of KDA, batch SRKDA and incre-
mental SRKDA on the USPS data set.

Table (7), (8) and (9) show the classification error

rate of SRKDA in sparse mode on the three data sets re-
spectively. By using the Least Angel Regression (LARS)

algorithm [13], the entire solution path (the solutions

with all the possible cardinality on the projective func-

tion ααα) can be computed. After this, we use cross vali-
dation to select the optimal cardinality of the projective

function in the experiment. We also show the sparsity

of the projective function of SRKDA(sparse) in the ta-
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Fig. 3 Computational cost of KDA, batch SRKDA and incre-
mental SRKDA on the PIE data set.

Table 7 Classification error on Isolet dataset

Error (%) Sparsity
Training Set KDA SRKDA SRKDA(Sparse)

Isolet1 11.74 12.89 11.74 60%

Isolet1+2 3.79 3.85 3.59 60%
Isolet1+2+3 2.99 3.08 2.82 60%

Isolet1+2+3+4 2.82 2.89 2.82 60%

Table 8 Classification error on USPS dataset

Error (%) Sparsity
Training Set KDA SRKDA SRKDA(Sparse)

1500 6.58 5.88 5.83 60%

3000 5.53 5.38 5.13 60%
4500 5.53 4.88 4.73 60%
6000 5.03 4.43 4.04 60%
7291 4.83 4.04 3.94 60%

Table 9 Classification error on PIE dataset

Error (%) Sparsity

Training Set KDA SRKDA SRKDA(Sparse)

2000 5.18 4.81 4.73 60%
3000 4.25 3.94 3.71 60%

4000 5.53 3.24 3.12 60%

5000 3.23 2.90 2.81 60%

6000 2.91 2.53 2.44 60%
7000 2.65 2.19 2.17 60%

8000 2.41 2.17 2.14 60%

bles. The sparsity is defined as the percentage of zero

entries in a projective vector. For ordinary KDA and

SRKDA, the projective functions (vectors) are dense
and the sparsity is zero.

As can be seen, the SRKDA(sparse) generates much

more parsimonious model. The sparsity of the projec-

tive function in SRKDA(sparse)is 60%, which means
the number of the “support vectors” is less than half of

the total training samples. Moreover, such parsimony

leads to better performance. In all the cases, the per-

formance of SRKDA(sparse) is better than that of the

ordinary KDA and SRKDA.

7 Conclusions

In this paper, we propose a novel algorithm for kernel

discriminant analysis, called Spectral Regression Ker-

nel Discriminant Analysis (SRKDA). Our algorithm is
developed from a graph embedding viewpoint of KDA

problem. It combines the spectral graph analysis and

regression to provide an efficient approach for kernel

discriminant analysis. Specifically, SRKDA only needs
to solve a set of regularized regression problems and

there is no eigenvector computation involved, which is

a huge save of computational cost. The theoretical anal-
ysis shows that SRKDA can achieve 27-times speedup

over the ordinary KDA. Moreover, the new formulation

makes it very easy to develop incremental version of the
algorithm which can fully utilize the computational re-

sults of the existing training samples. With incremental

implementation, the computational cost of SRKDA re-

duces to quadratic-time complexity. Since SRKDA uses
regression as a building block, various kinds of regular-

ization techniques can be easily incorporated (e.g ., L1-

norm regularizer to produce sparse projections). Our
approach provides a huge possibility to develop new

variations of kernel discriminant analysis. Extensive ex-

perimental results show that our method consistently
outperforms the other state-of-the-art KDA extensions

considering both effectiveness and efficiency.
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