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Manifold Adaptive Experimental Design for Text
Categorization
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Abstract —In many information processing tasks, labels are usually expensive and the unlabeled data points are abundant. To reduce
the cost on collecting labels, it is crucial to predict which unlabeled examples are the most informative, i.e., improve the classifier
the most if they were labeled. Many active learning techniques have been proposed for text categorization, such as SVMActive and
Transductive Experimental Design. However, most of previous approaches try to discover the discriminant structure of the data space,
whereas the geometrical structure is not well respected. In this paper, we propose a novel active learning algorithm which is performed
in the data manifold adaptive kernel space. The manifold structure is incorporated into the kernel space by using graph Laplacian. This
way, the manifold adaptive kernel space reflects the underlying geometry of the data. By minimizing the expected error with respect
to the optimal classifier, we can select the most representative and discriminative data points for labeling. Experimental results on text
categorization have demonstrated the effectiveness of our proposed approach.

Index Terms —Text categorization, active learning, experimental design, manifold learning, kernel method
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1 INTRODUCTION

Text classification has been a fundamental problem in
many information processing tasks [1], [14], [17], [22],
[32], [44]. In order to train a classifier that can auto-
matically distributes documents into different seman-
tic categories, one usually needs to collect a large set
of labeled examples. In order to reduce the efforts in
collecting labels, many researchers studied to use active
learning [37] for text categorization. The key problem in
active learning is determining which unlabeled examples
would be the most informative, i.e., improve the classi-
fier the most if they were labeled and used as training
examples.

There has been a long tradition of research on active
learning in machine learning community [10], [12], [16].
One popular group of algorithms select the most uncer-
tain data given previously trained models. One repre-
sentative algorithm in this group is SVMActive. Based on
the observation that the closer to the SVM boundary a
data point is, the less reliable its classification is, Tong
et al. proposed SVMActive which selects those unlabeled
data points closest to the boundary to solicit user’s
labeling so as to achieve maximal refinement on the
hyperplane between the two classes [43]. Another group
of algorithms choose the most informative points that
optimize some expected measures [12]. Many algorithms
in statistics belong to this category. In statistics, the prob-
lem of selecting samples to label is typically referred to

• D. Cai and X. He are with the State Key Lab of CAD&CG, College of Com-
puter Science, Zhejiang University, 388 Yu Hang Tang Rd., Hangzhou,
Zhejiang, China 310058. E-mail: {dengcai,xiaofeihe}@cad.zju.edu.cn.

Manuscript received 26 Aug. 2009; revised 08 May. 2010; accepted 17 Sep.
2010

as experimental design[2]. Classical optimal experimental
design approaches include A-optimal design, D-optimal
design, and E-optimal design. Recently, Yu et al. has
proposed Transductive Experimental Design (TED) with
either sequential [45] or convex [46] optimization which
has yielded impressive results on text categorization.
TED is fundamentally based on optimal experimental
design but evaluates the expected prediction error on
both labeled and unlabeled examples.

Standard learning systems operate on input data after
they have been transformed into feature vectors living
in a m-dimensional space. In such a space, standard
learning tasks like classification, clustering, data selec-
tion (active learning) can be performed. The resulting
hypothesis will then be applied to test points in the same
vector space, in order to make predictions. Recently, var-
ious researchers (see [3], [33], [41]) have considered the
case when the data is drawn from sampling a probability
distribution that has support on or near to a submanifold
of the ambient space. Here, a d-dimensional submanifold
of a Euclidean space R

m is a subset Md ⊂ R
m which lo-

cally looks like a flat d-dimensional Euclidean space [26].
In order to detect the underlying manifold structure,
many manifold learning algorithms have been proposed,
such as Locally Linear Embedding (LLE) [33], ISOMAP
[41], and Laplacian Eigenmap [3]. One of the key ideas
in manifold learning approaches is the so called locally
invariant idea [18], i.e., the nearby points are likely to
have the similar embedding/labels.

All the early manifold learning techniques mainly fo-
cus on dimensionality reduction. Recently, the manifold
idea (or, locally invariant idea) has been successfully
applied to clustering [30], semi-supervised learning [4],
[25], [40], [47], topic modeling [9] and matrix factoriza-
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tion [6]. Particularly, the manifold idea achieved great
successes on various text analysis tasks [7], [8], [20],
[24]. For example, both Tansductive SVM [24] and spec-
tral graph transducers [25] (two of the popular semi-
supervised learning algorithms for text analysis) used
the locally invariant idea. All these approaches demon-
strated that learning performance can be significantly
enhanced if the geometrical structure is exploited and
the local invariance is considered. It is very natural that
this idea should also be considered in active learning.
However, most of the existing active learning algorithms
fail to take into account the intrinsic manifold structure.

In this paper, we propose a novel manifold adap-
tive active learning algorithm for text categorization.
By using a data-dependent norm on reproducing kernel
Hilbert space (RKHS) proposed by Vikas et al. [40],
we can warp the structure of the RKHS to reflect the
underlying geometry of the data. The conventional op-
timal experimental design can then be performed in
the manifold adaptive kernel space. We discuss how to
kernelize the convex transductive experimental design
which gives rise to nonlinear manifold adaptive data
selection for text categorization.

The rest of the paper is organized as follows: in Section
2, we provide a brief review of the related work. Our
manifold adaptive active learning algorithm for text cat-
egorization is introduced in Section 3. The experimental
results are presented in Section 4. Finally, we provide the
concluding remarks and suggestions for future work in
Section 5.

2 BACKGROUND

The generic problem of active learning is the following.
Given a set of points X = {x1,x2, · · · ,xn} in R

m, find
a subset Z = {z1, z2, · · · , zk} ⊂ X which contains
the most informative points. In other words, the points
zi(i = 1, · · · , k) can improve the classifier the most if
they are labeled and used as training points.

There has been extensive research in machine learning
on this subject. Some popular directions include select-
ing the most uncertain data given previously trained
models [42] and selecting the most representative points
by exploiting the cluster structure of the data[13]. One
representative algorithm which selects the most uncer-
tain data is SVMActive[42], [43]. This method selects the
points that can reduce the size of the version space as
much as possible. Since it is difficult to measure the
version space, the authors provide three approximations.
One of them which selects the points closest to the
current decision boundary is called SimpleMargin. This
method was also proposed by Schohn and Cohn [35]
and has been very popular. Some other methods in-
clude query-by-committee [39], density-weighted meth-
ods [29], [38], and explicit error-reduction techniques
[34], [48]. Please refer [37] for a comprehensive treatment
of active learning approaches.

In statistics, the problem of selecting samples to label
is typically referred to as experimental design. The sample

x is referred to as experiment, and its label y is referred to
as measurement. The study of optimal experimental design
(OED) [2] is concerned with the design of experiments
that are expected to minimize variances of a param-
eterized model. Since the approach described in this
paper will be based on OED, we give some detailed
descriptions on optimal experimental design as follows.

2.1 Optimal Experimental Design

We consider learning a linear function f(x) = wT x from
observation y = wT x+ǫ, where ǫ ∼ N (0, σ2) is observation
error. Suppose we have a set of labeled example points
(z1, y1), · · · , (zk, yk), where yi is the label of zi. Thus, the
maximum likelihood estimate of w is obtained by

ŵ = argmin
w

{
J(w) =

k∑

i=1

(
wT zi − yi

)2
}

(1)

By Gauss-Markov theorem, we know that e = ŵ − w

has zero mean and a covariance matrix given by σ2Cw,
where Cw is the inverted Hessian of J(w)

Cw =

(
∂2Jsse

∂w2

)−1

=

(
k∑

i=1

ziz
T
i

)−1

=
(
ZZT

)−1

where Z = (z1, z2, · · · , zk). Then OED formulates the
optimization problem as minimization of some measure-
ment of estimation error derived from Cw. Three most
common measures are trace of Cw (leads to A-optimal
design), determinant of Cw (leads to D-optimal design)
and maximum eigenvalue of Cw (leads to E-optimal de-
sign). Some recent work on optimal experimental design
can be found in [15], [21], [45].

3 MANIFOLD ADAPTIVE EXPERIMENTAL
DESIGN

In order to incorporate the manifold structure into the
learning process, a natural way is to perform learning
tasks in manifold adaptive kernel space. In this sec-
tion, we will describe our manifold adaptive experimen-
tal design approach which is fundamentally based on
transductive experimental design and manifold adaptive
kernel. We begin with a description of transductive
experimental design.

3.1 Transductive Experimental Design

Let X = {x1, · · · , xn} be the set of all the data points and
Z = {z1, · · · , zk} ⊂ X be the set of selected points for
labeling.

The key idea of Transductive Experimental Design
(TED) is to minimize the average expected square pre-
dictive error of the learned function f . For any x, let
ŷ = ŵT x be its predicted observation. The expected
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square prediction error can be written as follows:

E(y − ŷ)2

= E
(
ǫ+ wT x − ŵT x

)2

= σ2 + xT [E(w − ŵ)(w − ŵ)T ]x

= σ2 + σ2xT (ZZT )−1x

Interestingly, the expected square prediction error of x
does not depend on the labels, but only the training
points Z. The average expected square predictive error
over the complete data set X is

1

n

n∑

i=1

E(yi − ŵT xi)
2 = σ2 + σ2Tr

(
XT (ZZT )−1X

)
(2)

In order to minimize the average expected square predic-
tive error, one should find a subset Z which minimizes
Eq. (2). However, it can be verified that this optimization
problem is NP-hard [45] and therefore infeasible to find
a global optimum. After some mathematical derivations,
the minimization of average expected square predicative
error can be formulated as an equivalent optimization
problem as follows:

min
αααi∈Rk,Z=(z1,··· ,zk)

n∑

i=1

‖xi − ZTαααi‖
2 + µ‖αααi‖

2 (3)

Yu et al. [45] proposes a sequential greedy algorithm that
selects z′

is one at time. However, the obtained result is
suboptimal.

Recently, a convex relaxation of (2) was introduced in
[46]. By introducing auxiliary variables βββ = (β1, · · · , βm)
to control the inclusion of examples into the training set,
the optimization problem can be rewritten as follows:

min
βββ,αααi∈Rn

n∑

i=1

(
‖xi −XTαααi‖

2 +

n∑

j=1

α2
i,j

βj

)
+ γ‖β‖1 (4)

s.t. βi ≥ 0, i = 1, · · · , n,

where αααi = (αi,1, · · · , αi,n)
T and ‖ · ‖1 denotes the ℓ1

norm. As suggested by Lasso regression [19], the mini-
mization of the ℓ1 norm ‖βββ‖1 leads to a sparse βββ. That is,
some entries of βββ will be zero. It is easy to check that, if
βj = 0, then all α1,j , · · · , αn,j have to be zero, otherwise
the objective function goes to infinity. Thus, the j-th
example will not be selected. It can be shown that the
optimization problem (4) is convex, and therefore global
optimum can be obtained. For the details, please see [46].

Convex TED has shown its promising results on text
categorization. However, it fails to take into account the
intrinsic manifold structure which has been shown very
useful for improving the learning performance by many
previous studies [4], [28].

3.2 Manifold Adaptive Kernel

In order to incorporate the manifold structure into the
active learning process, a natural way is to perform
active learning tasks in manifold adaptive kernel space.

In the following we discuss how to incorporate the
manifold structure into the reproducing kernel Hilbert
space (RKHS) which leads to manifold adaptive kernel
space.

Kernel trick is usually applied in the hope of dis-
covering the nonlinear structure in the data by map-
ping the original nonlinear observations into a higher-
dimensional linear space [36]. The most commonly used
kernels include Gaussian kernel and polynomial kernel.
However, the nonlinear structure captured by the data-
independent kernels may not be consistent with the
intrinsic manifold structure, such as geodesic distance,
curvature, and homology [4], [31].

In this work, we adopt the manifold adaptive kernel
proposed by Vikas et al. [40]. Let V be a linear space with
a positive semi-definite inner product (quadratic form)
and let S : H → V be a bounded linear operator. We
define H̃ to be the space of functions from H with the
modified inner product [40]

〈f, g〉
H̃

= 〈f, g〉H + 〈Sf, Sg〉V .

Vikas et al. have shown that H̃ is still a RKHS [40].
Given the examples x1, · · · , xm, let S : H → R

m be the
evaluation map

S(f) =
(
f(x1), · · · , f(xm)

)T
.

Denote f =
(
f(x1), · · · , f(xm)

)T
and g =(

g(x1), · · · , g(xm)
)T

. Notice that f,g ∈ V , thus we
have

〈Sf, Sg〉V = 〈f,g〉 = fTMg

where M is a positive semi-definite matrix. We define

kx =
(
K(x, x1), · · · ,K(x, xm)

)
.

It can be shown that the reproducing kernel in H̃ is [40]:

K̃(x, z) = H(x, z)− λkT
x (I +MK)−1Mkz, (5)

where I is an identity matrix, K is the kernel matrix in
H, and λ ≥ 0 is a constant controlling the smoothness
of the functions. The key issue now is the choice of M ,
so that the deformation of the kernel induced by the
data-dependent norm, is motivated with respect to the
intrinsic geometry of the data.

In order to model the manifold structure, we construct
a nearest neighbor graph G. For each data point xi, we
find its k nearest neighbors denoted by N (xi) and put
an edge between xi and its neighbors. There are many
choices for the weight matrix on the graph. A simple one
is as follows:

Wij =

{
1, if xi ∈ N (xj) or xj ∈ N (xi);
0, otherwise.

(6)

The graph Laplacian [11] is defined as L = D−W where
D is a diagonal degree matrix given by Dii =

∑
j Wij .
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The graph Laplacian provides the following smoothness
penalty on the graph:

fTLf =
n∑

i=1

(
f(xi)− f(xj)

)2
Wij

By setting M = L, we eventually get the following
manifold adaptive kernel:

KM(x, z) = K(x, z)− λkT
x (I + LK)−1Lkz. (7)

It is important to note that all the existing popular
kernels (e.g., Gaussian kernel, polynomial kernel and
linear kernel) can be transformed to manifold adaptive
kernels. For text analysis, previous studies [23], [44] have
shown that linear models are enough due to the large
number of features for text data. Actually, a stronger
conclusion can be found at [5] which shows that a linear
mapping (function) can unfold any manifold structure in
the data as long as the data points are linear independent
(it is usually true for the text data because the number
of features of the text data is usually larger than the
number of samples). Thus, we simply use the linear
kernel (transformed to manifold adaptive kernel) in our
text categorization experiments.

3.3 Convex TED in Reproducing Kernel Hilbert
Space

In the following we discuss how to perform convex TED
in the manifold adaptive kernel space.

For given examples x1, · · · , xn ∈ R
m with a positive

definite mercer kernel K : Rm × R
m → R, there exists

a unique RKHS H of real valued functions on R
m. Let

Kt(s) be the function of s obtained by fixing t and
letting Kt(s)

.
= K(s, t). H consists of all finite linear

combinations of the form
∑l

i=1 aiKti with ti ∈ R
m and

limits of such functions as the ti becomes dense in R
m.

We have 〈Ks,Kt〉H = K(s, t) [36].

Let φ : R
m → H be a feature map from the in-

put space R
m to H, and K(xi, xj) = 〈φ(xi), φ(xj)〉.

Let φ(X) denote the data matrix in RKHS, that is,
φ(X) =

(
φ(x1), · · · , φ(xn)

)
. Similarly, we define φ(Z) =(

φ(z1), · · · , φ(zn)
)
. The convex TED optimization prob-

lem in RKHS can be written as follows:

min
βββ,αααi∈Rn

n∑

i=1

(
‖φ(xi)− φ(X)αααi‖

2 +

n∑

j=1

α2
i,j

βj

)
+ γ‖βββ‖1

s.t. βj ≥ 0, j = 1, · · · , n.

(8)

Let diag(βββ) be a diagonal matrix whose entries are
β1, · · · , βn. Thus,

n∑

j=1

α2
i,j

βj

= αααT
i diag(βββ)

−1αααi.

By some simple algebraic steps, we get

n∑

i=1

(
‖φ(xi)− φ(X)αααi‖

2 +
n∑

j=1

α2
i,j

βj

)

=

n∑

i=1

((
φ(xi)− φ(X)αααi

)T (
φ(xi)− φ(X)αααi

)
+

αααT
i diag(βββ)

−1αααi

)

=
n∑

i=1

(
φ(xi)

Tφ(xi)− 2αααT
i φ(X)Tφ(xi) +

αααT
i φ(X)Tφ(X)αααi +αααT

i diag(βββ)
−1αααi

)

Now, taking the derivative of the objective function (8)
with respect to αααi and requiring it to be zero, we get:

−2φ(X)Tφ(xi) + 2φ(X)Tφ(X)αααi + 2diag(βββ)−1αααi = 0

Finally, we get:

αααi =
(
diag(βββ)−1 + φ(X)Tφ(X)

)−1

φ(X)Tφ(xi). (9)

We define a n × n kernel matrix K such that Kij =
K(xi, xj). Let ui be the i-th column (or row, since K is
symmetric) vector of K:

ui =
(
φ(xi)

Tφ(x1), · · · , φ(xi)
Tφ(xn)

)T
= φ(X)Tφ(xi).

By noticing that φ(X)Tφ(X) = K, Eq. (9) can be rewrit-
ten as follows:

αααi =
(
diag(βββ)−1 +K

)−1

ui (10)

Once αααi’s are obtained, we can fix αααi’s and find the
minimum solution for βj . Again, we take the derivative
of the objective function (8) with respect to βj and
require the derivative to be zero. By noticing that βj is
non-negative, we have

n∑

i=1

(
−

α2
i,j

β2
j

)
+ γ = 0 (11)

Finally, we get:

βj =

√∑n

i=1 α
2
i,j

γ
(12)

So αi,j and βj can be iteratively computed. Since the ob-
jective function is convex, the globally optimal solution
is guaranteed to be obtained.

3.4 The Manifold Adaptive Experimental Design
Algorithm

We summarize our manifold adaptive experimental de-
sign (MAED) algorithm as follows (also in Table 1):

1) Construct the manifold adaptive kernel. Construct
a k nearest neighbor G with weight matrix defined
in (6). Calculate the graph Laplacian L = D−W . Let
K be any data independent kernel (e.g. Gaussian or
linear kernel) associated with the kernel matrix K.
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TABLE 1
The algorithm of Manifold Adaptive Experimental Design (MAED)

Input: Data set with n unlabeled samples, the number of selected samples k,
the number of nearest neighbors p, the manifold adaptive regularization parameter λ,
the sparse regularization parameter γ, the data independent kernel type (e.g., Gaussian, linear)

Output: k selected samples.

1: Construct a nearest neighbor graph with weight matrix W as in Eq. (6) and,
calculate the graph Laplacian L = D −W .

2: Compute the kernel matrix K with the input kernel type.
3: Compute the manifold adaptive kernel matrix KM as in Eq. (13)
4: Initialize αi,j = 1, and iteratively compute βj and αααi as in Eq. (14) and Eq. (15), until convergence
5: Rank the data points according to βj(j = 1, · · · , n) in descending order, and return the top k data points.

That is, Kij = K(xi, xj). Let ki be the i-th column
vector of K. Calculate the manifold adaptive kernel
matrix KM as follows:

KM,ij =KM(xi, xj)

=Kij − λkT
i (I + LK)−1Lkj .

(13)

2) Solve manifold adaptive active learning optimiza-
tion problem. Let ui be the i-th column (or row,
since KM is symmetric) vector of KM. Initialize
αi,j = 1, and iteratively compute

βj =

√∑n

i=1 α
2
i,j

γ
, j = 1, · · · , n. (14)

αααi =
(
diag(βββ)−1 +KM

)−1

ui, i = 1, · · · , n. (15)

until convergence.
3) Data selection. Rank the data points according to

βj(j = 1, · · · , n) in descending order, and select the
top k data points.

Once we select the most informative data points, any
classification algorithm can be applied to do pattern
classification.

Constructing the p nearest neighbor graph in the first
step of MAED needs O(pn2). Computing the data inde-
pendent kernel matrix K in the second step needs O(n2).
Computing the manifold adaptive kernel matrix in the
third step needs O(n3) and the fourth step needs O(tn3)
where t is the iteration times. In our experiments, the
MAED algorithm converges very fast and t is usually
less than 20. The overall computational cost of MAED
is O(n3), which is the same as the original convex TED
algorithm in the kernel space.

4 EXPERIMENTS

In this section, we evaluate the performance of our
proposed algorithm and compare it with the state-of-the-
art active learning algorithms for text categorization.

4.1 Simple Toy Example

Our MAED algorithm is fundamentally based on TED.
The difference between them is whether the geometric
structure of the data is considered. To get a intuitive idea
of how the two algorithms perform differently, we give

a simple toy example in Figure 1. The data set contains
two circles. Eight points are selected by TED and MAED.
Both algorithms use the Gaussian kernel. As can be seen,
all the points selected by TED are from the small circle,
while MAED selects five points from the big circle and
three from the small circle. Clearly, the points selected
by our MAED algorithm can better represent the original
data set.

4.2 Data and Experimental Settings

Our empirical study on text categorization was con-
ducted based on three real-world text corpora.

• The first data set is 20Newsgroups corpus1, which
contains 18,744 documents with 61,188 distinct
words. This data set has 20 categories, each with
around 1000 documents.

• The second data set is a subset of the Reuters-
21578 text data set2. This subset has 2,919 docu-
ments, including categories ‘acq’, ‘crude’, ‘trade’,
and ‘money’, each with 2,025, 321, 298, and 245
documents respectively. In this data set we have
10,499 distinct words.

• The third data set is a subset of the RCV1-v2 cor-
pus [27]. RCV1 contains the information of topics,
regions and industries for each document and a
hierarchical structure for topics and industries. A
set of 9,625 documents with 29,992 distinct words
is chosen for our experiments, including categories
‘C15’, ‘ECAT’, ‘GCAT’, and ‘MCAT’, each with 2,022,
2,064, 2,901, and 2,638 documents respectively.

The standard TF-IDF weighting scheme is used to gen-
erate the feature vector for each document:

tf -idf = (1 + log tf)× log
N

df

where N is the number of documents in the corpus and
df is the number of documents containing a particular
word.

The experimental settings in this work are basically
the same as those in [46]. We conduct one-against-all
classification for each category and treat each problem
as binary classification. We use the standard precision,

1. http://people.csail.mit.edu/jrennie/20Newsgroups/
2. http://www.daviddlewis.com/resources/testcollections/reuters21578/
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(a) Data (b) TED (c) MAED

Fig. 1. Data selection by active learning algorithms TED and MAED. The selected data points are marked as ∗.
Clearly, the points selected by our MAED algorithm can better represent the original data set.

TABLE 2
Text categorization results on 20Newsgroups. (on the unlabeled data)

Macro-F1 (%) Micro-F1 (%)
k Random Simple Margin convex TED MAED Random Simple Margin convex TED MAED
20 13.0±0.9 10.0±0.6 27.8±2.0 34.4±2.4 17.9±0.9 15.3±0.6 31.6±2.0 36.6±2.3
40 20.6±0.6 25.8±0.9 36.6±1.9 41.9±1.9 25.1±0.7 29.3±0.8 38.8±1.9 42.9±2.0
60 26.8±0.6 28.3±0.8 39.8±1.7 42.7±2.3 30.9±0.6 30.5±0.8 42.1±1.6 44.1±2.3
80 32.0±0.6 34.7±0.7 43.4±1.4 46.9±2.5 35.7±0.6 37.0±0.7 45.6±1.2 48.0±2.4
100 36.3±0.9 37.9±0.9 46.4±1.0 48.0±2.0 39.7±0.8 41.2±0.7 48.8±1.2 50.2±2.1
120 40.3±1.0 47.4±0.9 48.7±1.0 51.5±1.6 43.5±0.9 49.7±0.8 51.1±1.3 53.6±1.6
140 43.6±0.8 49.9±0.8 51.1±1.2 52.8±1.6 46.5±0.7 51.8±0.6 53.3±1.1 54.9±1.4
160 46.5±0.8 53.4±0.9 53.1±0.9 55.4±1.7 49.2±0.7 56.0±0.9 55.3±0.9 57.3±1.5
180 49.1±0.6 55.2±0.6 55.0±1.1 56.9±1.5 51.6±0.5 57.8±0.5 57.0±1.1 58.7±1.5
200 51.2±0.5 57.6±0.5 57.2±1.1 59.0±1.4 53.6±0.5 59.6±0.5 58.9±0.9 60.6±1.5

TABLE 3
Text categorization results on 20Newsgroups. (on the test data)

Macro-F1 (%) Micro-F1 (%)
k Random Simple Margin convex TED MAED Random Simple Margin convex TED MAED
20 13.0±0.9 14.6±0.5 27.7±1.9 34.1±2.5 17.9±0.9 21.7±0.6 31.5±2.0 36.3±2.4
40 20.6±0.6 26.1±1.0 36.4±2.1 41.5±1.8 25.1±0.8 29.6±0.8 38.7±2.0 42.6±2.1
60 26.8±0.6 28.6±0.8 39.5±1.7 42.4±2.3 30.9±0.6 30.8±0.8 41.8±1.7 43.8±2.3
80 32.0±0.6 34.6±0.7 43.0±1.4 46.3±2.5 35.7±0.6 37.0±0.7 45.2±1.2 47.5±2.5
100 36.3±0.9 37.8±1.0 46.0±1.2 47.5±2.1 39.7±0.8 41.1±0.7 48.4±1.3 49.7±2.1
120 40.4±1.0 46.8±0.9 48.1±1.1 50.8±1.6 43.5±0.9 49.2±0.8 50.5±1.3 52.9±1.6
140 43.6±0.8 49.4±0.8 50.5±1.4 52.1±1.6 46.5±0.8 51.3±0.6 52.8±1.2 54.2±1.5
160 46.5±0.8 52.8±0.7 52.5±0.9 54.8±1.6 49.2±0.7 55.4±0.9 54.8±1.0 56.8±1.5
180 49.1±0.6 54.7±0.6 54.5±1.1 56.3±1.3 51.6±0.5 56.8±0.5 56.5±1.2 58.2±1.5
200 51.1±0.5 56.4±0.6 56.7±1.3 58.4±1.5 53.6±0.5 58.9±0.5 58.5±1.2 60.1±1.5

recall and F1 measure [44]. Precision is the ratio of
correct assignments by the classifier divided by the total
number of the classifier’s assignments. Recall is defined
to be the ratio of correct assignments by the classifier
divided by the total number of correct assignments. The
F1 measure combines recall (r) and precision (p) with an
equal weight in the following form:

F1(r, p) =
2rp

r + p

These scores can be computed for the binary decisions on
each individual category first and then be averaged over
categories. Or, they can be computed globally over all the
n ×m binary decisions where m is the number of total
test documents, and n is the number of categories in con-
sideration. The former way is called macro-averaging and
the latter way is called micro-averaging. It is understood

that the micro-averaged scores tend to be dominated by
the classifier’s performance on common categories, and
the macro-averaged scores are more influenced by the
performance on rare categories. Providing both kinds of
scores is more informative than providing either alone
[44]. Another popular metric in our situation is AUC
score, i.e., area under the Receiver Operating Characteristic
(ROC) curve, which is used in [46]. We also report the
AUC score in our experiment.

In each run of the experiments, an active learning
method is applied to select a given number k of training
examples, k = {5, 10, · · · , 50} on Reuters and RCV1
and k = {20, 40, · · · , 200} on 20Newsgroups, then a
classifier is trained on these examples with their labels.
The trained classifier is then used to predict the class
labels of the remaining examples, and both Macro-F1
and Micro-F1 scores are computed based on the results.
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TABLE 4
Test AUC score on 20Newsgroups.

AUC score (%)
k Random Simple Margin convex TED MAED
20 38.5±1.3 36.2±1.1 49.5±3.0 54.5±2.5
40 53.4±1.3 57.6±1.0 66.4±2.2 70.6±2.3
60 59.7±0.8 61.1±0.9 71.0±1.4 73.6±2.0
80 63.4±0.5 65.7±0.5 73.5±0.3 76.5±1.1
100 65.8±0.3 67.3±0.4 75.1±0.5 76.6±0.9
120 67.8±0.3 75.2±0.3 76.6±0.5 79.5±0.7
140 69.5±0.2 76.7±0.3 78.0±0.6 79.9±0.7
160 71.0±0.2 79.5±0.2 79.1±0.5 82.0±0.7
180 72.5±0.2 80.4±0.2 80.2±0.5 82.7±0.7
200 73.7±0.2 81.7±0.2 81.2±0.4 83.5±0.7

In order to randomize the experiments, in each run
of experiments we restrict the training examples to be
selected from a random candidate set of 50% of the
total data. Strictly speaking, since the candidate set is
available for all the active learning algorithms, the re-
maining 50% of the total data can be regarded as the test
data. Thus, we reported the classification results on both
unlabeled set (all the unlabeled data) and test set (the
remaining 50% of the total data). For each combination of
active learning method and a number k, we compute the
mean and standard deviation based on 10 randomized
experiments. The following four active learning methods
are evaluated and compared:

• Random Sampling method uniformly selects exam-
ples as training data. We use this method as the
baseline for active learning.

• Simple Margin method is proposed in [43]. This
method selects the example closest to the current
decision boundary of the classifier, which is a usual
SVM using the hinge loss.

• Convex TED method is proposed in [46].
• Manifold Adaptive Experimental Design (MAED)

method, as described in Section 3.4, is a new method
proposed in this paper.

We note that all the methods use least-squares SVM
(LSSVM) as the base classification method, except the
Simple Margin method that uses hinge-loss SVM. In all
the experiments we fix the parameter as λ = 0.1.

4.3 Text Categorization Results

In this subsection, we discuss the performance of the
four different algorithms on text categorization. Before
experimental comparison, it would be important to note
that the algorithms Random Sampling, Convex TED and
MAED are all classifier-independent, while the algorithm
Simple Margin is classifier-dependent. For the former three
algorithms, the data selection is performed globally. In
other words, the selected data points will be used for
all the binary classification tasks. However, for Simple
Margin, since the active learning (data selection) process
is dependent on the decision boundary, for each binary
classification task we have to select k data points for
labeling. In our experiments, four categories are used,

TABLE 7
Test AUC score on Reuters-21578.

AUC score (%)
k Random Simple Margin convex TED MAED
5 49.1±3.3 44.8±9.8 73.5±8.4 84.1±9.7
10 69.0±3.9 69.2±6.7 93.8±0.8 96.8±0.3
15 79.2±3.5 72.1±4.5 95.9±0.7 97.4±0.4
20 86.0±2.6 87.8±4.3 96.9±0.6 97.9±0.5
25 90.7±1.5 92.5±1.1 97.4±0.3 98.2±0.2
30 93.3±1.4 95.7±1.5 98.0±0.4 98.5±0.3
35 94.4±1.6 97.0±1.1 98.3±0.3 98.5±0.3
40 95.3±1.3 97.8±0.9 98.3±0.2 98.5±0.2
45 96.6±0.4 98.4±0.5 98.4±0.2 98.6±0.2
50 97.0±0.5 98.6±0.4 98.4±0.2 98.8±0.2

thus Simple Margin may select maximally 4k data points,
if there is no overlap. Moreover, since Simple Margin
is classifier-dependent, it needs at least one example
for each category to train the initial classifier. In our
experiments, we randomly select one example from each
category to train an initial SVM classifier for Simple
Margin.

4.3.1 20 Newsgroups

We apply the above mentioned four algorithms to text
categorization on 20Newsgroups. Given training size
k, the average classification performance measured by
Macro-F1 and Micro-F1 is reported in Table 2 (on all
the unlabeled data) and Table 3 (on test data). As can
be seen, our MAED algorithm outperforms the other
three algorithms in all the cases. Random sampling
performs the worst in most of the cases. As we have
mentioned, Simple Margin uses much more labels than
other algorithms. Even so, Convex TED outperforms
Simple Margin in most of the cases.

For all the compared algorithms, their classification ac-
curacies increase with more training examples. Although
our algorithm performs the best in the entire scope, it
is worthwhile to note that it performs especially good
when there is limited number of training examples. In
practice, when only very small number of examples are
selected, it would be possible that for some categories,
there is no example selected at all. In this case, all the
examples in those categories will be misclassified into
other categories. Therefore, when there are only limited
labeling resources available, the active learning perfor-
mance is crucial for the ultimate classification results. As
can be seen, when k = 20, our algorithm achieves 0.344
Macro-F1 score and 0.366 Micro-F1 score. To achieve
comparable accuracy, Convex TED has to label 40 exam-
ples, Simple Margin has to label 80 examples for each
binary classification task, and Random Sampling has to
label 100 examples. For k = 20, Simple Margin performs
even worse than Random Sampling. This result clearly
shows that our algorithm can significantly reduce human
labeling task. As more labels are used, the performance
difference of the four algorithms gets smaller. Table 4
shows the AUC score of all the compared algorithms.
We can get the similar conclusion.
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TABLE 5
Text categorization results on Reuters-21578. (on the unlabeled data)

Macro-F1 (%) Micro-F1 (%)
k Random Simple Margin convex TED MAED Random Simple Margin convex TED MAED
5 37.7±2.3 20.4±9.5 58.5±7.8 67.5±7.7 72.0±1.9 53.2±28.0 83.3±3.0 84.8±1.9

10 49.5±3.4 36.1±12.3 83.4±2.6 87.2±1.0 79.2±1.0 57.9±27.4 91.6±1.2 93.1±0.5
15 55.1±3.5 54.9±13.2 85.7±2.7 88.0±0.8 81.5±1.1 62.9±19.2 92.6±1.0 93.6±0.5
20 59.9±2.9 70.0±8.4 88.3±1.7 90.3±1.6 83.1±0.9 75.0±14.9 93.9±0.6 94.9±0.8
25 64.4±3.2 77.7±5.3 88.8±1.8 91.4±1.0 84.6±1.1 87.2±3.1 94.1±0.9 95.3±0.5
30 67.2±2.6 82.6±3.6 88.9±2.6 91.2±1.2 85.6±0.9 90.0±3.0 94.1±1.3 95.1±0.7
35 68.8±2.3 86.2±2.3 89.4±2.2 90.1±1.3 86.1±0.8 91.5±1.5 94.1±1.2 94.4±0.7
40 71.1±2.5 88.3±2.1 90.0±1.5 90.7±0.9 86.9±0.9 93.0±1.4 94.3±0.8 94.7±0.6
45 73.1±2.4 89.7±0.7 88.9±1.6 90.0±1.2 87.7±1.0 93.8±0.6 93.6±0.9 94.3±0.7
50 75.1±2.5 90.1±1.4 88.1±1.0 90.4±1.7 88.4±1.1 94.1±0.5 93.2±0.5 94.5±1.0

TABLE 6
Text categorization results on Reuters-21578. (on the test data)

Macro-F1 (%) Micro-F1 (%)
k Random Simple Margin convex TED MAED Random Simple Margin convex TED MAED
5 37.6±2.3 19.5±10.0 57.6±7.9 66.6±8.4 72.2±1.8 52.8±28.3 82.9±3.1 84.4±2.2

10 49.4±3.4 35.9±12.7 83.3±3.2 87.0±1.2 79.3±1.2 57.9±27.6 91.6±1.4 93.1±0.6
15 55.0±3.5 55.0±13.2 85.7±2.7 88.1±0.9 81.6±1.3 62.9±19.2 92.7±1.0 93.6±0.6
20 59.7±2.9 69.8±8.7 88.2±2.1 90.2±1.8 83.2±1.2 75.0±15.1 93.9±0.7 94.8±1.0
25 64.2±3.1 77.5±5.4 88.4±1.9 91.3±0.9 84.7±1.3 87.1±3.1 94.0±0.9 95.3±0.5
30 67.0±2.6 82.7±4.0 89.0±2.8 91.3±1.9 85.7±1.2 90.1±3.2 94.2±1.3 95.2±1.0
35 68.6±2.2 86.4±2.5 89.7±2.3 90.3±1.6 86.2±1.0 91.6±1.6 94.3±1.2 94.5±0.9
40 70.8±2.5 88.6±2.3 90.5±1.7 90.9±1.1 87.0±1.1 93.2±1.4 94.5±0.9 94.8±0.7
45 72.8±2.5 90.1±0.9 89.4±1.7 90.3±1.5 87.7±1.2 94.0±0.7 93.9±0.9 94.5±0.9
50 74.8±2.7 90.5±1.6 88.7±1.2 90.6±1.8 88.4±1.4 94.3±0.6 93.5±0.7 94.7±1.0
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Fig. 2. Classification performance on different categories of Reuters-21578 data set.

4.3.2 Reuters-21578
The average text categorization performance measured
by Micro-F1 and Macro-F1 on Reuters data set is re-
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ported in Table 5 (on all the unlabeled data) and Ta-
ble 6 (on test data). Our algorithm MAED consistently
outperforms the other three algorithms. Convex TED
performs the second best in most of the cases. When the
number of training examples is less than 25, Random
Sampling performs better than or comparably to Simple
Margin. For other cases, it performs worse than Simple
Margin. However, it would be important to note that
Simple Margin uses more training examples than the
other algorithms.

For all the algorithms, the classification accuracies
increase with more training examples. Similar to the
results on 20Newsgroups, our MAED algorithm per-
forms especially good when the training size is small.
Particularly, when k = 5, MAED achieves 0.675 Macro-F1
score and 0.848 Micro-F1 score. To achieve comparable
results, Random Sampling needs to label more than 25
examples and Simple Margin needs to label more than 20
examples. Convex TED performs comparably to MAED
on this data set. Table 7 shows the AUC score of all the
compared algorithms. We can get the similar conclusion.

Besides the averaged performance comparison, we
also show the classification results on each individual
binary classification task in Fig. 2. As can be seen, for
all the categories, our MAED algorithm outperforms the
other three algorithms. The performance improvement of
our algorithm is especially significant when k is small.
Convex TED also performs very well, especially on the
categories ‘acq’ and ‘trade’. For some categories Simple
Margin performs worse than Random Sampling when
k ≤ 20. This is probably because that Simple Margin
is classifier-dependent. When the labeled examples is
limited, the initially estimated boundary may not be
accurate enough.

4.3.3 RCV1

The average text categorization performance measured
by Micro-F1 and Macro-F1 on RCV1 data set is reported
in Table 8 (on all the unlabeled data) and Table 9 (on
test data). We have the similar experimental results as
the previous two data sets. Our algorithm MAED con-
sistently outperforms the other three algorithms. Convex
TED performs the second best in most of the cases. When
the number of training examples is less than 30, Random
Sampling performs better than or comparably to Simple
Margin. For other cases, it performs worse than Simple
Margin.

Similar to the results on 20Newsgroups and Reuters,
our MAED algorithm performs especially good when the
training size is small. Particularly, when k = 5, MAED
achieves 0.626 Macro-F1 score and 0.658 Micro-F1 score.
To achieve comparable results, Random Sampling needs
to label more than 20 examples and Simple Margin needs
to label more than 25 examples. Convex TED performs
comparably to MAED on this data set. Table 10 shows
the AUC score of all the compared algorithms. We can
get the similar conclusion.

TABLE 10
Test AUC score RCV1.

AUC score (%)
k Random Simple Margin convex TED MAED
5 56.2±3.1 39.7±2.1 73.9±1.7 78.7±1.3
10 73.4±1.6 58.1±1.7 84.9±0.5 87.5±0.6
15 80.0±0.9 73.0±2.3 86.2±0.9 89.3±0.9
20 83.4±0.6 77.5±4.2 87.4±1.4 91.2±1.4
25 85.5±0.5 83.1±3.0 89.1±1.0 92.2±0.7
30 87.0±0.5 87.9±1.6 91.0±0.9 92.7±0.7
35 88.3±0.4 89.7±1.4 92.5±0.9 93.3±0.8
40 89.4±0.4 91.8±1.1 92.6±0.8 93.5±1.3
45 90.3±0.4 92.6±1.0 93.4±0.8 93.6±1.1
50 90.9±0.4 92.9±0.8 93.7±0.4 94.2±0.8

Fig. 3 plots the text categorization performance vs.
the number of training examples on each binary clas-
sification task. Again, MAED consistently outperforms
the other three algorithms on all the four categories.

We have so far compared the four algorithms
on 20Newsgroups, Reuters-21578 and RCV1 corpora.
Clearly, our MAED algorithm yields relatively more
impressive results on 20Newsgroups. Since the 20News-
groups data set is more difficult than Reuters-21578 and
RCV1, it seems that our algorithm is more suitable for
the difficult data sets.

4.4 Parameter Selection

An essential parameter in our MAED model is the
regularization parameter λ in manifold adaptive kernel
construction. MAED boils down to the original TED
when λ = 0. In our previous experiments, we simply set
λ = 0.1. Figure 4 shows how the average performance
of MAED varies with the λ.

As we can see, the performance of MAED is very
stable with respect to the parameter λ. MAED achieves
consistently good performance with the λ varying from
0.001 to 0.1 on all the three data sets.

4.5 Experiments on Incremental Active Learning

Our previous experiment mainly examines the perfor-
mances of different active learning algorithms on their
“batch mode”, i.e., there is no labeled points at the be-
ginning and the active learning algorithms are required
to select relatively small number of samples. In reality,
another more realistic setting could be that a certain
number of n training points are already available (based
on human expertise), and are then complemented by
additional k (smaller than n) points based on active
learning. This setting can be called “incremental mode”.
In this subsection, we will examine the performances of
different active learning algorithms in the incremental
mode.

The 20Newsgroups data set is used in this experiment.
We use the “bydate” split (which has around 60% train-
ing data and 40% testing data) provided on the home
page of 20Newsgroups3. The experimental setting is as
follows:

3. http://people.csail.mit.edu/jrennie/20Newsgroups/
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TABLE 8
Text categorization results on RCV1. (on the unlabeled data)

Macro-F1 (%) Micro-F1 (%)
k Random Simple Margin convex TED MAED Random Simple Margin convex TED MAED
5 35.2±2.4 12.8±2.6 58.1±1.8 62.6±1.9 43.2±2.2 26.6±4.6 61.0±2.2 65.8±2.3

10 47.3±2.1 19.1±5.5 68.7±2.6 72.7±1.9 52.7±2.1 30.3±5.0 69.6±3.2 73.4±2.2
15 54.5±1.6 39.3±7.0 70.2±3.4 74.8±1.6 58.7±1.4 45.4±7.0 70.3±3.6 76.3±1.9
20 60.3±1.8 47.5±14.1 72.4±4.4 78.8±2.3 63.5±1.6 51.2±12.5 72.0±4.6 80.0±1.9
25 64.7±1.4 61.1±8.9 75.3±3.7 80.6±1.9 67.3±1.2 62.1±9.0 75.0±4.3 81.6±1.5
30 67.7±1.3 70.1±4.7 78.6±3.4 81.4±1.7 70.0±1.1 71.8±4.7 78.6±3.8 82.3±1.5
35 70.5±1.3 73.9±4.9 81.0±2.4 82.0±1.7 72.6±1.2 75.4±4.3 81.1±2.6 82.7±1.7
40 73.2±1.2 78.0±3.9 80.9±2.5 82.0±3.1 74.9±1.0 79.5±3.2 81.0±2.7 82.7±2.9
45 74.9±1.0 80.6±3.3 81.0±2.6 82.2±2.6 76.4±0.9 80.7±3.1 82.2±2.8 82.6±2.5
50 76.3±1.2 81.2±2.9 81.3±1.0 82.7±1.9 77.7±1.0 81.2±2.4 82.5±1.2 83.4±1.7

TABLE 9
Text categorization results on RCV1. (on the test data)

Macro-F1 (%) Micro-F1 (%)
k Random Simple Margin convex TED MAED Random Simple Margin convex TED MAED
5 35.2±2.4 13.2±2.6 59.1±1.7 62.5±1.9 43.2±2.2 26.1±4.5 59.7±2.1 65.6±2.2

10 47.3±2.2 19.3±5.2 69.9±2.6 72.7±1.9 52.7±2.2 30.3±5.1 69.7±3.2 73.4±2.1
15 54.5±1.7 39.4±7.0 70.4±3.4 74.8±1.6 58.7±1.4 45.3±7.0 70.2±3.7 76.2±1.9
20 60.4±1.8 47.4±13.1 72.3±4.5 78.8±2.4 63.5±1.6 51.2±12.3 72.0±4.6 80.0±2.1
25 64.7±1.3 60.5±8.9 75.1±3.6 80.8±1.9 67.3±1.1 62.2±8.9 74.8±4.1 81.8±1.5
30 67.7±1.3 70.0±4.7 78.5±3.4 81.5±1.7 70.0±1.1 71.7±4.7 78.5±3.8 82.4±1.5
35 70.6±1.4 73.8±4.9 81.1±2.3 82.2±1.7 72.6±1.2 75.4±4.2 81.2±2.5 82.9±1.8
40 73.3±1.3 77.8±3.8 80.9±2.5 82.0±3.1 74.9±1.0 79.6±3.3 81.0±2.7 82.8±2.9
45 74.9±1.0 80.6±3.3 81.1±2.8 82.0±2.6 76.4±0.8 80.8±3.0 82.3±3.0 82.7±2.5
50 76.3±1.1 81.2±2.8 81.4±1.1 82.8±2.1 77.7±0.9 81.3±2.3 82.6±1.3 83.5±1.9
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Fig. 3. Classification performance on different categories of RCV1 data set.

1) We randomly select part of the data points from the
training set (1%∼90% of the training set) to form

the labeled set. A linear SVM classifier is trained on
the labeled set and its performance on the test set is



11

10
−4

10
−3

10
−2

10
−1

10
0

35

40

45

50

λ

M
ac

ro
−F

1 (
%

)

 

 

MAED
TED
Simple Margin
Random

(a) 20Newsgroups

10
−4

10
−3

10
−2

10
−1

10
0

60

65

70

75

80

85

90

λ

M
ac

ro
−F

1 (
%

)

 

 

MAED
TED
Simple Margin
Random

(b) Reuters

10
−4

10
−3

10
−2

10
−1

10
0

55

60

65

70

75

80

λ

M
ac

ro
−F

1 (
%

)

 

 

MAED
TED
Simple Margin
Random

(c) RCV1

Fig. 4. The performance of MAED vs. parameter λ. The MAED is very stable with respect to the parameter λ. It
achieves consistent good performance with the λ varying from 0.001 to 0.1.

TABLE 11
Test Macro-F1 score on 20Newsgroup (%)

Size of the label set Baseline Random Simple Margin convex TED MAED
113 1% 36.0±3.8 46.2±2.0 28.4% 40.5±2.4 12.6% 50.2±2.2 39.4% 52.9±1.9 46.9%
225 2% 50.0±3.8 55.4±2.2 10.7% 52.8±2.8 5.6% 57.8±1.8 15.5% 59.7±2.0 19.3%
338 3% 57.5±2.2 61.3±1.5 6.5% 59.9±2.4 4.1% 62.0±1.4 7.8% 63.3±1.4 10.1%
451 4% 61.4±2.1 64.2±1.6 4.5% 63.0±2.3 2.7% 64.8±1.2 5.5% 66.1±1.1 7.6%
563 5% 64.0±2.0 66.1±1.4 3.3% 65.6±1.9 2.5% 66.9±1.1 4.5% 67.7±1.1 5.8%
676 6% 66.3±1.7 67.9±1.2 2.4% 67.5±1.3 1.8% 68.7±1.1 3.7% 69.1±1.0 4.3%
789 7% 67.7±1.2 69.0±0.9 1.9% 68.4±1.1 1.0% 69.9±0.9 3.3% 70.3±0.7 3.8%
902 8% 69.3±0.8 70.4±0.6 1.5% 70.3±0.6 1.4% 71.2±0.6 2.7% 71.4±0.7 3.0%

1014 9% 70.4±0.7 71.3±0.5 1.2% 71.4±0.6 1.3% 72.0±0.6 2.2% 72.0±0.6 2.3%
1127 10% 71.4±0.5 72.1±0.5 1.0% 72.1±0.5 1.0% 72.5±0.5 1.6% 72.7±0.5 1.9%
2254 20% 76.5±0.5 76.7±0.4 0.3% 76.8±0.4 0.4% 77.0±0.3 0.7% 77.2±0.3 0.9%
3381 30% 78.3±0.3 78.4±0.3 0.1% 78.6±0.2 0.3% 78.5±0.3 0.2% 78.6±0.3 0.3%
4508 40% 79.4±0.3 79.5±0.3 0.1% 79.6±0.3 0.3% 79.6±0.3 0.2% 79.6±0.2 0.3%
5635 50% 80.2±0.3 80.2±0.2 0.1% 80.5±0.2 0.4% 80.3±0.3 0.2% 80.3±0.3 0.2%
6761 60% 80.8±0.2 80.9±0.2 0.1% 81.1±0.3 0.3% 80.9±0.2 0.1% 80.9±0.2 0.1%
7888 70% 81.3±0.1 81.3±0.2 0.0% 81.5±0.3 0.3% 81.3±0.1 0.1% 81.3±0.1 0.1%
9015 80% 81.6±0.2 81.7±0.2 0.0% 81.9±0.2 0.3% 81.8±0.2 0.1% 81.8±0.2 0.1%
10142 90% 81.8±0.1 81.8±0.1 0.0% 82.1±0.1 0.4% 81.9±0.1 0.1% 81.9±0.1 0.1%
11269 100% 82.1

TABLE 12
Test Micro-F1 score on 20Newsgroup (%)

Size of the label set Baseline Random Simple Margin convex TED MAED
113 1% 39.6±3.5 49.1±1.8 24.0% 44.8±1.9 13.2% 52.4±2.1 32.2% 54.6±1.9 37.8%
225 2% 52.6±3.8 58.5±2.2 11.3% 55.8±2.7 6.2% 59.5±1.7 13.2% 61.3±2.0 16.6%
338 3% 59.6±2.2 63.1±1.5 6.0% 62.2±2.4 4.5% 63.5±1.4 6.7% 64.8±1.4 8.8%
451 4% 63.4±2.0 66.0±1.5 4.1% 65.4±2.0 3.1% 67.0±1.1 5.7% 67.6±1.0 6.6%
563 5% 65.9±1.8 67.8±1.3 3.0% 67.6±1.7 2.7% 68.9±1.1 4.7% 69.2±1.1 5.1%
676 6% 68.1±1.5 69.6±1.0 2.2% 69.4±1.1 2.0% 70.5±1.0 3.5% 70.6±0.9 3.8%
789 7% 69.4±1.1 70.6±0.8 1.8% 70.2±1.2 1.1% 71.5±0.9 2.9% 71.8±0.7 3.4%
902 8% 70.9±0.7 71.9±0.6 1.4% 72.0±0.5 1.6% 72.5±0.6 2.3% 72.8±0.6 2.6%

1014 9% 72.0±0.6 72.8±0.5 1.1% 73.0±0.6 1.4% 73.4±0.6 1.9% 73.5±0.5 2.0%
1127 10% 73.0±0.5 73.6±0.5 0.8% 73.7±0.4 1.1% 74.0±0.5 1.4% 74.2±0.5 1.6%
2254 20% 77.6±0.4 77.8±0.3 0.2% 78.0±0.4 0.5% 78.0±0.3 0.5% 78.1±0.3 0.6%
3381 30% 79.4±0.3 79.5±0.3 0.1% 79.6±0.2 0.3% 79.5±0.3 0.2% 79.6±0.3 0.3%
4508 40% 80.4±0.3 80.4±0.3 0.1% 80.6±0.3 0.3% 80.5±0.3 0.2% 80.6±0.2 0.3%
5635 50% 81.0±0.3 81.1±0.3 0.1% 81.4±0.2 0.4% 81.2±0.3 0.2% 81.2±0.3 0.2%
6761 60% 81.7±0.2 81.8±0.2 0.1% 82.0±0.3 0.4% 81.8±0.2 0.1% 81.8±0.2 0.1%
7888 70% 82.1±0.1 82.1±0.1 0.0% 82.4±0.3 0.3% 82.2±0.1 0.1% 82.2±0.1 0.1%
9015 80% 82.4±0.2 82.5±0.1 0.0% 82.8±0.2 0.4% 82.5±0.2 0.1% 82.6±0.2 0.1%
10142 90% 82.6±0.1 82.6±0.1 0.0% 83.0±0.1 0.5% 82.7±0.1 0.1% 82.7±0.1 0.1%
11269 100% 82.9

reported as Baseline.
2) Each active learning algorithm is asked to select

k = 100 data points from the training set in ad-
dition to the existing labeled set. The linear SVM

classifier is then trained on the new labeled set (the
original labeled set plus 100 new labeled points) and
its performance on the test set is recorded as the
performance of the active learning algorithm.
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(a) MacroF1
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(b) MicroF1

Fig. 5. Classification performance of different methods vs. the size of the initial label set on 20Newsgroups data set.

3) The above two steps are repeated 10 times and we
report the averages and the standard deviations.

The results are shown in Table 11 and 12. For each
active learning method, we also compute the relative
performance increase comparing to the Baseline. We also
plot the results in Figure 5. These result tables and
figures clearly show that

• With the additional 100 labeled points (no matter
which active learning method is used), the classifier
generally becomes better. The 100 points selected
by different active learning methods made different
amount of contributions in improving the classifier.

• When the size of the initial labeled set is smaller or
equal than 2,254 (20% of the training set), MAED se-
lects the 100 most informative data points (achieved
best classification performance). When the size of
the initial labeled set is larger or equal than 5,635
(50% of the training set), Simple Margin selects the
100 most informative data points. When the size of
the initial labeled set is 3,381 (30% of the training
set) or 4,508 (40% of the training set), MAED and
Simple Margin have the similar performances.

• When the size of the initial labeled set is smaller
or equal than 789 (7% of the training set), even the
random selection is better than Simple Margin.

As we discussed before, Simple Margin and MAED
represent two directions of active learning research. Sim-
ple Margin selects the most uncertain data points given
the previously trained model and MAED selects the
most representative points. The advantages and disad-
vantages of these two directions can be clearly seen from
our experimental results:

• When the size of the initial labeled set is small, the
methods which select the most representative points
are usually better than the methods which select
the most uncertain data points. This is because the
initial trained model is not very accurate given a
small number of labeled points. On the other hand,
by selecting the most representative points, those
methods can greatly explore the entire data space.

• When the size of the initial labeled set is large,
the methods which select the most uncertain data

points can outperform the methods which select the
most representative points. With a large amount of
labeled points, the initial model can be relatively
accurate. Thus, those most uncertain points given
by the initial model can provide most amount of
new information.

• This suggests a natural way to combine these two
active learning directions: One can select the most
representative data points if the size of the initial
labeled set is small. As the size of the labeled set
increases, one can switch to the methods that select
the most uncertain data points. In our case, we can
use MAED when the size of the labeled points is
small and switch to Simple Margin as the size of
the labeled points becomes larger. How to decide
the switching point is an interesting and important
question which remains to be explored in the future.

5 CONCLUSION AND FUTURE WORK

We have introduced a novel active learning algorithm
for text categorization called Manifold Adaptive Experi-
mental Design (MAED). Unlike most of previous active
learning approaches which explore either Euclidean or
data-independent nonlinear structure of the data space,
our proposed approach explicitly takes into account the
intrinsic manifold structure. The local geometry of the
data is captured by a nearest neighbor graph. The graph
Laplacian is incorporated into the manifold adaptive
kernel space in which active learning is then performed.
Our proposed algorithm has shown good performance
for text categorization on 20Newsgroup, Reuters-21578
and RCV1, especially when only a small number of
examples can be labeled.

There are several problems that need to be investi-
gated in the future. First, as the computational complex-
ity of all the kernel based techniques scales with the
number of data points, our method may not be applied
to large-scale data sets. In this situation, one may apply
clustering techniques such as K-means to group the
data points into clusters and select some representative
points from each clusters. Our method is then applied
only to the representative points. Second, in this work
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the number of queries (k) is pre-given. Another natural
scenario is that the acceptable error rate is fixed and the
goal is to minimize the number of queries.
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