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Abstract

We propose a novel document clustering method, which aims to cluster the docu-

ments into different semantic classes. The document space is generally of high dimen-

sionality, and clustering in such a high dimensional space is often infeasible due to the

curse of dimensionality. By using Locality Preserving Indexing (LPI), the documents

can be projected into a lower dimensional semantic space in which the documents re-

lated to the same semantics are close to each other. Different from previous document

clustering methods based on Latent Semantic Indexing (LSI) or Non-negative Matrix

Factorization (NMF), our method tries to discover both the geometric and discriminat-

ing structures of the document space. Theoretical analysis of our method shows that

LPI is an unsupervised approximation of the supervised Linear Discriminant Analysis

(LDA) method which give the intuitive motivation of our method. Extensive experi-

mental evaluations are performed on Reuters-21578 and TDT2 data sets.
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1 INTRODUCTION

Document clustering is one of the most crucial techniques to organize the documents in an

unsupervised manner. It received a lot of attentions in recent years [18][28][27][17][24].

Many clustering methods have been proposed, such as k-means [20], näıve Bayes or

Gaussian mixture model [16][1][18], single-link [16] and DBSCAN [11]. From different per-

spectives, these clustering methods can be classified into agglomerative or divisive, hard or

fuzzy, deterministic or stochastic. The typical data clustering tasks are directly performed in

the data space. However, the document space is always of very high dimensionality, ranging

from several hundreds to thousands. Due to the consideration of the curse of dimensionality,

it is desirable to first project the documents into a lower dimensional subspace in which the
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semantic structure of the document space becomes clear. In the low dimensional seman-

tic space, the traditional clustering algorithms can be then applied. To this end, spectral

clustering [23][21], clustering using LSI [29] and clustering based on non-negative matrix

factorization [28][27] are most well-known techniques.

Some recently work on spectral clustering shows its capability to handle highly non-linear

data (the data space has high curvature at every local area). Also, its strong connections to

differential geometry make it capable of discovering the manifold structure of the document

space. The spectral clustering usually cluster the data points using the top eigenvectors

of graph Laplacian, which is defined on the affinity matrix of data points. From the graph

partitioning perspective, the spectral clustering tries to find the best cut of the graph so that

the predefined criterion function can be optimized. Many criterion functions, such as the

ratio cut [4], average association [23], normalized cut [23], and min-max cut [8] have been

proposed along with the corresponding eigen-problem for finding their optimal solutions.

From the perspective of dimensionality reduction, spectral clustering embeds the data points

into a low dimensional space where the traditional clustering algorithm (e.g., k-means) is

then applied. One major drawback of these spectral clustering algorithms might be that they

use the non-linear embedding (dimensionality reduction) which is only defined on “training”

data. They have to use all the data points to learn the embedding. When the data set

is very large, to learn such an embedding is computational expensive, which restricts the

application of spectral clustering on large data set.

Latent Semantic Indexing (LSI) [7] is one of the most popular linear document indexing

methods which produces low dimensional representations. LSI aims to find the best sub-

space approximation to the original document space in the sense of minimizing the global

reconstruction error. In other words, LSI seeks to uncover the most representative features

rather the most discriminative features for document representation. Therefore, LSI might

not be optimal in discriminating documents with different semantics which is the ultimate

goal of clustering.

Recently, Xu et al. applied the Non-negative Matrix Factorization (NMF) algorithm for
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document clustering [28][27]. They model each cluster as a linear combination of the data

points, and each data point as a linear combination of the clusters. And they compute

the linear coefficients by minimizing the global reconstruction error of the data points using

Non-negative Matrix Factorization. Thus, NMF method still focuses on the global geomet-

rical structure of document space. Moreover, the iterative update method for solving NMF

problem is computational expensive.

In this paper, we propose a novel document clustering algorithm by using Locality Pre-

serving Indexing (LPI). Different from LSI which aims to discover the global Euclidean

structure, LPI aims to discover the local geometrical structure. LPI can have more discrimi-

nating power. Thus, the documents related to the same semantics are close to each other in

the low dimensional representation space. Also, LPI is derived by finding the optimal linear

approximations to the eigenfunctions of the Laplace Beltrami operator on the document

manifold. Laplace Beltrami operator takes the second order derivatives of the functions on

the manifolds. It evaluates the smoothness of the functions. Therefore, it can discover the

non-linear manifold structure to some extent. Some theoretical justifications can be traced

back to [15][14]. The original LPI is not optimal in the sense of computation in that the

obtained basis functions might contain a trivial solution. The trivial solution contains no

information and thus useless for document indexing. A modified LPI is proposed to obtain

better document representations. In this low dimensional space, we then apply traditional

clustering algorithms such as k-means to cluster the documents into semantically different

classes.

The rest of this paper is organized as follows: In Section 2, we give a brief review of LSI

and LPI. Section 3 introduces our proposed document clustering algorithm. Some theoretical

analysis is provided in Section 4. The experimental results are shown in Section 5. Finally,

we give concluding remarks and future work in Section 6.
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2 A BRIEF REVIEW OF LSI AND LPI

LSI is one of the most popular algorithms for document indexing. It is fundamentally based

on SVD (Singular Value Decomposition). Given a set of documents x1, · · · ,xn ∈ R
m, they

can be represented as a term-document matrix X = [x1,x2, · · · ,xn]. Suppose the rank of X

is r, LSI decomposes the X using SVD as follows:

X = UΣV T ,

where Σ = diag(σ1, · · · , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr are the singular values of X, U =

[a1, · · · , ar] and ai is called left singular vector, V = [v1, · · · ,vr] and vi is called right

singular vector. LSI use the first k vectors in U as the transformation matrix to embed the

original documents into a k dimensional subspace. It can be easily checked that the column

vectors of U are the eigenvectors of XXT . The basic idea of LSI is to extract the most

representative features and at the same time the reconstruction error can be minimized. Let

a be the transformation vector. The objective function of LSI can be stated below:

aopt = arg min
a

‖X − aaT X‖2

= arg max
a

aT XXTa,

with the constraint

aTa = 1.

Since XXT is symmetric, the basis functions of LSI are orthogonal. It would be important

to note that XXT becomes the data covariance matrix if the data points have a zero mean,

i.e., Xe = 0 where e = [1, · · · , 1]T . In such a case, LSI is identical to Principal Component

Analysis [10]. More details on theoretical interpretations of LSI using SVD can refer to

[2][9][22].

Different from LSI which aims to extract the most representative features, LPI aims to

extract the most discriminative features. Given a similarity matrix S, LPI can be obtained
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by solving the following minimization problem:

aopt = arg min
a

m∑

i=1

m∑

j=1

(
aTxi − aTxj

)2
Sij

= arg min
a

aT XLXTa,

with the constraint

aT XDXTa = 1,

where L = D−S is the graph Laplacian [5] and Dii =
∑

j Sij. Dii measures the local density

around xi. LPI constructs the similarity matrix S as:

Sij =





xT
i xj, if xi is among the p nearest neighbors of xj

or xj is among the p nearest neighbors of xi

0, otherwise.

Thus, the objective function in LPI incurs a heavy penalty if neighboring points xi and xj

are mapped far apart. Therefore, minimizing it is an attempt to ensure that if xi and xj are

“close” then yi (= aTxi) and yj (= aTxj) are close as well [14]. Finally, the basis functions of

LPI are the eigenvectors associated with the smallest eigenvalues of the following generalized

eigen-problem:

XLXTa = λXDXTa.

3 THE PROPOSED METHOD

In this section, we describe our clustering algorithm which can be thought of as a combination

of subspace learning and k-means. We begin with the motivations of our work.

3.1 Motivation

In this section, we will provide some motivations about the reasoning of LPI follow by a

traditional clustering algorithm like k-means.
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Generally, the document space is of high dimensionality, typically ranging from several

thousands to tens of thousands. Learning in such a high dimensional space is extremely

difficult due to the curse of dimensionality. Thus, document clustering necessitates some

form of dimensionality reduction. One of the basic assumptions behind data clustering is

that, if two data points are close to each other in the high dimensional space, they tend to

be grouped into the same cluster. Therefore, the optimal document indexing method should

be able to discover the local geometrical structure of the document space. To this end,

the LPI algorithm is of particular interest. LSI is optimal in the sense of reconstruction.

It respects the global Euclidean structure while fails to discover the intrinsic geometrical

structure especially when the document space is non-linear, see [14] for details.

Another consideration is due to the discriminating power. One can expect that the docu-

ments should be projected into the subspace in which the documents with different semantics

can be well separated while the documents with common semantics can be clustered. As

indicated in [14], LPI is an optimal unsupervised approximation to the Linear Discriminant

Analysis algorithm which is supervised. Therefore, LPI can have more discriminant power

than LSI. There are some other linear subspace learning algorithms such as informed projec-

tion [6] and Linear Dependent Dimensionality Reduction [25]. However, none of them has

shown discriminating power.

Finally, it would be interesting to note that LPI is fundamentally based on manifold

theory [14][15]. LPI tries to find a linear approximation to the eigenfunctions of the Laplace

Beltrami operator on the compact Riemannian manifold, see [15] for details. Therefore, LPI

is capable of discovering the nonlinear structure of the document space to some extent.

3.2 Clustering Based on Locality Preserving Indexing

Given a set of documents x1, x2, · · · , xn ∈ R
m. Suppose xi has been normalized to 1,

thus the dot product of two document vectors is exactly the cosine similarity of the two

documents. Our clustering algorithm is performed as follows:
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1. Constructing the adjacency graph: Let G denote a graph with n nodes. The i-th

node corresponds to the document xi. We put an edge between nodes i and j if xi

and xj are “close”, i.e. xi is among p nearest neighbors of xj or xj is among p nearest

neighbors of xi. Some fast p nearest neighbor search algorithms can be used here to

improve the overall speed [12][30].

2. Choosing the weights: If nodes i and j are connected, put

Sij = xT
i xj.

Otherwise, put Sij = 0. The weight matrix S of graph G models the local structure of

the document space. We define D as a diagonal matrix whose entries are column (or

row, since S is symmetric) sums of S, i.e., Dii =
∑

j Sji. We also define L = D − S,

which is called the Laplacian matrix in spectral graph theory [5].

3. Data Preprocessing and SVD Projection: We remove the weighted mean of x

from each x

x̂ = x − x̄, x̄ =
1

(
∑

i Dii)

(
∑

i

xiDii

)
,

and project the document vector into the SVD subspace by throwing away those zero

singular values.

X̂ = UΣV T ,

where X̂ = [x̂1, · · · , x̂n]. We denote the transformation matrix of SVD by WSV D, i.e.,

WSV D = U . After SVD projection, the document vector x̂ becomes x̃:

x̃ = W T
SV Dx̂.

After this step, the term-document matrix X becomes X̃ = [x̃1, · · · , x̃n].

4. LPI Projection: Compute the eigenvectors and eigenvalues for the generalized eigen-

problem:

X̃LX̃Ta = λX̃DX̃Ta. (1)
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Let WLPI = [a1, · · · , ak] be the solutions of Eq. (1), ordered according to their eigen-

values, λ1 ≤ λ2 ≤ · · · ≤ λk. Thus, the embedding is as follows:

x → y = W T x̂,

W = WSV DWLPI , and x̂ = x −
1

(
∑

i Dii)

(
∑

i

xiDii

)
,

where y is a k-dimensional representation of the document x. W is the transformation

matrix.

5. Clustering in the Lower Dimensional Semantic Space: Now we get lower di-

mensional representations of the original documents. In the reduced semantic space,

those documents belonging to the same underlying class are close to one another. The

traditional clustering methods (we choose k-means in this paper) can be applied in the

reduced semantic space. The connection between LPI and LDA motivates us to use

k − 1 eigenvectors where k is the number of clusters [14][10].

3.3 Computational Analysis

In this section, we provide a computational analysis of our algorithm. One of the major

modifications over the original LPI [14] lies in the third step of our algorithm. In the new

algorithm, we remove the weighted mean of the document vectors and use SVD to ensure

that the term-document matrix X̃ is of full rank in row.

Making the matrix X̃ of full rank in row can guarantee that the matrix X̃DX̃T is positive

definite, which is necessary in solving the generalized eigen-problem (Eq. (1)) in the fourth

step [13].

In the following, we discuss why it is necessary to remove the weighted mean from the

original document vectors. We first analyze the properties of the eigenvector of the eigen-

problem (Eq. (1)). Let 1 = [1, 1, · · · , 1]T . We have the following theorem.

Theorem 1 If there exists a0 which satisfies X̃Ta0 = 1 (in other words, the vector 1 in the
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space spanned by the column vectors of X̃T ), a0 is the eigenvector of Eq. (1) with respect to

eigenvalue 0.

Proof

X̃LX̃Ta0 = X̃(D − S)1 = X̃(D1 − S1)

= X̃0 = 0 = 0X̃DX̃Ta0.

Therefore, a0 is the eigenvector of Eq. (1) with respect to eigenvalue 0.

Since the matrices X̃LX̃T and X̃DX̃T are both positive semi-definite, the eigenvalues

of Eq. (1) are no less than zero. Therefore, a0 will be the first eigenvector. However, it is

clearly of no use for document representation since all the document vectors collapse into a

single point along this direction.

The LPI eigen-problem (Eq. (1)) can be written as the Rayleigh Quotient format [13]:

a0 = arg min
a

aT X̃LX̃Ta

aT X̃DX̃Ta
, and ai = arg min

aT
i
eXD eXT aj=0, 0≤j<i

aT X̃LX̃Ta

aT X̃DX̃Ta
.

If 1 is in the space spanned by the column vectors of X̃T , the eigenvectors of LPI eigen-

problem (Eq. (1)) have the following property:

X̃Ta0 = 1 and aT
i X̃D1 = 0, i > 0. (2)

Now let us consider the data preprocessing step of our algorithm. We can show that, after

removing the weighted mean of document vectors, for any vector a, aT X̃D1 = 0.

aT X̃D1 = aT W T
SV DX̂D1 = aT W T

SV D[x̂1, x̂2, · · · , x̂n]D1

= aT W T
SV D(

∑

i

x̂iDii) = aT W T
SV D(

∑

i

xDii −
∑

i

x̄Dii)

= aT W T
SV D(

∑

i

xDii − x̄
∑

i

Dii)

= aT W T
SV D0 = 0.

Thus the preprocessing step of our algorithm can guarantee that the solutions of Eq. (1) will

not contain the trivial eigenvector as described above and all the eigenvectors will satisfy

the second part of Eq. (2).
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4 THEORETICAL ANALYSIS

In this section we give the theoretical analysis of our algorithm. First, we will discuss the

relationship between LPI, LSI and LDA. We will show that the key difference between them

is the different ways to construct the adjacency graph. The adjacency graph construction in

LPI gives a best approximation to LDA which is supervised. Second, our clustering algorithm

has intrinsic connections to spectral clustering and manifold learning. This makes it clear

that our algorithm is capable of dealing with complex data.

4.1 Relationship Between LPI and LSI

LPI is essentially obtained from a graph model. The graph structure represents the geo-

metrical structure of the document space. In our algorithm, a p-nearest neighbor graph is

constructed to discover the local manifold structure. Intuitively, LPI with a complete graph

should discover the global structure. In this subsection, we present a theoretical analysis on

the relationship between LPI and LSI. Specifically, we show that LPI with a complete graph

is similar to LSI.

As shown in Section 2, LSI tries to solve the maximum eigenvalue problem:

XXTa = λa.

In LPI, recall that the weight on an edge linking xi and xj is set to their inner product

xT
i xj. Thus, the affinity matrix S of the complete graph can be written as XT X. Since

we first apply SVD to remove the components corresponding to the zero singular value, the

matrix XXT is of full rank. The generalized minimum eigenvalue problem of LPI can be

written as follows:

XLXTa = λXDXTa

⇒ X(D − S)XTa = λXDXTa

⇒ XSXTa = (1 − λ)XDXTa

⇒ XXT XXTa = (1 − λ)XDXTa. (3)
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If we assume the diagonal matrix D is close to the identity matrix, XDXT ≈ XXT , the

minimum eigenvalues of Eq. (3) correspond to the maximum eigenvalues of the following

equation:

XXT XXTa = λXXTa.

Since XXT is of full rank, we get:

XXTa = λa,

which is just the eigenvalue problem of LSI. The above analysis shows that LPI with a

complete graph is actually similar to LSI. Both of them discover the global structure. The

only difference is that there is a diagonal matrix D in LPI which reflects the importance of

the different document vectors. In LSI, every document vector is treated equally important.

In LPI, the weight of document xi is Dii. We define x̄ = 1
n

∑n
i=1 xi as the center vector of

these document vectors. In complete graph situation, we have

Dii =
n∑

j=1

Sij =
n∑

j=1

(XT X)ij =
n∑

j=1

xT
i xj

= xT
i

n∑

j=1

xj = nxT
i x̄ = δxT

i

x̄

||x̄||
,

where δ = n||x̄|| is a constant. Note that all the xi’s are normalized to 1. Thus they

are distributed on a unit hypersphere. x̄/||x̄|| is also on this unit hypersphere. Thus, Dii

evaluates the cosine of the angle between vectors xi and x̄. In other words, Dii evaluates the

cosine similarity between document xi and the center. The closer to the center the document

is, the larger weight it has. Some previous studies [28] show that such D will improve the

performance and our experiments will also show this.

4.2 Relationship Between LPI and LDA

In supervised mode, the label information is available, so we can apply Linear Discriminant

Analysis (LDA) to reduce the document space to a low dimensional space in which the

documents of different classes are far from each other and at the same time the documents

of the same class are close to each other. LDA is optimal in the sense of discrimination.
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Suppose the data points belong to k classes. LDA can be obtained by solving the following

maximization problem:

aopt = arg max
a

|aT Sba|

|aT Swa|
,

Sb =
k∑

i=1

ni

(
mi − m

) (
mi − m

)T
, and

Sw =
k∑

i=1

(
ni∑

j=1

(
xi

j − mi
) (

xi
j − mi

)T
)

.

This leads to the following generalized maximum eigenvalue problem:

Sba = λSwa, (4)

where m is the total sample mean vector, ni is the number of samples in the ith class, mi is

the average vector of the ith class, and xi
j is the jth sample in the ith class. We call Sw the

within-class scatter matrix and Sb the between-class scatter matrix.

We define:

Wij =





1
nl

, if xi and xj both belong to the lth class;

0, otherwise
(5)

and

Dij =





∑
j Wij, if i = j

0, if i 6= j.

It is easy to check that the row sum of W is 1, therefore the diagonal matrix D is exactly

the identity matrix I.

L = D − W = I − W.

With some algebraic steps [14], we can show that: if the sample mean is zero, the eigen-

problem of Eq. (4) is equivalent to

XLXTa = λXXTa. (6)

This analysis tells us that if the affinity matrix S in LPI is defined as the W in Eq. (5),

the result of LPI will be identical to the LDA.
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In clustering scenario, the label information is not available. Therefore, the matrix W

is unknown. However, based on the assumption that neighboring points probably belong

to the same underlying class, the affinity matrix S in our LPI algorithm gives an optimal

approximation to the similarity matrix W in Eq. (5). Even though the label information is

not available, we can still discover the discriminating structure to some extent by using LPI.

Thus, in the subspace obtained by LPI, those data points belonging to the same underlying

class are close to one another. Note that, an upper bound of the number of non-zero eigen-

values of LDA is k − 1 where k is the number of classes, please see [10] for details. This

motivates us to use k− 1 eigenvectors in LPI for clustering the documents into k categories.

4.3 The Construction of Affinity Matrix S

The previous two sections show that the key difference among LSI, LPI and LDA is the

construction of affinity matrix (the weighted matrix of graph). The LSI tries to discover

the global structure (with the complete weighted graph). The LPI tries to discover the

local geometrical structure of the document space (with a p-nearest neighbor graph). The

LDA is performed in supervised mode, thus the graph can be constructed to reflect the

label information. From this point of view, the LPI can be performed in either supervised,

unsupervised or semi-supervised manner. The label information can be used to guide the

construction of affinity matrix S.

The construction of the affinity matrix is also very important in spectral clustering [23][21]

and spectral embedding [3]. It includes two steps: constructing the graph and setting the

weight. In our algorithm, we construct a p-nearest neighbor graph and choose the dot

product (cosine similarity) as the weight. There are also some other choices as discussed

below.

In the step of graph construction, we put an edge between nodes i and j if xi and xj are

“close”. There are two variations:

1. p-nearest neighbors: Nodes i and j are connected by an edge if xi is among p nearest
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neighbors of xj or xj is among p nearest neighbors of xi. The advantage of this method

is that it is simpler to choose connected edges, which tends to lead to connected graphs.

However, the edges so chosen are less geometrically intuitive.

2. ǫ neighbors: Nodes i and j are connected by an edge if ||xi−xj||
2 < ǫ. The advantage

of this method is that it is geometrically motivated, and the relationship is naturally

symmetric. However, the method often leads to graphs with several disconnected

components, and it is difficult to choose ǫ.

In the step of setting the weight, there are several choices:

1. 0-1 weighting: Sij = 1 if and only if nodes i and j are connected by an edge. This is

the simplest weighting method and is very easy to compute.

2. Gaussian kernel weighting: If nodes i and j are connected, put

Sij = e−
‖xi−xj‖

2

t .

The Gaussian kernel weighting is also called heat kernel weighting. It has intrinsic

connection to the Laplace Beltrami operator on differentiable functions on a manifold

[3].

3. Polynomial kernel weighting: If nodes i and j are connected, put

Sij = (xT
i xj + 1)d.

The parameter d in the equation indicates the degree of the polynomial kernel. Order

d polynomial kernel can discover non-linear structure with polynomial basis functions

of order d.

4. Dot-product weighting:If nodes i and j are connected, put

Sij = xT
i xj.

Note that if x is normalized to 1, the dot product of two vectors is equivalent to the

cosine similarity of the two vectors. The dot-product weighting can discover the linear

Euclidean structure of the document space.
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We will compare the different weighting choices in our experiments section.

4.4 Relationship Between Clustering Using LPI and Spectral Clus-

tering

The spectral clustering algorithm [23][26][21] can be thought of as a combination of spectral

dimensionality reduction [3] and a traditional clustering method, such as k-means.

Spectral dimensionality reduction or spectral embedding is the key part of spectral clus-

tering. In this step, a weighted graph S is first constructed as described in Section 4.3. We

define D as a diagonal matrix whose entries are column (or row, since S is symmetric) sums

of S, Dii =
∑

j Sji. We also define L = D − S. All the spectral clustering methods can be

reduced to an eigen-problem. The different methods have different eigen-problems.

1. Normalized cut [23] and Min-Max cut [8] have the following minimum eigenvalue prob-

lem:

Ly = λDy. (7)

2. Ng’s method [21] has the following maximum eigenvalue problem:

D−1/2SD−1/2y = λy. (8)

3. Average association [23] and Ratio cut [4] have the following minimum eigenvalue

problem:

Ly = λy. (9)
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Let z = D1/2y, with some mathematical deduction of Eq. (7), we have:

Ly = λDy

⇒ (D − S)y = λDy

⇒ Sy = (1 − λ)Dy

⇒ SD−1/2D1/2y = (1 − λ)D1/2D1/2y

⇒ SD−1/2z = (1 − λ)D1/2z

⇒ D−1/2SD−1/2z = (1 − λ)z.

Thus the maximum eigenvalue problem (8) has direct connection to the minimum eigenvalue

problem (7). Let y be the eigenvector of Eq. (7) with eigenvalue λ, then D1/2y is the

eigenvector of Eq. (8) with eigenvalue 1 − λ. In the following discussion, we only consider

the minimum eigenvalue problem Eq. (7). After the spectral embedding step, the eigenvector

y will be the low dimensional representation of original data points.

Recall the eigen-problem in LPI:

XLXTa = λXDXTa. (10)

The eigenvector a will be the mapping function and XTa will be the low dimensional repre-

sentation of original data points. The LPI imposes a constraint on Eq. (7) that y should be

the linear combination of the column vectors of XT [15].

The dimensionality reduction method in traditional spectral clustering is non-linear, and

the embedding result is only defined on “training” data points. The dimensionality reduction

method in our clustering algorithm is linear and the mapping function a can be applied to the

unseen data which provide us more flexibility. When the data set is very large, to learn such

an embedding is computational expensive. Since the LPI is linear and defined everywhere,

we can use part of the data to learn such an embedding. Our experiments will show this.

It is interesting to see in which condition, the LPI result will be identical to the result

of spectral dimensionality reduction in traditional spectral clustering. In this case, our

clustering algorithm will be identical to the traditional spectral clustering [3].
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Theorem 2 If X is a full rank square matrix, the embedding result of LPI (XTa in Eq.

(10)) is identical to embedding result in spectral clustering (y in Eq. (7)) if the S is the

same.

Proof Let y = XTa. Eq. (10) can be rewritten as follows:

XLy = λXDy.

Since X is a full rank square matrix, the inverse of X always exists. Thus the above equation

can be changed to

X−1XLy = λX−1XDy.

Finally, we get

Ly = λDy.

Thus we have proved the embedding result of LPI (XTa in Eq. (10)) is identical to embedding

result of spectral clustering (y in Eq. (7)).

In our algorithm, we use SVD projection in our data preprocessing step to remove those

components corresponding to the zero singular value. If the rank of original term-document

matrix X equals to the number of documents, the X will be a full rank square matrix

after SVD projection. In document clustering, the number of terms is often larger than the

number of documents, thus if all the document vector x are linearly independent, the X will

be a full rank square matrix after SVD projection.

5 EXPERIMENTAL RESULTS

In this section, several experiments were performed to show the effectiveness of our proposed

algorithm. Two standard document collections were used in our experiments: Reuters-21578

and TDT2. We compared our proposed algorithm with clustering based on LSI, spectral

clustering method, and Non-negative Matrix Factorization clustering method [28].
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Table 1: 30 semantic categories from Reuters-21578 used in our experiments
category num of doc category num of doc category num of doc

earn 3713 money-supply 87 iron-steel 37

acq 2055 gnp 63 ipi 36

crude 321 cpi 60 nat-gas 33

trade 298 cocoa 53 veg-oil 30

money-fx 245 alum 45 tin 27

interest 197 grain 45 cotton 24

ship 142 copper 44 bop 23

sugar 114 jobs 42 wpi 20

coffee 110 reserves 38 pet-chem 19

gold 90 rubber 38 livestock 18

Table 2: 30 semantic categories from TDT2 used in our experiments
category num of doc category num of doc category num of doc

20001 1844 20048 160 20096 76

20015 1828 20033 145 20021 74

20002 1222 20039 141 20026 72

20013 811 20086 140 20008 71

20070 441 20032 131 20056 66

20044 407 20047 123 20037 65

20076 272 20019 123 20065 63

20071 238 20077 120 20005 58

20012 226 20018 104 20074 56

20023 167 20087 98 20009 52

5.1 Data Corpora

Reuters-21578 corpus1 contains 21578 documents in 135 categories. In our experiments,

we discarded those documents with multiple category labels, and selected the largest 30

categories. It left us with 8067 documents in 30 categories as described in Table 1.

The TDT2 corpus2 consists of data collected during the first half of 1998 and taken from

six sources, including two newswires (APW, NYT), two radio programs (VOA, PRI) and

two television programs (CNN, ABC). It consists of 11201 on-topic documents which are

1Reuters-21578 corpus is at http://www.daviddlewis.com/resources/testcollections/reuters21578/
2Nist Topic Detection and Tracking corpus is at http://www.nist.gov/speech/tests/tdt/tdt98/index.html
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classified into 96 semantic categories. In this dataset, we also removed those documents

appearing in two or more categories and use the largest 30 categories thus leaving us with

9394 documents in 30 categories as described in Table 2.

Each document is represented as a term-frequency vector. We simply removed the stop

words, and no further preprocessing was done. Each document vector is normalized to 1,

and the Euclidean distance is used as the distance measure.

5.2 Evaluation Metric

The clustering performance is evaluated by comparing the obtained label of each document

with that provided by the document corpus. Two metrics, the accuracy (AC) and the

normalized mutual information metric (MI), are used to measure the clustering performance

[28]. Given a document xi, let ri and si be the obtained cluster label and the label provided

by the corpus, respectively. The AC is defined as follows:

AC =

∑n
i=1 δ(si,map(ri))

n
,

where n is the total number of documents, δ(x, y) is the delta function that equals one if

x = y and equals zero otherwise, and map(ri) is the permutation mapping function that

maps each cluster label ri to the equivalent label from the data corpus. The best mapping

can be found by using the Kuhn-Munkres algorithm [19].

Let C denote the set of clusters obtained from the ground truth and C ′ obtained from

our algorithm. Their mutual information metric MI(C,C ′) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′j∈C′

p(ci, c
′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)
,

where p(ci) and p(c′j) are the probabilities that a document arbitrarily selected from the

corpus belongs to the clusters ci and c′j, respectively, and p(ci, c
′
j) is the joint probability

that the arbitrarily selected document belongs to the clusters ci as well as c′j at the same

time. In our experiments, we use the normalized mutual information MI as follows:

MI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))
,
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(a) 5 classes
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(c) 7 classes
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(d) 8 classes

Figure 1: 2D Embedding results of LSI and LPI on the TDT2 corpus. The dimensions of

document vectors are reduced to 2 using LSI and LPI. Each color (shape) represents a topic.

As can be seen, LPI is more powerful than LSI as to separating the documents with different

semantics.

where H(C) and H(C ′) are the entropies of C and C ′, respectively. It is easy to check that

MI(C,C ′) ranges from 0 to 1. MI = 1 if the two sets of clusters are identical, and MI = 0

if the two sets are independent.

5.3 LPI Embedding vs. LSI Embedding

Our theoretical analysis shows that LPI is able to map the documents related to the same

semantics as close to each other as possible. This motivates us to perform traditional clus-

tering in the LPI subspace rather than directly in the original space. In this subsection, we

first present some embedding results by using LPI and LSI.

Fig. (1) shows the 2-D embedding results on the TDT2 corpus. The experiments were

conducted on 5, 6, 7 and 8 classes, respectively. The parameter p was set to 15 in LPI. As
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can be seen, LPI is more powerful than LSI as to separating the documents with different

semantics.

5.4 Clustering Results

To demonstrate how our method improves the performance of document clustering, we com-

pared five methods on two data sets: Reuters-21578 and TDT2. These five methods are

listed below:

• k-means on original term-document matrix (Kmeans),which is treated as our baseline

• k-means after LSI (LSI),

• k-means after LPI (LPI),

• Spectral Clustering (k-means after Laplacian Eigenmaps, or LE), and

• Non-negative Matrix Factorization based clustering (NMF-NCW, [28]).

Note that, the two methods LPI and LE need to construct a graph on the documents. In the

following experiments, we used the same graph for these two methods, and the parameter p

was set to 15. The weighted Non-negative Matrix Factorization-based document clustering

algorithm (NMF-NCW, [28]) is a recently proposed algorithm, which has shown to be very

effective in document clustering. Please see [28] for details.

Tables 3 and 4 showed the experimental results on the TDT2 and the Reuters corpus,

respectively. The evaluations were conducted with different number of clusters, ranging from

2 to 10. For each given cluster number k, 50 tests were conducted on different randomly

chosen clusters, and the average performance was computed over these 50 tests. For each

test, k-means algorithm was applied 10 times with different start points, and the best result

in terms of the objective function of k-means was recorded.

After LSI, LPI or Laplacian Eigenmaps, how to determine the dimensions of the subspace

is still an open problem. In k cluster situation, we choose the first k − 1 dimensions in LPI
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Table 3: Performance comparisons on TDT2 corpus
Accuracy

k Kmeans LSI(best) LSI LPI(best) LPI LE NMF-NCW

2 0.989 0.992 0.977 0.998 0.998 0.998 0.985

3 0.974 0.985 0.944 0.996 0.996 0.996 0.953

4 0.959 0.970 0.894 0.996 0.996 0.996 0.964

5 0.948 0.961 0.914 0.993 0.993 0.993 0.980

6 0.945 0.954 0.879 0.993 0.992 0.992 0.932

7 0.883 0.903 0.849 0.990 0.988 0.987 0.921

8 0.874 0.890 0.829 0.989 0.987 0.988 0.908

9 0.852 0.870 0.810 0.987 0.983 0.984 0.895

10 0.835 0.850 0.786 0.982 0.979 0.978 0.898

ave. 0.918 0.931 0.876 0.992 0.990 0.990 0.937

Mutual Information

k Kmeans LSI(best) LSI LPI(best) LPI LE NMF-NCW

2 0.962 0.965 0.925 0.981 0.981 0.981 0.939

3 0.946 0.962 0.894 0.977 0.976 0.976 0.924

4 0.932 0.942 0.856 0.979 0.979 0.979 0.951

5 0.935 0.942 0.892 0.975 0.973 0.973 0.965

6 0.936 0.939 0.878 0.975 0.974 0.974 0.923

7 0.884 0.892 0.849 0.969 0.968 0.966 0.915

8 0.889 0.895 0.841 0.970 0.967 0.967 0.911

9 0.875 0.878 0.831 0.970 0.966 0.967 0.905

10 0.865 0.869 0.813 0.962 0.959 0.958 0.897

ave. 0.914 0.920 0.864 0.973 0.971 0.97 0.926

based on our previous analysis. For Laplacian Eigenmaps, since the first eigenvector is 1, we

use the following k−1 dimensions. Note that, in typical spectral clustering, the dimension of

subspace are set to the number of clusters [21] which is the same with our selection in spirit

(since [21] does not remove the first 1 eigenvector). For LSI, we choose the k dimensions for

comparison. Besides such determined dimension, for LSI and LPI, we also compute their

best performance on different dimensions in each test. We iterate all the dimensions for the

best clustering performance and average all the 50 best results. In real situation, it might

not be possible to iterate all the dimensions to get the best performance.
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Table 4: Performance comparisons on Reuters corpus
Accuracy

k Kmeans LSI(best) LSI LPI(best) LPI LE NMF-NCW

2 0.871 0.913 0.864 0.963 0.923 0.923 0.925

3 0.775 0.815 0.768 0.884 0.816 0.816 0.807

4 0.732 0.773 0.715 0.843 0.793 0.793 0.787

5 0.671 0.704 0.654 0.780 0.737 0.737 0.735

6 0.655 0.683 0.642 0.760 0.719 0.719 0.722

7 0.623 0.651 0.610 0.724 0.694 0.694 0.689

8 0.582 0.617 0.572 0.693 0.650 0.650 0.662

9 0.553 0.587 0.549 0.661 0.625 0.625 0.623

10 0.545 0.573 0.540 0.646 0.615 0.615 0.616

ave. 0.667 0.702 0.657 0.773 0.730 0.730 0.730

Mutual Information

k Kmeans LSI(best) LSI LPI(best) LPI LE NMF-NCW

2 0.600 0.666 0.569 0.793 0.697 0.697 0.705

3 0.567 0.594 0.536 0.660 0.601 0.601 0.600

4 0.598 0.621 0.573 0.671 0.635 0.635 0.634

5 0.563 0.567 0.538 0.633 0.603 0.603 0.587

6 0.579 0.587 0.552 0.636 0.615 0.615 0.603

7 0.573 0.572 0.547 0.629 0.617 0.617 0.600

8 0.556 0.557 0.530 0.615 0.587 0.587 0.583

9 0.549 0.545 0.532 0.605 0.586 0.586 0.560

10 0.552 0.549 0.528 0.607 0.586 0.586 0.561

ave. 0.571 0.584 0.545 0.650 0.614 0.614 0.604

In Tables 3 and 4, LSI, LPI and LE indicate this determined dimension while “LSI (best)”

and “LPI (best)” are the best performance. Fig. (2) shows the optimal dimensions with

different numbers of clusters by using LPI and LSI. The optimal dimension in LSI is much

higher than LPI. Also, the variance of the dimensions obtained by using LSI is much higher

than that obtained by using LPI. For LPI, the optimal number is nearly k − 1, where k is

the number of clusters. This figure showed that LPI is more powerful than LSI in finding

the intrinsic dimensionality of the document space. Thus LPI is very suitable for clustering.

The experimental results showed that LSI seems not promising in dimension reduction

for clustering because the k-means on the LSI subspace is even worse than k-means on the
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(a) TDT2 Corpus
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(b) Reuters Corpus

Figure 2: Optimal dimension with different number of classes. Each bar shows the average

of 50 test runs, the error bar indicates the standard deviation.

original document space. As can be seen, LPI performed much better than LSI. We also see

that the result of Laplacian Eigenmaps is nearly identical to the result of LPI. Actually in

our experiments, for 312 of 450 (50 × 9) tests on Reuters corpus and 430 of 450 (50 × 9)

tests on TDT2 corpus, the X is full rank square matrix, thus the results of clustering using

LPI are identical to those of clustering using Laplacian Eigenmaps.

In [28], Xu et al. compared the NFM-NCW method with the spectral clustering method.

In their comparison, they construct the affinity matrix in spectral clustering as a complete

graph. While in our LSI and LE methods, the p-nearest neighbor graphs which put more fo-

cus on the local geometric document structure were used. More experiments on the different

graph construction will be given in the next sub-section.
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(b) Reuters Corpus

Figure 3: Graph model - Local vs. Global

5.5 Clustering Performance on Different Graph Model

The construction of the adjacency graph is one of the key points in our algorithm. Also,

it is the key difference among LSI, LPI and LDA. In this subsection, we test our algorithm

under different adjacency graph constructions to see how the different graph structures will

affect the clustering performance.

5.5.1 Local vs. Global

In LPI clustering, one needs to set the number of nearest neighbors, i.e., the value of p,

which defines the “locality”. As we examined in Section 4.1, LPI approximates LSI when

p tends to be infinite (complete graph). In Fig. (3), we show the relationship between the
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clustering performance and the value of p. Here, the clustering performance is the average

over 2∼10 classes. The value of p varies from 3 to 40. As can be seen, the performance of

LPI clustering reaches its peak when p is 6 in TDT2 corpus and 15 in Reuters21578 corpus.

As p increases, the performance decreases. This experiment shows that the local structure

is more important than the global structure as to discovering the semantic structure of the

document space.

In Fig. (3), we can also find that, even performed under complete graph, clustering after

LPI is better than clustering after LSI. Our theoretical analysis in Section 4.1 shows that

the only difference between LPI with complete graph and LSI is that LPI has the D matrix.

Xu et al. [28] show a similar result that D can really improve the clustering result.

5.5.2 Gaussian vs. Polynomial vs. 0-1

Our algorithm uses the dot-product weighting in constructing the nearest neighbor graph.

We can also use other kind of weighting methods as described in Section 4.3. In this exper-

iment, we examine the LPI clustering performance under different weighting choices.

We compare four kinds of weighting method.

1. 0-1 weighting,

2. Gaussian kernel weighting, where the parameter t is set as 1,

3. dot-product weighting, and

4. polynomial kernel weighting with degrees 2 and 5.

The clustering results are shown in Table 5. We can see that LPI-based clustering is insensi-

tive to the weighting function. Even the simplest one (0-1 weighting) can achieve the similar

results. This tells us that the local document structure (p-neighbor graph) is essential in

LPI-based clustering whereas the specific weighting values in the connected edges are not so

influential.
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Table 5: Comparison using different weighting functions
TDT2 Corpus

Accuracy Mutual Information

k 0-1 Gaussian DotProd Poly2 Poly5 0-1 Gaussian DotProd Poly2 Poly5

2 0.998 0.998 0.998 0.998 0.998 0.982 0.983 0.982 0.982 0.981

3 0.997 0.997 0.997 0.997 0.997 0.981 0.981 0.980 0.981 0.981

4 0.996 0.995 0.995 0.996 0.995 0.979 0.977 0.976 0.978 0.976

5 0.994 0.994 0.994 0.994 0.994 0.977 0.976 0.976 0.976 0.977

6 0.993 0.993 0.993 0.992 0.993 0.975 0.975 0.974 0.974 0.974

7 0.990 0.990 0.989 0.989 0.990 0.970 0.969 0.968 0.968 0.969

8 0.989 0.986 0.986 0.988 0.988 0.968 0.965 0.965 0.967 0.966

9 0.983 0.986 0.985 0.985 0.985 0.964 0.968 0.966 0.966 0.966

10 0.974 0.974 0.973 0.974 0.974 0.954 0.954 0.954 0.953 0.953

ave. 0.990 0.990 0.990 0.990 0.990 0.972 0.972 0.971 0.972 0.971

Reuters Corpus

Accuracy Mutual Information

k 0-1 Gaussian DotProd Poly2 Poly5 0-1 Gaussian DotProd Poly2 Poly5

2 0.928 0.924 0.923 0.923 0.922 0.715 0.703 0.697 0.697 0.693

3 0.821 0.815 0.816 0.814 0.812 0.613 0.604 0.601 0.607 0.599

4 0.809 0.791 0.793 0.796 0.790 0.644 0.631 0.635 0.636 0.625

5 0.735 0.733 0.737 0.733 0.732 0.604 0.603 0.603 0.603 0.600

6 0.716 0.713 0.719 0.715 0.715 0.616 0.613 0.615 0.613 0.609

7 0.697 0.698 0.694 0.700 0.695 0.624 0.618 0.617 0.621 0.617

8 0.649 0.650 0.650 0.647 0.649 0.587 0.585 0.587 0.584 0.588

9 0.617 0.619 0.625 0.617 0.632 0.579 0.582 0.586 0.580 0.590

10 0.611 0.613 0.615 0.612 0.612 0.583 0.584 0.586 0.584 0.584

ave. 0.731 0.728 0.730 0.728 0.729 0.618 0.614 0.614 0.614 0.612

5.6 Generalization Capability

Both LSI and LPI try to learn an optimal embedding function in the dataset. In real

applications, some new data might be registered into the dataset. The performance on

the new data can reflect the generalization capability of the algorithms. This generalization

capability is very important for the clustering methods performed on the reduced dimensional

space. In these clustering algorithms, learning the low dimensional representation is time

consuming and scales with the number of data points. LSI and LPI are linear, and their

mapping functions are defined everywhere. Thus in large dataset situation, LSI and LPI
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(b) Reuters Corpus

Figure 4: Generalization capability of LSI and LPI

can choose part of the data to learn such mapping function and map all the data points

to the low dimensional space which can speed up the whole process. It is hard for the

spectral clustering to adopt such technique, since traditional spectral clustering use non-

linear embedding methods which is only defined on “training” samples.

To compare the generalization capability of LSI and LPI, we designed the following ex-

periment: In each test in the previous experiment, we only chose part of the data to learn

the embedding function, embedded the whole data set, and then performed clustering in the

subspace. The size of the training set ranged from 5% to 90% of the data set. For each case,

10 times of random selection were performed to minimize the impact of occasionality.

The average accuracy (averaged over 2∼10 classes) and normalized mutual information
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(averaged over 2∼10 classes) are shown in Fig. (4). It is clear that the performance improves

with the number of training samples. Both LSI and LPI have good generalization capability,

however, the performance of LSI is always below the baseline which makes LSI less practical.

For LPI, it achieved similar performance to that using all the samples when only 30% of

training samples were used. This makes it practical for clustering large sets of documents.

5.7 Discussions

We summarize the experiments below:

1. In document clustering, dimension reduction can make significant improvement (the

best performances obtained by both LSI and LPI are better than the baseline). How-

ever, in the real world, one cannot test all the possibilities to find the optimal di-

mensionality. Therefore, LSI is less practical since it is hard to estimate the optimal

dimensionality. In contrast to LSI, clustering after LPI might be a better choice. It is

easy for LPI to estimate the optimal dimension, and the performance is always better

than baseline.

2. In dimension reduction for clustering, the local geometric structure is more important

than the global structure. Based on the assumption that neighboring points probably

belong to the same underlying class, the p-nearest graph in our LPI algorithm gives

an optimal approximation to the labeled similarity matrix W in Eq. (5). Thus even

in unsupervised mode, LPI has discriminating power to some extent which provides a

better low dimensional representation for clustering.

3. In document clustering, clustering after LPI is a good linear approximation to spectral

clustering. The experiments on generalization capability showed that LPI clustering

might be more applicable than spectral clustering in that LPI is linear and is defined

everywhere rather than just on the training data points.
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6 CONCLUSIONS

A novel document clustering algorithm based on Locality Preserving Indexing is proposed in

this paper. Based on the analysis of the computational properties of LPI, we presented the

modified LPI algorithm for document clustering. Analysis on the relationship among LSI,

LPI and LDA indicates that the affinity graph is the key to distinguish these algorithms. The

p-nearest neighbor graph makes LPI approximate to LDA which is supervised. A complete

graph makes LPI similar to LSI. Extensive experiments on Reuters-21578 and TDT2 showed

that our algorithm performed much better than the LSI-based clustering algorithm and close

to the traditional spectral clustering algorithm. Moreover, the linearity of LPI makes our

clustering algorithm more applicable than spectral clustering when the data set is large.

Several questions remain to be investigated in our future work:

1. In this paper, we gave some empirical estimation on the dimensionality using LPI.

However, it lacks of strong theoretical foundation. How to estimate the dimensionality

in theory remains to be investigated. Also, it remains unclear how to estimate the

number of topics hidden in the document set. These two problems seem to be two

sides of a coin in that the dimensionality can be inferred from the number of topics as

suggested in our experiments.

2. As shown in Section 4, LPI provides an optimal approximation to LDA which is su-

pervised. Specifically, we approximate the graph defined in Eq. (5) by a p-nearest

neighbor graph. The more accurate the approximation is, the more discriminating

power our algorithm has. However, it is unclear if there exists a better approximation

and how to obtain it.

3. Clustering is inherently an unsupervised learning process. In all of our experiments, the

data points are unlabelled. However, sometimes a small set of labeled data points might

be available. In such a case, the unsupervised learning becomes semi-unsupervised (or,

semi-supervised) learning. Thus, the optimal projection can be obtained by preserving
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locality as well as separating the data points with different labels. It is unclear how to

obtain such constrained LPI, though it seems to be promising.

References

[1] L. Baker and A. McCallum. Distributional clustering of words for text classification.

In Proc. 1998 Int. Conf. on Research and Development in Information Retrieval (SI-

GIR’98), pages 96–103, Melbourne, Australia, Aug. 1998.

[2] B. T. Bartell, G. W. Cottrell, and R. K. Belew. Latent semantic indexing is an optimal

special case of multidimensional scaling. In Proc. 1992 Int. Conf. on Research and De-

velopment in Information Retrieval (SIGIR’92), pages 161–167, Copenhagen, Denmark,

June 1992.

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding

and clustering. In Advances in Neural Information Processing Systems 14, pages 585–

591. MIT Press, Cambridge, MA, 2001.

[4] P. K. Chan, D. F. Schlag, and J. Y. Zien. Spectral k-way ratio-cut partitioning and

clustering. IEEE Trans. Computer-Aided Design, 13:1088–1096, 1994.

[5] Fan R. K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in

Mathematics. AMS, 1997.

[6] David Cohn. Informed projections. In Advances in Neural Information Processing

Systems 15, pages 849–856. MIT Press, Cambridge, MA, 2002.

[7] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. harshman.

Indexing by latent semantic analysis. Journal of the American Society of Information

Science, 41(6):391–407, 1990.

31



[8] C. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph

partitioning and data clustering. In Proc. 2001 Int. Conf. Data Mining (ICDM’01),

pages 107–114, San Jose, CA, Nov. 2001.

[9] C. H. Ding. A similarity-based probability model for latent semantic indexing. In Proc.

1999 Int. Conf. on Research and Development in Information Retrieval (SIGIR’99),

pages 58–65, Berkeley, CA, Aug. 1999.

[10] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience,

Hoboken, NJ, 2nd edition, 2000.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. In Proc. 1996 Int. Conf. Knowledge

Discovery and Data Mining (KDD’96), pages 226–231, Portland, Oregon, Aug. 1996.

[12] K. Funkunaga and P. Navendra. A branch and bound algorithm for computing k-nearest

neighbors. IEEE Trans. Computers, 24(7):750–753, 1975.

[13] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University

Press, 3rd edition, 1996.

[14] Xiaofei He, Deng Cai, Haifeng Liu, and Wei-Ying Ma. Locality preserving indexing for

document representation. In Proc. 2004 Int. Conf. on Research and Development in

Information Retrieval (SIGIR’04), pages 96–103, Sheffield, UK, July 2004.

[15] Xiaofei He and Partha Niyogi. Locality preserving projections. In Advances in Neural

Information Processing Systems 16. MIT Press, Cambridge, MA, 2003.

[16] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc., Upper

Saddle River, NJ, 1988.

[17] Tao Li, Sheng Ma, and Mitsunori Ogihara. Document clustering via adaptive sub-

space iteration. In Proc. 2004 Int. Conf. on Research and Development in Information

Retrieval (SIGIR’04), pages 218–225, Sheffield, UK, July 2004.

32



[18] Xin Liu, Yihong Gong, Wei Xu, and Shenghuo Zhu. Document clustering with cluster

refinement and model selection capabilities. In Proc. 2002 Int. Conf. on Research and

Development in Information Retrieval (SIGIR’02), pages 191–198, Tampere, Finland,

Aug. 2002.

[19] L. Lovasz and M. Plummer. Matching Theory. Akadémiai Kiadó, North Holland,
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