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Locally Consistent Concept Factorization for
Document Clustering
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Abstract—Previous studies have demonstrated that document clustering performance can be improved significantly in lower
dimensional linear subspaces. Recently, matrix factorization based techniques, such as Non-negative Matrix Factorization (NMF) and
Concept Factorization (CF), have yielded impressive results. However, both of them effectively see only the global Euclidean geometry,
whereas the local manifold geometry is not fully considered. In this paper, we propose a new approach to extract the document
concepts which are consistent with the manifold geometry such that each concept corresponds to a connected component. Central
to our approach is a graph model which captures the local geometry of the document submanifold. Thus we call it Locally Consistent
Concept Factoriaztion (LCCF). By using the graph Laplacian to smooth the document-to-concept mapping, LCCF can extract concepts
with respect to the intrinsic manifold structure and thus documents associated with the same concept can be well clustered. The
experimental results on TDT2 and Reuters-21578 have shown that the proposed approach provides a better representation and
achieves better clustering results in terms of accuracy and mutual information.

Index Terms—Non-negative Matrix Factorization, Concept Factorization, Graph Laplacian, Manifold Regularization, Clustering.
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1 INTRODUCTION

In the last decade, matrix factorization based approaches
have attracted considerable attention in document clus-
tering [25], [24]. When using matrix factorization based
methods, a text document is usually represented as a
point in a high dimensional linear space, each dimension
corresponding to a term. Central to all of the goals of
cluster analysis is the notion of the degree of similarity
(or dissimilarity) between the individual objects being
clustered. Recent studies have shown that similarity
can be measured more accurately in lower dimensional
spaces, and thus the clustering performance can be
enhanced [5], [18]. In particular, Non-negative Matrix
Factorization (NMF) [25] and Concept Factorization (CF)
[24] have been applied to document clustering with
impressive results.

In general, the NMF problem is the following: given a
nonnegative data matrix X, find reduced rank nonneg-
ative matrices U and V so that UVT provides a good
approximation to X. The column vectors of U can be
thought of as basis vectors and V contains the coordi-
nates. Previous studies have shown there is psychologi-
cal and physiological evidence for parts-based represen-
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tation in human brain [16]. The non-negative constraints
in NMF lead to a parts-based representation because it
allows only additive, not subtractive, combinations. The
major limitation of NMF is that it is unclear how to
effectively perform NMF in the transformed data space,
e.g. reproducing kernel Hilbert space (RKHS).

To address the limitations of NMF while inheriting
all its strengths, Xu and Gong proposed Concept Fac-
torization (CF) for data clustering [24]. CF models each
cluster as a linear combination of the data points, and
each data point as a linear combination of the cluster
centers. The data clustering is then accomplished by
computing the two sets of linear coefficients, which is
carried out by finding the non-negative solution that
minimizes the reconstruction error of the data points.
The major advantage of CF over NMF is that it can
be performed on any data representations, either in the
original space or RKHS. Besides NMF and CF, another
popular matrix factorization method is Latent Semantic
Indexing (LSI) [9].

All the above mentioned methods essentially aim to
find new basis vectors based on which the data points
are represented. The similarity between data points are
measured based on the new representations. However,
many previous studies have shown human generated
text data is probably sampled from a submanifold of the
ambient Euclidean space [1], [19], [23]. In fact, the human
generated text documents cannot possibly “fill up” the
high dimensional Euclidean space uniformly. Therefore,
the intrinsic manifold structure needs to be considered
while learning new data representations.

The goal of this paper is to extract the underlying
concepts which are consistent with the low dimensional



2

manifold structure with the hope that this will facilitate
further processing such as clustering. Central to our ap-
proach is a graph model which captures the local geome-
try of the document submanifold. Thus we call it Locally
Consistent Concept Factoriaztion (LCCF). The graph
Laplacian, analogous to the Laplace-Beltrami operator
on manifolds, can be used to smooth the document-
to-concept mapping. Thus, the obtained concepts can
well capture the intrinsic geometrical structure and the
documents associated with similar concepts can be well
clustered. The Euclidean and manifold geometry is uni-
fied through a regularization framework where a reg-
ularization parameter controls their balance. Although
the new approach is no longer optimal in the sense of
reconstruction error in Euclidean space, it has a better
interpretation from manifold perspective. Moreover, like
CF, our method also can be performed in RKHS which
gives rise to nonlinear mappings.

It is worthwhile to highlight several aspects of the
proposed approach here:

1) The standard CF fits the data in Euclidean space,
LCCF exploits the intrinsic geometry of the data
and incorporates it as an additional regularization
term. Hence, LCCF is particularly applicable when
the data is sampled from a submanifold which is
embedded in high dimensional ambient space.

2) The proposed framework is a general one that can
leverage the power of both CF and graph Laplacian
regularization. Besides the nearest neighbor infor-
mation, other knowledge (e.g., label information,
social network structure) about the data can also be
used to construct the graph. This naturally leads to
other extensions (e.g., semi-supervised CF).

3) Our algorithm uses a nearest neighbor graph to
model the manifold structure. Since the weight ma-
trix of the graph is highly sparse, the multiplicative
updating rules for LCCF are still very efficient.

The rest of the paper is organized as follows. Section 2
describes NMF and CF. Our Locally Consistent Concept
Factorization approach is introduced in Section 3. Section
4 introduces some related work. A variety of experimen-
tal results are presented in Section 5. Finally, we provide
some concluding remarks in Section 6.

2 NMF AND CF
Non-negative Matrix Factorization (NMF) [13] is a ma-
trix factorization algorithm that focuses on the analysis
of data matrices whose elements are nonnegative. Given
a nonnegative data matrix X = [x1, · · · , xN ] ∈ R

M×N ,
each column of X is a sample vector. NMF aims to
find two non-negative matrices U = [uik] ∈ R

M×K

and V = [vjk] ∈ R
N×K which minimize the following

objective function:

O = ‖X−UVT ‖2 (1)

where ‖ · ‖ denotes the matrix Frobenius norm.

Although the objective function O in Eq. (1) is convex
in U only or V only, it is not convex in both variables
together. Therefore, it is unrealistic to expect an algo-
rithm to find the global minimum of O. Lee & Seung
[14] presented an iterative update algorithm as follows:

ut+1
ik = utik

(
XV

)
ik(

UVT V
)
ik

, vt+1
jk = vtjk

(
XT U

)
jk(

VUT U
)
jk

(2)

It is proved that the above update steps will find a local
mimimum of the objective function O in Eq. (1) [14].

In reality, we have K ≪ M and K ≪ N . Thus, NMF
essentially tries to find a compressed approximation of
the original data matrix, X ≈ UVT . We can view this
approximation column by column as

xj ≈

K∑

k=1

ukvjk (3)

where uk is the k-th column vector of U. Thus, each
data vector xj is approximated by a linear combination
of the columns of U, weighted by the components of V.
Therefore, U can be regarded as containing a basis that is
optimized for the linear approximation of the data in X.
Let zT

j denote the j-th row of V, zj = [vj1, · · · , vjK ]T . zj

can be regarded as the new representation of each data
point in the new basis U. Since relatively fewer basis
vectors are used to represent many data vectors, good
approximation can only be achieved if the basis vectors
discover structure that is latent in the data [14]. The
non-negative constraints on U and V require the com-
bination coefficients among different basis can only be
positive. This is the most significant difference between
NMF and other matrix factorization methods, e.g., SVD.
Unlike SVD, no subtractions can occur in NMF. For this
reason, it is believed that NMF can learn a parts-based
representation [13]. The advantages of this parts-based
representation have been observed in many real world
problems such as face analysis [6], document clustering
[25] and DNA gene expression analysis [4]. Please see
[15], [26] for other NMF extensions.

NMF can only be performed in the original feature
space of the data points. In the case that the data are
highly non-linear distributed, it is desirable that we
can kernelize NMF and apply the powerful idea of the
kernel method. To achieve this goal, Xu and Gong [24]
proposed an extension of NMF which is called Concept
Factorization (CF). In CF, each basis uk is required to be
a non-negative linear combination of the sample vectors
xj

uk =

N∑

j=1

xjwjk (4)

where wjk ≥ 0. Let W = [wjk] ∈ R
N×K , CF essentially

tries to find the following approximation:

X ≈ XWVT (5)
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through minimization of

O = ‖X− XWVT ‖2. (6)

The multiplicative updating rules minimizing the
above objective function are given as [24]

wt+1
jk = wt

jk

(
KV

)
jk(

KWVT V
)
jk

vt+1
jk ← vtjk

(
KW

)
jk(

VWT KW
)
jk

(7)

where K = XT X. These multiplicative updating rules
only involve the inner product of x and thus CF can
be easily kernelized. Please see [24] for details. With
extensive experimental results, Xu and Gong [24] show
the superiority of CF over NMF for document clustering.

3 LOCALLY CONSISTENT CONCEPT
FACTORIZATION

Both NMF and CF perform the factorization in the Eu-
clidean space. They fail to discover the local geometrical
and discriminating structure of the data space, which
is essential to the clustering problem. In this Section,
we introduce our Locally Consistent Concept Factorization
(LCCF) algorithm which avoids this limitation by incor-
porating a geometrically based regularizer.

3.1 The Objective Function

Recall that CF tries to find a basis that is optimized for
the linear approximation of the data. The j-th row of
matrix V, zT

j = [vj1, · · · , vjk], can be regarded as the new
representation of each data point in the new basis. One
might hope that knowledge of the geometric structure
of the data can be exploited for better discovery of this
basis. A natural assumption here could be that if two
data points xj , xs are close in the intrinsic geometry of
the data distribution, then zj and zs, the representations
of this two points in the new basis, are also close to
each other. This assumption is usually referred to as
local consistency assumption [28], which plays an essential
role in developing various kinds of algorithms includ-
ing dimensionality reduction algorithms [1] and semi-
supervised learning algorithms [2].

Recent studies on spectral graph theory [7] and mani-
fold learning theory [1] have demonstrated that the local
geometric structure can be effectively modeled through
a nearest neighbor graph on a scatter of data points.
Consider a graph with N vertices where each vertex
corresponds to a document in the corpus. Define the
edge weight matrix S as follows:

Sjs =

{
xTj xs

‖xj‖‖xs‖
, if xj ∈ Np(xs) or xs ∈ Np(xj)

0, otherwise.
(8)

where Np(xs) denotes the set of p nearest neighbors of
xs. Then, the following term can be used to measure the

smoothness of the low dimensional representations on
this p-nearest neighbor graph.

R =
1

2

N∑

j,s=1

‖zj − zs‖
2Sjs

=

N∑

j=1

zTj zjDjj −

N∑

j,s=1

zTj zsSjs

= Tr(VT DV)− Tr(VT SV) = Tr(VT LV),

(9)

where Tr(·) denotes the trace of a matrix and D is a
diagonal matrix whose entries are column (or row, since
S is symmetric) sums of S, Djj =

∑
s Sjs. L = D − S,

which is called graph Laplacian [7]. By minimizing R,
we essentially try to formalize our intuition that if two
data points xj and xs are close (i.e. Sjs is big), zj and zs

are also close to each other.
Our LCCF incorporates the R term and minimizes the

objective function as follows:

O = ‖X− XWVT ‖2 + λTr(VT LV) (10)

with the constraint that W and V are non-negative
matrices. The λ ≥ 0 is the regularization parameter.

3.2 A Multiplicative Algorithm

The objective function O of LCCF in Eq. (10) is not con-
vex in both W and V together. Therefore, it is unrealistic
to expect an algorithm to find the global minimum of
O. In the following, we introduce an iterative algorithm
which can achieve a local minimum.

Define K = XT X and use the properties ‖A‖2 =
Tr(AT A), Tr(AB) = Tr(BA) and Tr(A) = Tr(AT ), we
can rewrite the objective function O:

O =Tr
((

X− XWVT
)T (

X− XWVT
))

+ λTr(VT LV)

=Tr
((

I−WVT
)T

K
(
I−WVT

))
+ λTr(VT LV)

=Tr(K)− 2Tr(VWT K) + Tr(VWT KWVT )

+ λTr(VT LV)
(11)

Let ψjk and φjk be the Lagrange multiplier for con-
straints wjk ≥ 0 and vjk ≥ 0, respectively. We define
matrix Ψ = [ψjk] and Φ = [φjk], then the Lagrange L is

L = Tr(K)− 2Tr(VWT K) + Tr(VWT KWVT )

+ λTr(VT LV) + Tr(ΨWT ) + Tr(ΦVT )
(12)

The partial derivatives of L with respect to W and V are:

∂L

∂W
= −2KV + 2KWVT V +Ψ (13)

∂L

∂V
= −2KW + 2VWT KW + 2λLV +Φ (14)

Using the KKT conditions ψjkwij = 0 and φjkvjk = 0,
we get the following equations:

−
(
KV

)
jk
wjk +

(
KWVT V

)
jk
wjk = 0 (15)
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−
(
KW

)
jk
vjk +

(
VWT KW

)
jk
vjk + λ

(
LV

)
jk
vjk = 0 (16)

The above equations lead to the following updating
rules:

wjk ← wjk

(
KV

)
jk(

KWVT V
)
jk

(17)

vjk ← vjk

(
KW + λSV

)
jk(

VWT KW + λDV
)
jk

(18)

Regarding these two updating rules, we have the follow-
ing theorem:

Theorem 1: The objective function O in Eq. (10) is non-
increasing under the updating rules in Eq. (17) and (18).
The objective function is invariant under these updates
if and only if W and V are at a stationary point.
Theorem 1 grantees that the updating rules of W and
V in Eq. (17) and (18) converge and the final solution
will be a local optimum. Please see the Appendix for a
detailed proof.

For the objective function of CF, It is easy to check that
if W and V are the solution, then, WD, VD−1 will also
form a solution for any positive diagonal matrix D. To
eliminate this uncertainty, in practice people will further
require that wT Kw = 1, where w is the column vector
of W [24]. The matrix V will be adjusted accordingly so
that WVT does not change. This can be achieved by:

V← V[diag(WT KW)]1/2,

W←W[diag(WT KW)]−1/2

Our LCCF also adopts this strategy.

3.3 Connection with Gradient Descent Method

Another general algorithm for minimizing the objective
function of LCCF in Eq. (10) could be gradient descent
[12]. For our problem, gradient descent leads to the
following additive updating rules:

wjk ← wjk + ηjk
∂O

∂wjk
, vjk ← vjk + δjk

∂O

∂vjk

The ηjk and δjk are usually referred as step size param-
eters. As long as ηjk and δjk are sufficiently small, the
above updates should reduce O.

Generally speaking, it is relatively hard to set these
step size parameters while still maintaining the non-
negativity of wjk and vjk. However, with the special
form of the partial derivatives, we can use some tricks.
Let ηjk = −wjk/2

(
KWVT V

)
jk

, we have

wjk + ηjk
∂O

∂wjk
= wjk −

wjk

2
(
KWVT V

)
jk

∂O

∂wjk

= wjk −
wjk

2
(
KWVT V

)
jk

(
−2

(
KV

)
jk

+ 2
(
KWVT V

)
jk

)

= wjk

(
KV

)
jk(

KWVT V
)
jk

TABLE 1
Abbreviations for reporting operation counts

Abbreviation Description
fladd a floating-point addition
flmlt a floating-point multiplication
fldiv a floating-point division
flam a compound operation consisting of

one addition and one multiplication

Similarly, let δjk = −vjk/2
(
VWT KW+λDV

)
jk

, we have

vjk + δjk
∂O

∂vjk
= vjk −

vjk

2
(
VWT KW + λDV

)
jk

∂O

∂vjk

= vjk −
vjk

2
(
VWT KW + λDV

)
jk

(
− 2

(
KW

)
jk

+ 2
(
VWT KW

)
jk

+ 2λ
(
DV

)
jk
− 2λ

(
SV

)
jk

)

= vjk

(
KW + λSV

)
jk(

VWT KW + λDV
)
jk

Now it is clear that the multiplicative updating rules
in Eq. (17) and Eq. (18) are special cases of gradient
descent with automatically step size parameter selection.
The advantage of multiplicative updating rules is the
guarantee the non-negativity of W and V. Theorem 1
also guarantees that the multiplicative updating rules in
Eq. (17) and (18) converge to a local optimum.

3.4 Computational Complexity Analysis

In this subsection, we discuss the extra computational
cost of our proposed algorithm comparing to standard
CF and NMF.

The common way to express the complexity of one
algorithm is using big O notation [8]. However, it is not
precise enough to differentiate the complexities of CF
and LCCF. Thus, we count the arithmetic operations for
each algorithm. Three operation abbreviations used in
this paper are summarized in Table 1. Please see [22] for
more details about these operation abbreviations.

Based on the updating rules in Eq. (2), it is not hard
to count the arithmetic operations of each iteration in
NMF and CF. We summarize the results in Table 2.
For LCCF, it is important to note that S is a sparse
matrix. If we use a p-nearest neighbor graph, the average
nonzero elements on each row of S is p. Thus, we only
need NpK flam to compute SV. We also summarize
the arithmetic operations for each iteration of LCCF in
Table 2. Comparing to CF, LCCF only needs N(p+ 3)K
more flam in each iteration. Since we have p ≪ N , this
additional cost is dominated by the remaining cost of
LCCF. Thus, the overall cost of both CF and LCCF in
each iteration are O(N2K).

Besides the multiplicative updating, both CF and
LCCF need to compute the kernel matrix K which
requires O(N2M) operations. Moreover, LCCF needs
O(N2M + N2p) to construct the p-nearest neighbor
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TABLE 2
Computational operation counts for each iteration in NMF, CF and LCCF

fladd flmlt fldiv overall
NMF 2MNK + 2(M +N)K2 2MNK + 2(M +N)K2 + (M +N)K (M +N)K O(MNK)

CF 4N2K + 4NK2 4N2K + 4NK2 + 2NK 2NK O(N2K)
LCCF 4N2K + 4NK2 +N(p+ 3)K 4N2K + 4NK2 +N(p+ 3)K 2NK O(N2K)
N : the number of sample points M : the number of features K: the number of factors
p: the number of nearest neighbors, p ≪ N

graph. Suppose the multiplicative updates stops after t
iterations, the overall cost for NMF is

O(tMNK). (19)

The overall cost for CF is

O(tN2K +N2M) (20)

and the overall cost for LCCF is

O(tN2K +N2M +N2p) (21)

Since p is usually very small (around 5), LCCF and
CF will have the same computational complexity by
using the big O notation when dealing with the high
dimensional data (M ≫ p).

3.5 An Algorithm for Negative Data Matrices

The algorithm we introduced in Section 3.2 only works
when the K is nonnegative. In the case that the data
matrix has negative values, it is possible that the K
has negative entries. In this Section, we will introduce
a general algorithm which can be applied for any case.
Our approach follows [24], which is essentially based on
the following theorem proposed by Sha et al. [20].

Theorem 2: Define the non-negative general quadratic
form as

f(v) =
1

2
vT Av + bT v

where v is an m dimensional non-negative vector, A
is a symmetric positive definite matrix and b is an
arbitrary m dimensional vector. Let A+ and A− denote
the nonnegative matrices with elements:

A+
ij =

{
Aij , if Aij > 0,
0, otherwise.

A−
ij =

{
|Aij |, if Aij < 0,
0, otherwise.

It is easily to see that A = A+ − A−. Then the solution
v that minimizes f(v) can be obtained through the
following iterative update

vi ← vi


−bi +

√
b2i + 4(A+v)i(A

−v)i

2(A+v)i


 (22)

From the Eq. (11), we can easily see that the objective
function O of LCCF is a quadratic form of W (or, V)
only and the Theorem 2 can naturally be applied. We
only need to identify the corresponding A and b in the
objective function.

Fixing V, the part b for the quadratic form O(W) can
be obtained by taking the first order derivative with
respect to W at W = 0:

∂O

∂wjk

∣∣∣∣
W=0

= −2(KV)jk (23)

The part A for the quadratic form O(W) can be obtained
by taking the second order derivative with respect to W.

∂2O

∂wjk∂wil
= 2(K)ji(V

T V)lk (24)

Let K+ and K− denote the nonnegative matrices with
elements:

K+
ij =

{
Kij , if Kij > 0,
0, otherwise.

K−
ij =

{
|Kij |, if Kij < 0,
0, otherwise.

We have K = K+ − K−. Substituting A and bi in Eq.
(22) using Eq. (24) and (23), respectively, we obtain the
multiplicative updating equation for each element wjk

of W:

wjk ← wjk

(
KV

)
jk

+
√(

KV
)2
jk

+ 4P+
jkP−

jk

2P+
jk

(25)

where P+ = K+WVT V and P− = K−WVT V.

Similarly, we can get the updating equation for each
element vjk in V by applying the Theorem 2 to the
quadratic form O(V). Fixing W, we get

∂O

∂vjk

∣∣∣∣
V=0

= −2(KW)jk (26)

∂2O

∂vjk∂vil
= 2δij(W

T KW)lk + 2λδlkLji (27)

where

δij =

{
1, if i = j,
0, otherwise.

δlk =

{
1, if l = k,
0, otherwise.

The updating equation for V is:

vjk ← vjk

(
KW

)
jk

+
√(

KW
)2
jk

+ 4Q+
jkQ−

jk

2Q+
jk

(28)

where Q+ = VWT K+W + λDV and Q− = VWT K−W +
λSV.
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3.6 Out-of-Sample Extension

The NMF based methods (including CF and LCCF dis-
cussed in this paper) provide the factorization results
only for given training points. When a new data point
comes, there is no straightforward way to figure out
the factorization result of the new data point. This is
commonly referred as the out-of-sample extension issue
[3]. In this subsection, we discuss how to handle the out-
of-sample extension in LCCF.

Given a M×N data matrix X, recall that LCCF tries to
find two non-negative N×K matrices W and V through
minimization of

‖X− XWVT ‖2 + λTr(VT LV),

where W contains the coefficients for linear combina-
tions of the data points to form clusters, and V contains
the coefficients modeling each data point as a linear
combinations of the cluster centers. For each data point
xi (i-th column vector of X), the factorization result
contains two parts: the i-th row of W and the i-th row
of V.

Given a new data point x′, let X̂ = [X, x′] ∈ R
M×(N+1),

our goal is to find the factorization result of this new
point. A naive way is applying the multiplicative updat-

ing algorithm discussed in Section 3.2 on X̂ to find the
new factorization matrices Ŵ and V̂. The factorization
result of x′ will be the last row of matrices Ŵ and V̂.
However, this naive approach is too time consuming.
Since we only have one new data point, we can assume
that the matrices containing the first N rows of Ŵ and
V̂ are the same as the matrices W and V. And we only
need to use the multiplicative updating to find the last
row of Ŵ and V̂. Define

Ŝ =

[
S s̃

s̃T 0

]
∈ R

(N+1)×(N+1)

where S ∈ R
N×N is the weight matrix of the p-nearest

neighbor graph constructed on the previous N samples.
s̃ ∈ R

N is defined as follows:

s̃i =

{
xTi x′

‖xi‖‖x′‖ , if xi ∈ Np(x
′)

0, otherwise.

Ŝ is the weight matrix of the p-nearest neighbor graph
constructed on all the N + 1 samples. Let k′ be the
last row vector of the kernel matrix K̂ on the data
matrix X̂ and let s′, w′ and v′ be the last row vectors
of matrices Ŝ, Ŵ and V̂, respectively, it is not hard to
get the multiplicative updating rules as follows:

w′
i ← w′

i

(
k′V̂

)
i(

k′ŴV̂
T

V̂
)
i

(29)

v′
i ← v′

i

(
k′Ŵ + λs′V̂

)
i(

v′Ŵ
T

K̂Ŵ + λd′V̂
)
i

(30)

The construction of the weight matrix Ŝ of the p-
nearest neighbor graph needs O(NM) operations and

TABLE 3
Statistics of TDT2 and Reuters corpora.

TDT2 Reuters
No. docs. used 10021 8213

No. clusters used 56 41
Max. cluster size 1844 3713
Min. cluster size 10 10
Med. cluster size 58 38
Avg. cluster size 179 200

calculating the new kernel matrix also needs O(NM)
operations. The multiplicative updating in Eq. (29) and
(30) needs O(NK2) operations. If the updating proce-
dure stops after t iterations, the overall cost to find the
factorization result of a new data point is

O(tNK2 +NM).

4 EXPERIMENTAL RESULTS

Previous studies show that both CF and NMF are
very powerful on document clustering [25][24]. They
can achieve similar or better performance than most of
the state-of-the-art clustering algorithms, including the
popular spectral clustering methods [25]. In this section,
we also evaluate our LCCF algorithm on document
clustering problem.

For the purpose of reproducibility, we provide the
codes and data sets at:
http://www.zjucadcg.cn/dengcai/Data/data.html

4.1 Data Corpora

We conduct the performance evaluations using the TDT2
and the Reuters document corpora.

The TDT21 corpus consists of data collected during the
first half of 1998 and taken from 6 sources, including 2
newswires (APW, NYT), 2 radio programs (VOA, PRI)
and 2 television programs (CNN, ABC). It consists of
11201 on-topic documents which are classified into 96
semantic categories. In this experiment, those documents
appearing in two or more categories are removed, and
the categories with more than 10 documents are kept,
thus leaving us with 10,021 documents in total.

The Reuters2 corpus contains 21578 documents which
are grouped into 135 clusters. Compared with TDT2 cor-
pus, the Reuters corpus is more difficult for clustering.
In TDT2, the content of each cluster is narrowly defined,
whereas in Reuters, documents in each cluster have a
broader variety of content. Moreover, the Reuters corpus
is much more unbalanced, with some large clusters more
than 300 times larger than some small ones. In our test,
we discard documents with multiple category labels, and
only select the categories with more than 10 documents.
This lefts us with 8,213 documents in total. Table 3
provides the statistics of the two document corpora.

1. Nist Topic Detection and Tracking corpus at
http://www.nist.gov/speech/tests/tdt/tdt98/index.htm

2. Reuters-21578 corpus is at
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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In both of the two corpora, the stop words are re-
moved and each document is represented as a tf-idf
vector. These two processed data sets can be downloaded
at:
http://www.zjucadcg.cn/dengcai/Data/TextData.html

4.2 Evaluation Metric

The clustering result is evaluated by comparing the
obtained label of each document using clustering algo-
rithms with that provided by the document corpus. We
use two metrics to measure the performance. The first
metric is the accuracy (AC) [5], [25]. Given a document
xi, let ri and si be the obtained cluster label and the label
provided by the corpus, respectively. The AC is defined
as follows:

AC =

∑N
i=1 δ(si,map(ri))

N

where N is the total number of documents and δ(x, y)
is the delta function that equals one if x = y and equals
zero otherwise, and map(ri) is the permutation mapping
function that maps each cluster label ri to the equivalent
label from the data corpus. The best mapping can be
found by using the Kuhn-Munkres algorithm [17].

The second metric is the normalized mutual infor-
mation metric (NMI) [5], [25]. Let C denote the set of
clusters obtained from the ground truth and C ′ obtained
from our algorithm. Their mutual information metric
MI(C,C ′) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′
j
∈C′

p(ci, c
′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)

where p(ci) and p(c′j) are the probabilities that a doc-
ument arbitrarily selected from the corpus belongs to
the clusters ci and c′j , respectively, and p(ci, c

′
j) is the

joint probability that the arbitrarily selected document
belongs to the clusters ci as well as c′j at the same
time. In our experiments, we use the normalized mutual
information NMI as follows:

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))

where H(C) and H(C ′) are the entropies of C and C ′,
respectively. It is easy to check that NMI(C,C ′) ranges
from 0 to 1. NMI= 1 if the two sets of clusters are
identical, and NMI= 0 if the two sets are independent.

4.3 Performance Evaluations and Comparisons

To demonstrate how the document clustering perfor-
mance can be improved by our method, we compared
LCCF with other five popular document clustering algo-
rithms as follows:

• Traditional kmeans clustering method (KM in
short).

• Spectral clustering algorithm based on average asso-
ciation criterion (AA in short)[27]. As shown in [27],

the spectral clustering algorithm based on kmeans
criterion is equivalent to AA.

• Spectral clustering algorithm based on normalized
cut criterion (NC in short)[21]. As shown in [25], NC
can be considered as a variation of the AA spectral
clustering algorithm that applies certain weighting
scheme to the given data set.

• Nonnegative Matrix Factorization based clustering
(NMF in short) [25].

• Concept Factorization based clustering (CF in short)
[24].

In addition to the original form of all the above algo-
rithms, we also implement the normalized-cut weighted
form (NCW) suggested by [25][24]. When the data set is
unbalanced, the NCW weighting can automatically re-
weight the samples which leads to better clustering per-
formance [25][24]. The weighted form of LCCF is derived
in appendix B. It is important to note that NC is exactly
the NC-weighted form of AA [25]. Essentially, we have
compared five approaches (KM, AA, NMF, CF, LCCF)
and their NC-weighted versions in the experiment. For
the algorithms to which the kernel trick can be applied
(i.e. KM, AA, CF, LCCF and their NC-weighted versions),
we also implement their kernelized versions with degree
2 polynomial kernel .

There are two parameters in our LCCF approach: the
number of nearest neighbors p and the regularization pa-
rameter λ. Throughout our experiments, we empirically
set the number of nearest neighbors p to 5, the value of
the regularization parameter λ to 100.

Table 4, 5, 6 and 7 show the evaluation results using
the TDT2 and the Reuters corpus, respectively. The
evaluations were conducted with the cluster numbers
ranging from two to ten. For each given cluster number
k, 50 test runs were conducted on different randomly
chosen clusters and the average performance is reported
in the tables.

These experiments reveal a number of interesting
points:

• The use of NC weighting consistently improves the
clustering performance (KM-NCW vs. KM, NC vs.
AA, NMF-NCW vs. NMF, CF-NCW vs. CF and
LCCF-NCW vs. LCCF). This result is consistent with
the finding in [25][24].

• The similar performance between KM and AA (or,
KM-NCW and NC) confirms the theoretical anal-
ysis that KM and AA (or, KM-NCW and NC) are
equivalent with respect of their objective functions
[27][11].

• For both two concept factorization based methods
(CF and LCCF), the use of polynomial kernel has
positive effect (except the NMI metric on Reuters
for CF). The use of polynomial kernel has negative
effect for KM and AA. However, their NC weighted
version (KM-NCW and NC) can gain benefit from
applying the kernel trick.

• Regardless of the data corpora, LCCF-NCW always
has the best performance. This shows that by con-
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TABLE 4
Clustering performance on TDT2 (Accuracy)

k 2 3 4 5 6 7 8 9 10 Avg.
KM 0.938 0.882 0.834 0.778 0.762 0.708 0.653 0.651 0.613 0.758

KM-NCW 0.985 0.936 0.950 0.884 0.902 0.878 0.834 0.814 0.775 0.884
AA 0.929 0.846 0.803 0.753 0.733 0.705 0.655 0.641 0.609 0.742
NC 0.983 0.960 0.950 0.883 0.910 0.880 0.822 0.811 0.786 0.887

NMF 0.866 0.804 0.755 0.705 0.699 0.681 0.608 0.611 0.578 0.701
NMF-NCW 0.984 0.959 0.949 0.885 0.910 0.878 0.844 0.824 0.809 0.894

CF 0.863 0.817 0.779 0.721 0.708 0.695 0.658 0.646 0.594 0.720
CF-NCW 0.985 0.965 0.950 0.894 0.932 0.896 0.864 0.846 0.820 0.906

LCCF 0.952 0.896 0.877 0.821 0.807 0.794 0.729 0.738 0.689 0.811
LCCF-NCW 0.985 0.979 0.985 0.973 0.976 0.981 0.981 0.971 0.957 0.976
following are kernelized version of each algorithm with kernel function 〈xi, xj〉

2

KM 0.876 0.786 0.784 0.738 0.706 0.698 0.659 0.660 0.621 0.725
KM-NCW 0.970 0.958 0.951 0.940 0.947 0.925 0.926 0.910 0.889 0.935

AA 0.847 0.801 0.781 0.753 0.718 0.699 0.682 0.654 0.619 0.728
NC 0.993 0.933 0.948 0.934 0.942 0.935 0.941 0.931 0.925 0.943
CF 0.862 0.824 0.817 0.785 0.791 0.791 0.742 0.753 0.726 0.788

CF-NCW 0.993 0.945 0.929 0.922 0.941 0.940 0.926 0.928 0.932 0.940
LCCF 0.971 0.917 0.888 0.843 0.850 0.830 0.767 0.777 0.748 0.843

LCCF-NCW 0.993 0.983 0.991 0.988 0.987 0.980 0.976 0.971 0.961 0.981

TABLE 5
Clustering performance on TDT2 (Normalized Mutual Information)

k 2 3 4 5 6 7 8 9 10 Avg.
KM 0.807 0.771 0.739 0.691 0.716 0.668 0.629 0.648 0.622 0.699

KM-NCW 0.937 0.839 0.885 0.804 0.841 0.814 0.775 0.774 0.750 0.824
AA 0.745 0.696 0.690 0.650 0.673 0.652 0.611 0.614 0.594 0.658
NC 0.918 0.891 0.880 0.798 0.843 0.819 0.766 0.767 0.756 0.826

NMF 0.687 0.678 0.667 0.625 0.661 0.648 0.593 0.616 0.596 0.641
NMF-NCW 0.947 0.903 0.891 0.807 0.863 0.832 0.797 0.792 0.781 0.846

CF 0.678 0.695 0.678 0.636 0.670 0.663 0.626 0.639 0.605 0.654
CF-NCW 0.947 0.908 0.893 0.817 0.888 0.852 0.814 0.805 0.795 0.858

LCCF 0.850 0.791 0.783 0.726 0.743 0.733 0.684 0.696 0.669 0.742
LCCF-NCW 0.954 0.949 0.949 0.912 0.941 0.947 0.946 0.928 0.913 0.938

following are kernelized version of each algorithm with kernel function 〈xi, xj〉
2

KM 0.556 0.542 0.595 0.555 0.571 0.567 0.539 0.564 0.546 0.559
KM-NCW 0.850 0.868 0.863 0.856 0.859 0.847 0.851 0.826 0.816 0.849

AA 0.417 0.487 0.502 0.499 0.523 0.521 0.492 0.517 0.502 0.495
NC 0.906 0.834 0.863 0.855 0.880 0.872 0.870 0.858 0.847 0.865
CF 0.576 0.634 0.664 0.659 0.691 0.703 0.660 0.695 0.670 0.661

CF-NCW 0.908 0.834 0.816 0.822 0.879 0.887 0.846 0.857 0.852 0.856
LCCF 0.924 0.828 0.793 0.754 0.793 0.771 0.721 0.744 0.720 0.783

LCCF-NCW 0.959 0.940 0.949 0.941 0.954 0.942 0.937 0.934 0.912 0.941

sidering the intrinsic geometrical structure of the
data, LCCF can learn a better compact representa-
tion in the sense of semantic structure.

• The improvement of LCCF over other methods
is more significant on the TDT2 corpus than the
Reuters corpus. One possible reason is that the doc-
ument clusters in TDT2 are generally more compact
and focused than the clusters in Reuters. Thus,
the nearest neighbor graph constructed over TDT2
can better capture the geometrical structure of the
document space.

4.4 Parameters Selection

Our LCCF algorithm has two essential parameters: the
number of nearest neighbors p and the regularization

parameter λ. Figure 1 and Figure 2 show how the
performance of LCCF varies with the parameters λ and
p, respectively.

As we can see, the performance of LCCF is very
stable with respect to the parameter λ. LCCF achieves
consistent good performance with the λ varying from
50 to 10000 on TDT2 data set and from 50 to 1000 on
Reuters data set.

Figure 2 is more interesting. As we described, LCCF
uses a p-nearest neighbor graph to capture the local
geometric structure of the document space. The success
of LCCF relies on how the assumption that a document
shares the same label with its p-nearest neighbor holds.
Obviously this assumption is more likely to fail when
p increases. The performance curve drops much more
dramatically in Reuters data set, which is consistent with
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TABLE 6
Clustering performance on Reuters-21578 (Accuracy)

k 2 3 4 5 6 7 8 9 10 Avg.
KM 0.825 0.692 0.652 0.588 0.589 0.539 0.469 0.447 0.480 0.587

KM-NCW 0.899 0.853 0.802 0.707 0.693 0.618 0.572 0.568 0.596 0.701
AA 0.812 0.716 0.648 0.596 0.573 0.536 0.467 0.450 0.478 0.586
NC 0.898 0.832 0.774 0.724 0.698 0.658 0.575 0.585 0.613 0.706

NMF 0.828 0.712 0.683 0.580 0.582 0.535 0.448 0.457 0.490 0.591
NMF-NCW 0.894 0.846 0.786 0.720 0.701 0.667 0.581 0.575 0.625 0.711

CF 0.831 0.715 0.694 0.592 0.614 0.549 0.451 0.456 0.508 0.601
CF-NCW 0.893 0.852 0.795 0.720 0.708 0.673 0.594 0.587 0.617 0.715

LCCF 0.868 0.756 0.752 0.698 0.677 0.606 0.598 0.568 0.590 0.679
LCCF-NCW 0.894 0.854 0.804 0.750 0.766 0.756 0.712 0.704 0.662 0.767
following are kernelized version of each algorithm with kernel function 〈xi, xj〉

2

KM 0.742 0.669 0.616 0.584 0.542 0.512 0.508 0.470 0.435 0.564
KM-NCW 0.873 0.862 0.769 0.702 0.684 0.669 0.648 0.620 0.610 0.715

AA 0.744 0.680 0.605 0.604 0.560 0.541 0.556 0.526 0.471 0.587
NC 0.874 0.848 0.783 0.747 0.734 0.728 0.718 0.688 0.651 0.752
CF 0.794 0.708 0.673 0.627 0.610 0.564 0.568 0.538 0.555 0.626

CF-NCW 0.895 0.848 0.750 0.764 0.714 0.740 0.762 0.714 0.631 0.758
LCCF 0.868 0.756 0.752 0.698 0.677 0.606 0.598 0.568 0.590 0.679

LCCF-NCW 0.908 0.854 0.807 0.789 0.770 0.736 0.738 0.710 0.670 0.776

TABLE 7
Clustering performance on Reuters-21578 (Normalized Mutual Information)

k 2 3 4 5 6 7 8 9 10 Avg.
KM 0.428 0.409 0.483 0.428 0.482 0.460 0.393 0.393 0.478 0.439

KM-NCW 0.627 0.630 0.655 0.525 0.572 0.522 0.454 0.464 0.540 0.554
AA 0.368 0.353 0.431 0.381 0.430 0.424 0.349 0.363 0.435 0.393
NC 0.596 0.584 0.586 0.500 0.552 0.508 0.434 0.441 0.524 0.525

NMF 0.436 0.410 0.509 0.424 0.485 0.449 0.362 0.391 0.464 0.437
NMF-NCW 0.608 0.641 0.626 0.533 0.576 0.545 0.461 0.471 0.556 0.558

CF 0.440 0.414 0.521 0.425 0.494 0.456 0.363 0.396 0.476 0.443
CF-NCW 0.605 0.648 0.631 0.534 0.582 0.549 0.466 0.475 0.550 0.560

LCCF 0.503 0.452 0.553 0.485 0.519 0.485 0.447 0.445 0.513 0.489
LCCF-NCW 0.599 0.652 0.668 0.556 0.623 0.601 0.538 0.533 0.567 0.593

following are kernelized version of each algorithm with kernel function 〈xi, xj〉
2

KM 0.183 0.206 0.263 0.218 0.260 0.260 0.212 0.231 0.276 0.234
KM-NCW 0.509 0.590 0.539 0.446 0.506 0.468 0.424 0.412 0.474 0.485

AA 0.116 0.141 0.208 0.156 0.195 0.177 0.153 0.169 0.220 0.171
NC 0.490 0.517 0.528 0.433 0.504 0.479 0.442 0.437 0.458 0.476
CF 0.312 0.329 0.401 0.332 0.405 0.377 0.336 0.349 0.428 0.363

CF-NCW 0.567 0.529 0.488 0.446 0.484 0.490 0.528 0.472 0.427 0.492
LCCF 0.503 0.452 0.553 0.485 0.519 0.485 0.447 0.445 0.513 0.489

LCCF-NCW 0.648 0.640 0.677 0.576 0.632 0.591 0.566 0.544 0.583 0.606

our knowledge about the two data sets. Since the content
of each cluster in TDT2 is narrowly defined and the clus-
ters in TDT2 are compact, it has high chance that each
document share the same cluster membership with its p-
nearest neighbors even when p is large. While in Reuters,
documents in each cluster have a broader variety of
content. Thus a document is unlikely to share the same
cluster membership with its p-nearest neighbors when p
is large. And as a result, the performance of LCCF on
Reuters decreases dramatically as the p increases.

4.5 Convergence Study

The updating rules for minimizing the objective function
of LCCF are essentially iterative. We have proved that
these rules are convergent. Here we investigate how fast

these rules can converge.
Figure 3 shows the convergence curves of NMF, CF

and LCCF on both the two data sets. For each figure,
the y-axis is the value of objective function and the x-
axis denotes the iteration number. We can see that the
multiplicative updating rules for all the three algorithms
converge very fast, usually within 100 iterations.

5 CONCLUSION

In this paper, we have presented a novel clustering
algorithm called Locally Consistent Concept Factoriza-
tion (LCCF). LCCF models the data space as a sub-
manifold embedded in the ambient space and performs
the concept factorization on this manifold in question. As
a result, LCCF can have more discriminating power than
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Fig. 1. The performance of LCCF is very stable with respect to the parameter λ. LCCF achieves consistent good
performance with the λ varying from 50 to 10000 on TDT2 data set and from 50 to 1000 on Reuters data set.

the ordinary NMF and CF approaches which only con-
sider the Euclidean structure of the data. Experimental
results on document clustering show that LCCF provides
better representation in the sense of semantic structure.

There is a parameter λ which controls the smoothness
of our LCCF model. LCCF boils down to original CF
when λ = 0. Thus, a suitable value of λ is critical to our
algorithm. It remains unclear how to do model selection
theoretically and efficiently.
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APPENDIX A (PROOFS OF THEOREM 1)
The objective function O of GNMF in Eq. (10) is certainly
bounded from below by zero. To prove Theorem 1, we

need to show that O is nonincreasing under the update
steps in Eq. (17) and (18). Since the second term of O
is only related to V, we have exactly the same update
formula for U in LCCF as the original CF. Thus, we
can use the convergence proof of CF to show that O is
nonincreasing under the update step in Eq. (17). Please
see [14][24] for details.

Now we only need to prove that O is nonincreasing
under the update step in Eq. (18). We will follow the
similar procedure described in [14]. Our proof will make
use of an auxiliary function similar to that used in the
Expectation-Maximization algorithm [10]. We begin with
the definition of the auxiliary function.

Definition G(v, v′) is an auxiliary function for F (v) if the
conditions

G(v, v′) ≥ F (v), G(v, v) = F (v)

are satisfied.

The auxiliary function is very useful because of the
following lemma.

Lemma 3: If G is an auxiliary function of F , then F is
nonincreasing under the update

v(K+1) = argmin
v

G(v, v(K)) (31)
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Fig. 2. The performance of LCCF decreases as the p increases. The curve is more sensitive with p on Reuters data
set because the documents in each cluster of Reuters have a broader variety of content.
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Proof:

F (v(K+1)) ≤ G(v(K+1), v(K)) ≤ G(v(K), v(K)) = F (v(K))

Now we will show that the update step for V in
Eq. (18) is exactly the update in Eq. (31) with a proper
auxiliary function.

Considering any element vab in V, we use Fab to
denote the part of O which is only relevant to vab. It
is easy to check that

F ′
ab =

(
∂O

∂V

)

ab

=
(
−2KW + 2VWT KW + 2λLV

)
ab

(32)

F ′′
ab = 2

(
WT KW

)
bb
+ 2λLaa (33)

Since our update is essentially element-wise, it is suffi-
cient to show that each Fab is nonincreasing under the
update step of Eq. (18).

Lemma 4: Function

G(v, v
(K)
ab ) =Fab(v

(K)
ab ) + F ′

ab(v
(K)
ab )(v − v

(K)
ab )

+

(
VWT KW

)
ab

+ λ
(
DV)ab

v
(K)
ab

(v − v
(K)
ab )2

(34)

is an auxiliary function for Fab, the part of O which is
only relevant to vab.

Proof: Since G(v, v) = Fab(v) is obvious, we need

only show that G(v, v
(K)
ab ) ≥ Fab(v). To do this, we

compare the Taylor series expansion of Fab(v)

Fab(v) =Fab(v
(K)
ab ) + F ′

ab(v
(K)
ab )(v − v

(K)
ab )

+
[(

WT KW
)
bb
+ λLaa

]
(v − v

(K)
ab )2

(35)

with Eq. (34) to find that G(v, v
(K)
ab ) ≥ Fab(v) is equiva-

lent to
(
VWT KW

)
ab

+ λ
(
DV)ab

v
(K)
ab

≥
(
WT KW

)
bb
+ λLaa. (36)

We have

(
VWT KW

)
ab

=

k∑

l=1

v
(K)
al

(
WT KW

)
lb
≥ v

(K)
ab

(
WT KW

)
bb

(37)
and

λ
(
DV

)
ab

= λ

M∑

j=1

Dajv
(K)
jb ≥ λDaav

(K)
ab

≥ λ
(
D− S

)
aa
v
(K)
ab = λLaav

(K)
ab

.

(38)

Thus, Eq. (36) holds and G(v, v
(K)
ab ) ≥ Fab(v).

We can now demonstrate the convergence of Theorem 1:

Proof: of Theorem 1 Replacing G(v, v
(K)
ab ) in Eq. (31)

by Eq. (34) results in the update rule:

v
(K+1)
ab = v

(K)
ab − v

(K)
ab

F ′
ab(v

(K)
ab )

2
(
VWT KW

)
ab

+ 2λ
(
DV

)
ab

= v
(K)
ab

(
KW + λSV

)
ab(

VWT KW + λDV
)
ab

(39)

Since Eq. (34) is an auxiliary function, Fab is nonincreas-
ing under this updating rule.

APPENDIX B (WEIGHTED LCCF)
In this appendix, we give the solution to the weighted
LCCF. Let each data point has weight γj and zT

j is j-th
row vector of V, the weighted objective function is:

O =
N∑

j=1

γj
(
xj − XWzj

)T (
xj − XWzj

)
+ λTr(VT LV)

=Tr
((

X− XWVT
)
Γ
(
X− XWVT

)T)
+ λTr(VT LV)

=Tr
((

XΓ1/2 − XWVTΓ1/2
)(

XΓ1/2 − XWVTΓ1/2
)T)

+ λTr(VT LV)

=Tr
((

XΓ1/2 − XWVTΓ1/2
)T (

XΓ1/2 − XWVTΓ1/2
))

+ λTr(VT LV)

=Tr
((

I−W′V′T
)T

K′
(
I−W′V′T

))
+ λTr(V′T L′V′)

where Γ is the diagonal matrix consists of γj , W′ =
Γ−1/2W, V′ = Γ1/2V, L′ = Γ−1/2LΓ−1/2 and K′ =
Γ1/2KΓ1/2. Notice that the above equation has the same
form as Eq. (11) in Section 3, so the same algorithm can
be used to find the solution.
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