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SRDA: An Efficient Algorithm for Large Scale
Discriminant Analysis
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Abstract—Linear Discriminant Analysis (LDA) has been a popular method for extracting features which preserves class separability.
The projection functions of LDA are commonly obtained by maximizing the between class covariance and simultaneously minimizing
the within class covariance. It has been widely used in many fields of information processing, such as machine learning, data mining,
information retrieval, and pattern recognition. However, the computation of LDA involves dense matrices eigen-decomposition which
can be computationally expensive both in time and memory. Specifically, LDA has O(mnt+ t3) time complexity and requires O(mn+

mt+nt) memory, where m is the number of samples, n is the number of features and t = min(m,n). When both m and n are large, it
is infeasible to apply LDA. In this paper, we propose a novel algorithm for discriminant analysis, called Spectral Regression Discriminant
Analysis (SRDA). By using spectral graph analysis, SRDA casts discriminant analysis into a regression framework which facilitates both
efficient computation and the use of regularization techniques. Specifically, SRDA only needs to solve a set of regularized least squares
problems and there is no eigenvector computation involved, which is a huge save of both time and memory. Our theoretical analysis
shows that SRDA can be computed with O(ms) time and O(ms) memory, where s(≤ n) is the average number of non-zero features in
each sample. Extensive experimental results on four real world data sets demonstrate the effectiveness and efficiency of our algorithm.

Index Terms—Linear Discriminant Analysis, Spectral Regression, Dimensionality Reduction
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1 INTRODUCTION

Dimensionality reduction has been a key problem in
many fields of information processing, such as data min-
ing, information retrieval, and pattern recognition. When
data are represented as points in a high-dimensional
space, one is often confronted with tasks like nearest
neighbor search. Many methods have been proposed to
index the data for fast query response, such as K-D
tree, R tree, R* tree, etc [11]. However, these methods
can only operate with small dimensionality, typically
less than 100. The effectiveness and efficiency of these
methods drop exponentially as the dimensionality in-
creases, which is commonly referred to as the “curse of
dimensionality”.

During the last decade, with the advances in computer
technologies and the advent of the World Wide Web,
there has been an explosion in the amount of digital
data being generated, stored, analyzed, and accessed.
Much of this information is multimedia in nature, in-
cluding text, image, and video data. The multimedia
data are typically of very high dimensionality, ranging
from several thousands to several hundreds of thousand.
Learning in such high dimensionality in many cases
is almost infeasible. Thus, learnability necessitates di-
mensionality reduction. Once the high-dimensional data
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is mapped into lower-dimensional space, conventional
indexing schemes can then be applied.

One of the most popular dimensionality reduction
algorithms is Linear Discriminant Analysis (LDA) [8],
[10]. LDA searches for the project axes on which the data
points of different classes are far from each other while
requiring data points of the same class to be close to each
other. The optimal transformation (projection) of LDA
can be computed by applying an eigen-decomposition
on the scatter matrices of the given training data. LDA
has been widely used in many applications such as
text processing [24], face recognition [1]. However, the
scatter matrices are dense and the eigen-decomposition
could be very expensive in both time and memory for
high dimensional large scale data. Moreover, to get a
stable solution of LDA, the scatter matrices are required
to be nonsingular which is not true when the num-
ber of features is larger than the number of samples.
Some additional preprocessing steps (e.g., PCA, SVD)
are required to guarantee the non-singularity of scatter
matrices [1], [25] which further increase the time and
memory cost. Therefore, it is almost infeasible to apply
LDA on large scale high dimensional data.

In this paper, we propose a novel algorithm for dis-
criminant analysis, called Spectral Regression Discriminant
Analysis (SRDA). SRDA is essentially developed from
LDA but has significant computational advantage over
LDA. Benefit from recent progresses on spectral graph
analysis, we analyze LDA from a graph embedding
point of view which can be traced back to [15]. We show
how the LDA solution can be obtained by solving a
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set of linear equations which links LDA and classical
regression. Our approach combines the spectral graph
analysis and regression to provide an efficient and effec-
tive approach for discriminant analysis.

The points below highlight the contributions of this
paper:

• The classical LDA is well analyzed from a new
graph embedding point of view. The singularity
issue in classical LDA is clearly analyzed and we
show how various kinds of LDA extensions, e.g.,
two-stage PCA+LDA approach [1] and LDA/GSVD
approaches [16][25], can be unified in a SVD+LDA
framework.

• The projective functions obtained by those classical
LDA approaches and LDA/GSVD approaches are
optimal with respect to the objective function. How-
ever, in small sample size situation, these solutions
tend to over-fit the training data, and thus may not
be optimal on the test set. The regularized solution
of LDA usually achieves better performance.

• A new approach for discriminant analysis based
on the graph embedding formulation of LDA is
developed, which is called Spectral Regression Dis-
criminant Analysis (SRDA). In SRDA, the transforma-
tion vectors are obtained by solving a set of linear
regression problems which can be very efficient.
Since it contains regression as a building block,
SRDA provides a natural framework for regularized
discriminant analysis.

• LDA has O(mnt+ t3) time complexity and requires
O(mn + mt + nt) memory, where m is the num-
ber of samples, n is the number of features and
t = min(m,n). When both m and n are large, it
is infeasible to apply LDA. On the other hand,
SRDA can be computed with O(ms) time and O(ms)
memory, where s(≤ n) is the average number of
non-zero features in each sample. It can be easily
scaled to very large high dimensional data sets.

• For binary classification problem, LDA has been
shown to be equivalent to the regression [14]. We
extend this relation to multi-class case. With regres-
sion as the building block, various kinds of regu-
larization techniques can be easily incorporated in
SRDA (e.g., L1-norm regularizer to produce sparse
projections [3]).

• Our algorithm may be conducted in the original
space or in the reproducing kernel Hilbert space
(RKHS) into which data points are mapped. This
gives an efficient algorithm for Kernel Discriminant
Analysis [2].

The remainder of the paper is organized as follows.
In Section 2, we provide a brief review of LDA and its
variant extensions. Section 3 gives a detailed analysis of
LDA from a graph embedding point of view. Section 4
introduces our proposed Spectral Regression Discriminant
Analysis algorithm. The extensive experimental results
are presented in Section 5. Finally, we provide some

concluding remarks in Section 6.

2 A BRIEF REVIEW OF LDA
LDA seeks directions on which the data points of differ-
ent classes are far from each other while requiring data
points of the same class to be close to each other. Suppose
we have a set of m samples x1, x2, · · · , xm, belonging to
c classes. The objective function of LDA is as follows:

a∗ = argmax
a

aTSba

aTSwa
, (1)

Sb =
c∑

k=1

mk(µµµ
(k) −µµµ)(µµµ(k) −µµµ)T , (2)

Sw =
c∑

k=1

(
mk∑

i=1

(x
(k)
i −µµµ(k))(x

(k)
i −µµµ(k))T

)

, (3)

where µµµ is the total sample mean vector, mk is the
number of samples in the k-th class, µµµ(k) is the average

vector of the k-th class, and x
(k)
i is the i-th sample in the

k-th class. We call Sw the within-class scatter matrix and
Sb the between-class scatter matrix.

Define St =
∑m

i=1(xi − µµµ)(xi − µµµ)T as the total scatter
matrix and we have St = Sb + Sw [10]. The objective
function of LDA in Eqn. (1) is equivalent to

a∗ = argmax
a

aTSba

aTSta
. (4)

When l projective functions A = [a1, · · · , al] are needed,
the objective function of LDA can be written as

A∗ = argmax
A

tr(ATSbA)

tr(ATStA)
, (5)

where tr() denotes matrix trace. The optimization prob-
lem in Eq. (5) is equivalent to find the l eigenvectors
of following generalized eigen-problem associated with
maximum eigenvalues:

Sba = λSta. (6)

Since the rank of Sb is bounded by c−1, there are at most
c−1 eigenvectors corresponding to non-zero eigenvalues
[10].

To get a stable solution of the above generalized eigen-
problem, St is required to be nonsingular which is clearly
not true when the number of features is larger than the
number of samples. In the past few decades, various
approaches have been proposed to solve this problem.
One of the most well know approaches is to perform di-
mensionality reduction in two stages. LDA is performed
after another stage of dimension reduction. Some popu-
lar methods for the first stage include Principle Compo-
nent Analysis (PCA) and Singular Value Decomposition
(SVD). Both Swets et al. [23] and Belhumeur et al. [1]
have utilized PCA+LDA for face recognition. Torkkola
[24] implemented SVD+LDA for document classification.
All these approaches use the LDA objective function in
Eqn. (1). Since the rank of Sw is bounded from above
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TABLE 1
Notations

Notations Descriptions
m the number of total training data points
n the number of features
c the number of classes

mk the number of data points in k-th class
xi the i-th data point

x
(k)
i

the i-th data point in the k-th class
µµµ the total sample mean vector

µµµ(k) the mean vector of the k-th class
x̄i the i-th centered data point (x̄i = xi −µµµ)
X the data matrix
X̄ the centered data matrix
Sb the between-class scatter matrix
Sw the within-class scatter matrix
St the total scatter matrix
a the transformation vector
A the transformation matrix

by m − c [1], the PCA (SVD) step should reduce the
dimension to at most m− c.

Recently, Howland et al. [16] solved the singularity
problem of LDA by using Generalized Singular Value
Decomposition (GSVD). They rewrite the LDA objective
function as the following equivalent form:

A∗ = argmax
A

tr
(
(ATStA)

−1(ATSbA)
)
,

which can be solved by the GSVD algorithm. One lim-
itation of this method is the high computational cost of
GSVD, especially for large and high-dimensional data
sets. In [25], Ye extended such approach by solving the
optimization problem using simultaneous diagonaliza-
tion of the scatter matrices.

Another way to deal with the singularity of Sw is to
apply the idea of regularization, by adding some con-
stant values to the diagonal elements of Sw, as Sw +αI ,
for some α > 0. It is easy to see that Sw + αI is
nonsingular. This approach is called Regularized Dis-
criminant Analysis (RDA) [9], [13]. However, the Sw+λI
is a very large dense matrix for high-dimensional data
which incurs a high computational cost on directly solv-
ing the eigen-problem in Eqn (6). By noticing that the
eigen-decomposition of Sw + αI is the sum of eigen-
decomposition of Sw and αI , Ye et al. [27] developed an
efficient algorithm to compute the projective functions
of RDA. The computational cost of this approach will be
comparable to those two stage PCA+LDA approaches.

The computation of all the above LDA extensions
involves the SVD decomposition of the data matrix,
which is computationally expensive in both time and
memory for high dimensional large scale data sets. In
some applications (e.g., text processing), the data matrix
is sparse which can be fit into the memory even with
a large number of both samples and features. However,
the singular vector matrices are dense, thus may not be
able to be fit into the memory. In this case, all these LDA
approaches can not be applied. To solve this problem, Ye
et al. proposed a new algorithm called IDR/QR in which
QR decomposition is applied rather than SVD [26].

Experiments on some data sets showed that IDR/QR is
much more efficient than LDA and achieves comparable
performance as LDA [26]. However, there is no theoret-
ical relation between the optimization problem solved
by IDR/QR and that of LDA. It is not clear under what
situation IDR/QR can achieve similar or even better
performance than LDA.

3 COMPUTATIONAL ANALYSIS OF LDA
In this section, we provide a computational analysis
of LDA. Our analysis is based on a graph embedding
viewpoint of LDA which can be traced back to [15]. We
start from analyzing the between-class scatter matrix Sb.

Let x̄i = xi − µµµ denote the centered data point and

X̄(k) = [x̄
(k)
1 , · · · , x̄

(k)
mk

] denote the centered data matrix
of k-th class. We have

Sb =
c∑

k=1

mk(µµµ
(k) −µµµ)(µµµ(k) −µµµ)T

=
c∑

k=1

mk

(

1

mk

mk∑

i=1

(x
(k)
i −µµµ)

)(

1

mk

mk∑

i=1

(x
(k)
i −µµµ)

)T

=

c∑

k=1

1

mk

(
mk∑

i=1

x̄
(k)
i

mk∑

i=1

(x̄
(k)
i )T

)

=

c∑

k=1

X̄(k)W (k)(X̄(k))T

where W (k) is a mk × mk matrix with all the elements
equal to 1/mk.

Let X̄ = [X̄(1), · · · , X̄(c)] which is the centered data
matrix and define a m×m matrix W as:

W =








W (1) 0 · · · 0

0 W (2)
· · · 0

...
...

. . .
...

0 0 · · · W (c)








(7)

We have

Sb =

c∑

k=1

X̄(k)W (k)(X̄(k))T = X̄WX̄T . (8)

Since St = X̄X̄T , we have

Sw = St − Sb = X̄(I −W )X̄T = X̄LX̄T . (9)

If we take the W as the edge weight matrix of a graph
G. Wij is the weight of edge joining vertices i and j.
Wij = 0 indicates there is no edge between vertices i
and j. Thus L = I −W is called graph Laplacian1 [7].

We have

rank(St) = rank(X̄X̄T ) ≤ rank(X̄) ≤ min(m− 1, n).

1. A subtlety needs to be addressed here. The graph Laplacian is
actually defined as L = D−W , where D is a diagonal matrix with its
(i, i)-element equals to the sum of the i-th column (or row, since W is
symmetric) of W . With the W defined in Eqn. (7), we can easily see
D = I .
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Since St is size of n × n, in the case of n > m, St is
singular and the eigen-problem of LDA in Eqn. (6) can
not be stably solved. With the new formulation of Sb,
it is clear that we can use SVD to solve this singularity
problem.

Suppose rank(X̄) = r, the SVD decomposition of X̄
is

X̄ = UΣV T (10)

where Σ = diag(σ1, · · · , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr >
0 are the singular values of X̄ , U = [u1, · · · ,ur] ∈
R

n×r and ui’s are called left singular vectors, V =
[v1, · · · ,vr] ∈ R

m×r and vi’s are called right singular
vectors.

Substituting X̄ in Eqn. (5), we get

A∗ = argmax
A

tr(ATUΣV TWV ΣUTA)

tr(ATUΣV TV ΣUTA)
.

We proceed to variable modification using B = ΣUTA
and get:

B∗ = argmax
B

tr(BTV TWVB)

tr(BTB)
,

and the columns of B∗ are the eigenvectors of V TWV
associated with the non-zero eigenvalues.

After we get B∗, the A∗ can be obtained by solving a
set of linear equations systems ΣUTA = B∗. By noticing
that given U and B∗, there will be infinitely many
solutions of A which satisfies this equations system2.
Among all these solutions,

A∗ = UΣ−1B∗ (11)

is obviously one of them and can be used as the trans-
formation matrix of LDA.

Since X̄ has zero mean, the SVD of X̄ is exactly
the same as the PCA of X̄ , and therefore the same as
the PCA of X . Our analysis here justifies the rationale
behind two-stage PCA+LDA approach. The Fisherface
approach [1] keeps at most m − c dimension in the
PCA step to make Sw nonsingular, thus may lose some
useful information. Our analysis shows that based on
the modified but equivalent LDA objective function in
Eqn. (4), we can keep all the non-zero eigenvalues in the
PCA step which avoids information loss.

By using this transformation matrix A∗, the features
in the reduced space are uncorrelated to each other. We
have the following theorem:

Theorem 1: Let A be the transformation matrix of LDA
calculated in Eq. (11). The original feature vectors X
is transformed into Y = ATX , where the i-th feature
component of Y (i-th row of Y ) is denoted as yT

i ,
yi = XT ai. Thus, yi and yj are uncorrelated, for any
i 6= j.

2. Unless n < m and rank(X̄) = n. In this case, U will be an
orthogonal matrix and there is a unique solution of equation ΣUTA =
B∗ which is exactly UΣ−1B∗.

Proof: Let νi = mean(yi) = µµµT ai and e be the vector
of all ones, it is sufficient to prove (yi−eνi)

T (yj−eνj) =
0, for i 6= j. We have

(yi − eνi)
T (yj − eνj)

= (XT ai − eµµµT ai)
T (XT aj − eµµµT aj)

= (X̄T ai)
T (X̄T aj)

= aT
i X̄X̄T aj

= aT
i UΣV TV ΣUT aj

= bT
i bj = 0, (i 6= j)

The last equation holds since bi’s are eigenvectors of
V TWV [12].
In this sense, this SVD+LDA approach described above
can also be called Uncorrelated LDA (ULDA) [25].

3.1 Computational Complexity of LDA

Now let us analyze the computational complexities of
LDA. The main computation of LDA is solving the
generalized eigen-problem:

X̄WX̄T a = λX̄X̄T a. (12)

Suppose we have the SVD decomposition of X̄ shown
in Eqn. (10), we have

X̄WX̄T a = λX̄X̄T a

⇒UΣV TWV ΣUT a = λUΣΣUT a

⇒Σ−1UTUΣV TWV
(

ΣUT a
)

= λΣ−1UTUΣ
(

ΣUT a
)

⇒V TWV b = λb

where b = ΣUT a and V ∈ R
m×r is right singular

matrix of X̄ . The above algebraic steps show that the
LDA projective functions can be obtained through the
following three steps:

1) SVD decomposition of X̄ to get U , V and Σ.
2) Computing b’s, the eigenvectors of V TWV .
3) Computing a = UΣ−1b.

Since there are at most c − 1 projective functions in
LDA, we do not need to compute all the eigenvectors
of V TWV . The following trick can be used to save com-
putational cost. We denote the transpose of the i-th row
vector of V as zi, which corresponds to the data point

xi. Let z
(k)
i denote the transpose of the row vector of

V which corresponds to x
(k)
i . Define ννν(k) = 1

lk

∑lk
i=1 z

(k)
i

and H = [
√
l1ννν

(1), · · · ,
√
lcννν

(c)] ∈ R
d×c. We have

V TWV =

c∑

k=1

1

lk

(
lk∑

i=1

z
(k)
i

lk∑

i=1

(z
(k)
i )T

)

=

c∑

k=1

lk ννν(k)(ννν(k))T

=HHT

(13)

It is easy to check that the left singular vectors of X̄
(column vectors of U ) are the eigenvectors of X̄X̄T and
the right singular vectors of X̄ (column vectors of V )
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are the eigenvectors of X̄T X̄ [22]. Moreover, if U or V
is given, then we can recover the other via the formula
X̄V = UΣ and UT X̄ = ΣV T . In fact, the most efficient
SVD decomposition algorithm (i.e. cross-product) applies
this strategy [22]. Specifically, if m ≥ n, we compute the
eigenvectors of X̄X̄T , which gives us U and can be used
to recover V ; If m < n, we compute the eigenvectors of
X̄T X̄ , which gives us V and can be used to recover U .
Since the matrix H is of size r× c, where r is the rank of
X and c is the number of classes. In most of the cases,
r is close to min(m,n) which is far larger than c. Thus,
comparing to directly calculate the eigenvectors of HHT ,
compute the eigenvectors of HTH then recover the
eigenvectors of HHT can achieve a significant saving.
The computational approach described here is exactly
identical to the ULDA approach in [25].

We use the term flam [21], a compound operation
consisting of one addition and one multiplication, to
measure the operation counts. When m ≥ n, the cal-
culation of X̄X̄T requires 1

2mn2 flam; Computing the
eigenvectors of X̄X̄T requires 9

2n
3 flam [22], [12]; Re-

covering V from U requires mn2 flam by assuming r
is close to min(m,n); Computing the c eigenvectors of
HHT requires 1

2nc
2+ 9

2c
3+nc2 flam; Finally, calculating

a’s from b’s requiring n2c. When m < n, we have the
similar analysis. We conclude that the time complexity
of LDA measured by flam is

3

2
mnt+

9

2
t3 +

3

2
tc2 +

9

2
c3 + t2c

where t = min(m,n). Considering c ≪ t, the time
complexity of LDA can be written as 3

2mnt+ 9
2 t

3+O(t2).
For the memory requirement, we need to store X̄ , U ,

V and a’s. All sum together is

mn+ nt+mt+ cn

It is clear that LDA has cubic-time complexity with
respect to min(m,n) and the memory requirement is
O(mn). When both m and n are large, it is not feasible
to apply LDA. In the next section, we will show how to
solve this problem with the new formulation of Sb.

4 SPECTRAL REGRESSION DISCRIMINANT
ANALYSIS

In order to solve the LDA eigen-problem in Eqn. (12)
efficiently, we use the following theorem:

Theorem 2: Let ȳ be the eigenvector of eigen-problem

W ȳ = λȳ (14)

with eigenvalue λ. If X̄T a = ȳ, then a is the eigenvector
of eigen-problem in Eqn. (12) with the same eigenvalue
λ.

Proof: We have W ȳ = λȳ. At the left side of Eqn.
(12), replace X̄T a by ȳ, we have

X̄WX̄T a = X̄W ȳ = X̄λȳ = λX̄ȳ = λX̄X̄T a

Thus, a is the eigenvector of eigen-problem Eqn. (14)
with the same eigenvalue λ.

Theorem 2 shows that instead of solving the eigen-
problem Eqn. (12), the LDA basis functions can be
obtained through two steps:

1) Solve the eigen-problem in Eqn. (14) to get ȳ.
2) Find a which satisfies X̄T a = ȳ. In reality, such a

may not exist. A possible way is to find a which
can best fit the equation in the least squares sense:

a = argmin
a

m∑

i=1

(aT x̄i − ȳi)
2 (15)

where ȳi is the i-th element of ȳ.

The advantages of this two-step approach are as fol-
lows:

1) We will show later how the eigen-problem in Eqn.
(14) is trivial and we can directly get those eigenvec-
tors ȳ.

2) Comparing to all the other LDA extensions, there
is no dense matrix eigen-decomposition or SVD
decomposition involved. There exist many efficient
iterative algorithms (e.g., LSQR [19]) that can handle
very large scale least squares problems. Therefore,
the two-step approach can be easily scaled to large
data sets.

In the situation that the number of samples is smaller
than the number of features, the minimization problem
(15) is ill posed. We may have infinite many solutions
for the linear equations system X̄T a = ȳ (the system is
underdetermined). The most popular way to solve this
problem is to impose a penalty on the norm of a:

a = argmin
a

(
m∑

i=1

(
aT x̄i − ȳi

)2
+ α‖a‖2

)

(16)

This is so called regularization and is well studied in
statistics. The regularized least squares is also called
ridge regression [14]. The α ≥ 0 is a parameter to control
the amounts of shrinkage. Now we can see the third
advantage of the two-step approach:

3 Since the regression was used as a building block,
the regularization techniques can be easily incor-
porated and produce more stable and meaningful
solutions, especially when there exist a large amount
of features [14].

Now let us analyze the eigenvectors of W which
is defined in Eqn. (7). The W is block-diagonal, thus,
its eigenvalues and eigenvectors are the union of the
eigenvalues and eigenvectors of its blocks (the latter
padded appropriately with zeros). It is straightforward
to show that W (k) has eigenvector e(k) ∈ R

mk associated
with eigenvalue 1, where e(k) = [1, 1, · · · , 1]T . Also there
is only one non-zero eigenvalue of W (k) because the rank
of W (k) is 1. Thus, there are exactly c eigenvectors of W
with the same eigenvalue 1. These eigenvectors are

y
k
= [ 0, · · · , 0

︸ ︷︷ ︸
∑k−1

i=1
mi

, 1, · · · , 1
︸ ︷︷ ︸

mk

, 0, · · · , 0
︸ ︷︷ ︸

∑
c

i=k+1
mi

]T k = 1, · · · , c (17)
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Since 1 is a repeated eigenvalue of W , we could just
pick any other c orthogonal vectors in the space spanned
by {yk}, and define them to be our c eigenvectors.
Notice that, in order to guarantee there exists a vector
a which satisfies the linear equations system X̄T a = y,
y should be in the space spanned by the row vectors of
X̄ . Since X̄e = 0, the vector of all ones e is orthogonal
to this space. On the other hand, we can easily see
that e is naturally in the space spanned by {yk} in
Eqn. (17). Therefore, we pick e as our first eigenvector
of W and use Gram-Schmidt process to orthogonalize
the remaining eigenvectors. The vector e can then be
removed, which leaves us exactly c − 1 eigenvectors of
W , we denote them as follows:

{ȳk}c−1
k=1, (ȳT

i e = 0, ȳT
i ȳj = 0, i 6= j) (18)

In two-class case, the above procedure will produce one
response vector:

ȳ = [ m/m1, · · · ,m/m1
︸ ︷︷ ︸

m1

,−m/m2, · · · ,−m/m2
︸ ︷︷ ︸

m2

]T . (19)

This is consistent with the previous well-known result on
the relationship between LDA and regression for binary
problem [14]. Our approach here extends this relation to
multi-class case.

The above two-step approach essentially combines the
spectral analysis of the graph matrix W and regression
technique. Therefore, we named this new approach as
Spectral Regression Discriminant Analysis (SRDA). It is
important to note that our approach can be generalized
by constructing the graph matrix W in the unsupervised
or semi-supervised way. Please see [4], [5], [6] for more
details.

4.1 Theoretical Analysis

In the following discussions, ȳ is one of the eigenvectors
in Eqn. (18).

The regularized least squares problem of SRDA in
Eqn. (16) can be rewritten in matrix form as:

a = argmin
a

((
X̄T a − ȳ

)T (
X̄T a − ȳ

)
+ αaT a

)

. (20)

Requiring the derivative of right side with respect to a
vanish, we get

(

X̄X̄T + αI
)

a = X̄ȳ

⇒ a =
(

X̄X̄T + αI
)
−1

X̄ȳ
(21)

When α > 0, this regularized solution will not satisfy
the linear equations system X̄T a = ȳ and a is also not
the eigenvector of the LDA eign-problem in Eqn. (12).
It is interesting and important to see the relationship
between the projective function of ordinary LDA and
SRDA. Specifically, we have the following theorem:

Theorem 3: If ȳ is in the space spanned by row vectors
of X̄ , the corresponding projective function a calculated
in SRDA will be the eigenvector of eigen-problem in Eqn.

(12) as α deceases to zero. Therefore, a will be one of the
projective function of LDA.

Proof: See Appendix A.
When the number of features is larger than the num-

ber of samples, the sample vectors are usually linearly
independent, i.e., rank(X) = m. In this case, we have
a stronger conclusion which is shown in the following
corollary.

Corollary 4: If the sample vectors are linearly indepen-
dent, i.e., rank(X) = m, all the c− 1 projective functions
in SRDA will be identical to those of ULDA described
in Section 3 as α deceases to zero.

Proof: See Appendix B.
It is easy to check that the values of the i-th and j-th

entries of any vector y in the space spanned by {yk} in
Eqn. (17) are the same as long as xi and xj belong to the
same class. Thus the i-th and j-th rows of Ȳ are the same,
where Ȳ = [ȳ1, · · · , ȳc−1]. Corollary (4) shows that when
the sample vectors are linearly independent, the c − 1
projective functions of LDA are exactly the solutions of
the c − 1 linear equations systems X̄T ak = ȳk. Let A =
[a1, · · · , ac−1] be the LDA transformation matrix which
embeds the data points into the LDA subspace as:

ATX = AT (X̄ +µµµeT ) = Ȳ T +ATµµµeT .

The columns of matrix Ȳ T +ATµµµeT are the embedding
results of samples in the LDA subspace. Thus, the data
points with the same label are corresponding to the same
point in the LDA subspace when the sample vectors are
linearly independent.

These projective functions are optimal in the sense of
separating training samples with different labels. How-
ever, they usually overfit the training set thus may not
be able to perform well for the test samples, thus the
regularization is necessary.

4.2 The Algorithmic Procedure

Notice that, we need first to calculate the centered data
matrix X̄ in the algorithm. In some applications (e.g.,
text processing), the data matrix is sparse which can be
fit into the memory even with a large number of both
samples and features. However, the center data matrix
is dense, thus may not be able to be fit into the memory.
Before we give the detailed algorithmic procedure of
SRDA, we present a trick to avoid the center data matrix
calculation first.

We have:

argmin
a

m∑

i=1

(aT x̄i − ȳi)
2

= argmin
a

m∑

i=1

(aT xi − aTµµµ− ȳi)
2

If we append a new element “1” to each xi, the scalar
aTµµµ can be absorbed into a and we have

argmin
a′

m∑

i=1

((a′)T x′i − ȳi)
2
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where both a′ and x′

i are (n + 1)-dimensional vectors.
By using this trick, we can avoid the computation of
centered data matrix which can save the memory a lot
for sparse data processing.

Given a set of data points x1, · · · , xm ∈ R
n which be-

long to c classes. Let mk denote the number of samples in
the k-th class (

∑c
k=1 mk = m). The algorithmic procedure

of SRDA is as follows.

1) Responses generation: Let

yk = [ 0, · · · , 0
︸ ︷︷ ︸
∑

k−1

i=1
mi

, 1, · · · , 1
︸ ︷︷ ︸

mk

, 0, · · · , 0
︸ ︷︷ ︸

∑
c

i=k+1
mi

]T k = 1, · · · , c

and y0 = [1, 1, · · · , 1]T denotes a vector of all ones.
Take y0 as the first vector and use Gram-Schmidt
process to orthogonize {yk}. Since y0 is in the
subspace spanned by {yk}, we will obtain c − 1
vectors

{ȳk}c−1
k=1, (ȳT

i y0 = 0, ȳT
i ȳj = 0, i 6= j)

2) Regularized least squares: Append a new element
“1” to each xi which will be still denoted as xi

for simplicity. Find c − 1 vectors {ak}c−1
k=1 ∈ R

n+1,
where ak is the solution of regularized least squares
problem:

ak = argmin
a

(
m∑

i=1

(aT xi − ȳki )
2 + α‖a‖2

)

(22)

where ȳki is the i-th element of ȳk.
3) Embedding to c − 1 dimensional subspace: The

c − 1 vectors {ak} are the basis vectors of SRDA.
Let A = [a1, · · · , ac−1] which is a (n + 1) × (c − 1)
transformation matrix. The samples can be embed-
ded into c− 1 dimensional subspace by

x → z = AT

[
x
1

]

4.3 Computational Complexity Analysis

In this section, we provide a computational complexity
analysis of SRDA. Our analysis considers both time
complexity and memory cost. The term flam, a com-
pound operation consisting of one addition and one
multiplication, is used for presenting operation counts
[21].

The computation of SRDA involves two steps: re-
sponses generation and regularized least squares. The
cost of the first step is mainly the cost of Gram-Schmidt
method, which requires (mc2 − 1

3c
3) flam and mc + c2

memory [21].
We have two ways to solve the c− 1 regularized least

squares problems in Eqn. (22):

• Differentiate the residual sum of squares with re-
spect to components of a and set the results to
zero, which is the textbook way to minimize a
function. The result is a linear system called the
normal equations [21], as shown in Eqn. (21)

• Use iterative algorithm LSQR [19].

These two approaches have different complexity and we
provide the analysis below separately.

4.3.1 Solving Normal Equations

As shown in Eqn. (21), the normal equations of regular-
ized least squares problem in Eqn (22) are

(XXT + αI)ak = Xȳk (23)

The calculation of XXT requires 1
2mn2 flam and the

calculation of c − 1 Xȳk requires cmn flam. Since the
matrix XXT + αI is positive definite, it can be factored
uniquely in the form XXT + αI = RTR, where R is
upper triangular with positive diagonal elements. This
is so called Cholesky decomposition and it requires 1

6n
3

flam [21]. With this Cholesky decomposition, the c − 1
linear equations can be solved within cn2 flam [21].
Thus, the computational cost of solving regularized least
squares by normal equations is

1

2
mn2 + cmn+

1

6
n3 + cn2.

When n > m, we can further decrease the cost. In
the proof of Theorem 3, we used the concept of pseudo
inverse of a matrix [20], which is denoted as (·)+. We
have [20]:

X+ = lim
α→0

(XTX + αI)−1XT = lim
α→0

XT (XXT + αI)−1.

Thus, the normal equations in Eqn. (23) can be solved
by solving the following two linear equations systems
when α decreasing to zero:

(XTX + αI)ck = ȳk

ak = Xck
(24)

The cost of solving c− 1 linear equations system in Eqn.
(24) is

1

2
nm2 +

1

6
m3 + cm2 + cmn.

Finally, the time cost of SRDA (including the responses
generation step) by solving normal equations is:

mc2 − 1

3
c3 +

1

2
mnt+ cmn+

1

6
t3 + ct2.

where t = min(m,n). Considering c ≪ t, this time
complexity can be written as 1

2mnt+ 1
6 t

3+O(t2)+O(mn).

We also need to store X , XXT (or XTX), yk and the
solutions ak. Thus, the memory cost of SRDA by solving
normal equations is:

mn+ t2 +mc+ nc
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TABLE 2
Computational complexity of LDA and SRDA

Algorithm operation counts (flam [21]) memory

LDA 3
2
mnt+ 9

2
t3 mn+ nt+mt

SRDA
Solving normal equations 1

2
mnt+ 1

6
t3 mn+ t2

Iterative solution with LSQR
dense 2kcmn mn
sparse 2kcms+ 5kcn ms+ (2 + c)n

m: the number of data samples n: the number of features
t: min(m,n) c: the number of classes
k: the number of iterations in LSQR
s: the average number of non-zero features for one sample

4.3.2 Iterative Solution with LSQR
The LSQR is an iterative algorithm designed to solve
large scale sparse linear equations and least squares
problems [19]. In each iteration, LSQR needs to compute
two matrix-vector products in the form of Xp and XT q.
The remaining work load of LSQR in each iteration
is 3m + 5n flam [18]. Thus, the time cost of LSQR in
each iteration is 2mn + 3m + 5n. If LSQR stops after k
iterations, the total time cost is k(2mn+3m+5n). LSRQ
converges very fast [19]. In our experiments, 20 iterations
are enough. Since we need to solve c − 1 least squares
problems, the time cost of SRDA with LSQR is

k(c− 1)(2mn+ 3m+ 5n),

which can be simplified as 2kcmn+O(m) +O(n).
Besides storing X , LSQR needs m + 2n memory [18].

We need to store the ak. Thus, the memory cost of SRDA
with LSQR is:

mn+m+ 2n+ cn.

which can be simplified as mn+O(m) +O(n).
When the data matrix is sparse, the above computa-

tional cost can be further reduced. Suppose each sample
has around only s ≪ n non-zero features, the time cost
of SRDA with LSQR is 2kcsm + 5kcn + O(m) and the
memory cost is sm+ (2 + c)n+O(m).

4.3.3 Summary
We summarize our complexity analysis results in Table
2, together with the complexity results of LDA. For
simplicity, we only show the dominant part of the time
and memory costs. The main conclusions include:

• SRDA (by solving normal equations) is always faster
than LDA. It is easy to check that when m = n, we
get the maximum speedup, which is 9.

• LDA has cubic-time complexity with respect to
min(m,n). When both m and n are large, it is not
feasible to apply LDA. SRDA (iterative solution with
LSQR) has linear-time complexity with both m and
n. It can be easily scaled to high dimensional large
data sets.

• In many high dimensional data processing tasks e.g.,
text processing, the data matrix is sparse. However,
LDA needs to calculate centered data matrix X̄
which is dense. Moreover, the left and right singular

matrices are also dense. When both m and n are
large, the memory limit will restrict the ordinary
LDA algorithms (e.g., PCA+LDA, ULDA, RLDA) to
be applied.

• On the other hand, SRDA (iterative solution with
LSQR) can fully explore the sparseness of the data
matrix and gain significant computational saving on
both time and memory. SRDA can be successfully
applied as long as the data matrix X can be fit into
the memory.

• Even the data matrix X is too large to be fit into
the memory, SRDA can still be applied with some
reasonable disk I/O. This is because in each iteration
of LSQR, we only need to calculate two matrix-
vector products in the form of Xp and XT q, which
can be easily implemented with X and XT stored
on the disk.

5 EXPERIMENTAL RESULTS

In this section, we investigate the performance of our
proposed SRDA algorithm for classification. All of our
experiments have been performed on a P4 3.20GHz Win-
dows XP machine with 2GB memory. For the purpose of
reproducibility, we provide our algorithms and data sets
used in these experiments at:

http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html

5.1 Datasets

Four data sets are used in our experimental study, in-
cluding face, handwritten digit, spoken letter and text
databases. The important statistics of these data sets are
summarized below (see also Table 3):

• The CMU PIE face database3 contains 68 subjects
with 41,368 face images as a whole. The face images
were captured under varying pose, illumination and
expression. We choose the five near frontal poses
(C05, C07, C09, C27, C29) and use all the images
under different illuminations and expressions, thus
we get 170 images for each individual. All the
face images are manually aligned and cropped. The
cropped images are 32 × 32 pixels, with 256 gray
levels per pixel. The features (pixel values) are then

3. http://www.ri.cmu.edu/projects/project 418.html
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TABLE 3
Statistics of the four data sets

dataset size (m) dim (n) # of classes (c)
PIE 11560 1024 68

Isolet 6237 617 26
MNIST 4000 784 10

20Newsgroup 18846 26214 20

scaled to [0,1] (divided by 256). For each individ-
ual, l(= 10, 20, 30, 40, 50, 60) images are randomly
selected for training and the rest are used for testing.

• The Isolet spoken letter recognition database4 con-
tains 150 subjects who spoke the name of each letter
of the alphabet twice. The speakers are grouped into
sets of 30 speakers each, and are referred to as isolet1
through isolet5. For the purposes of this experiment,
we chose isolet 1&2 which contain 3120 examples
(120 examples per class) as the training set, and
test on isolet 4&5 which contains 3117 examples (3
example is missing due to the difficulties in record-
ing). A random subset with l(= 20, 30, 50, 70, 90, 110)
examples per letter from the isolet 1&2 were selected
for training.

• The MNIST handwritten digit database5 has a train-
ing set of 60,000 samples (denoted as set A), and
a testing set of 10,000 samples (denoted as set B).
In our experiment, we take the first 2,000 samples
from the set A as our training set and the first 2,000
samples from the set B as our test set. Each digit
image is of size 28 × 28 and there are around 200
samples of each digit in both training and test sets.
A random subset with l(= 30, 50, 70, 100, 130, 170)
samples per digit from training set are selected for
training.

• The popular 20 Newsgroups6 is a data set col-
lected and originally used for document classifica-
tion by Lang [17]. The “bydate” version is used
in our experiment. The duplicates and newsgroup-
identifying headers are removed which leaves us
18,846 documents, evenly distributed across 20
classes. This corpus contains 26,214 distinct terms
after stemming and stop word removal. Each docu-
ment is then represented as a term-frequency vector
and normalized to 1. A random subset with l(=
5%, 10%, 20%, 30%, 40%, 50%) samples per category
are selected for training and the rest are used for
testing.

The first three data sets have relatively smaller num-
bers of features and the data matrices are dense. The last
data set has a very large number of features and the data
matrix is sparse.

4. http://www.ics.uci.edu/∼mlearn/MLSummary.html
5. http://yann.lecun.com/exdb/mnist/
6. http://people.csail.mit.edu/jrennie/20Newsgroups/

TABLE 4
Classification error rates on PIE (mean±std-dev%)

Train Size ULDA RLDA SRDA IDR/QR
10×68 31.8±1.1 19.1±1.2 19.5±1.3 23.1±1.4
20×68 20.5±0.8 10.9±0.7 10.8±0.7 16.0±1.1
30×68 10.9±0.5 8.7±0.7 8.4±0.7 13.7±0.8
40×68 8.2±0.4 7.2±0.5 6.9±0.4 11.9±0.6
50×68 7.2±0.4 6.6±0.4 6.3±0.4 11.4±0.7
60×68 6.4±0.3 6.0±0.3 5.7±0.2 10.8±0.5

TABLE 5
Computational time on PIE (s)

Train Size ULDA RLDA SRDA IDR/QR
10×68 4.291 4.725 0.235 0.126
20×68 7.626 7.728 0.685 0.244
30×68 7.887 7.918 0.903 0.359
40×68 8.130 8.178 1.126 0.488
50×68 8.377 8.414 1.336 0.527
60×68 8.639 8.654 1.573 0.675
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Fig. 1. Error rate and computational time as functions of
number of labeled samples per class on PIE.

5.2 Compared algorithms

Four algorithms which are compared in our experiments
are listed below:

1) Uncorrelated LDA (ULDA)[25], which was also an-
alyzed in Section 3.

2) Regularized LDA (RLDA) [9]. Solving the singular-
ity problem by adding some constant values to the
diagonal elements of Sw, as Sw+αI , for some α > 0.
In [27], Ye et al. proposed an efficient algorithm to
compute the solution of RLDA.

3) Spectral Regression Discriminant Analysis (SRDA),
our approach proposed in this paper.

4) IDR/QR [26], a LDA variation in which QR decom-
position is applied rather than SVD. Thus, IDR/QR
is very efficient.

We compute the closed form solution of SRDA (by solv-
ing normal equations) for the first three data sets and use
LSQR [19] to get the iterative solution for 20Newsgroup.
The iteration number in LSQR is set to be 15. Notice that
there is a parameter α which controls smoothness of the
estimator in both RLDA and SRDA. We simply set the
value of α as 1, and the effect of parameter selection will
be discussed later.

5.3 Results

The classification error rate as well as the the running
time (second) of computing the projection functions for
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TABLE 6
Classification error rates on Isolet (mean±std-dev%)

Train Size ULDA RLDA SRDA IDR/QR
20×26 54.1±1.5 9.4±0.4 9.5±0.5 11.4±0.5
30×26 27.7±1.0 8.3±0.6 8.4±0.7 10.2±0.7
50×26 11.4±0.6 7.5±0.3 7.5±0.3 9.3±0.4
70×26 8.9±0.4 7.0±0.3 7.1±0.3 8.9±0.3
90×26 7.8±0.3 6.7±0.2 6.8±0.2 8.5±0.3
110×26 7.2±0.2 6.5±0.1 6.6±0.2 8.3±0.2

TABLE 7
Computational time on Isolet (s)

Train Size ULDA RLDA SRDA IDR/QR
20×26 1.351 1.403 0.096 0.056
30×26 1.629 1.653 0.148 0.059
50×26 1.764 1.766 0.204 0.092
70×26 1.861 1.869 0.265 0.134
90×26 1.935 1.941 0.322 0.177
110×26 2.007 2.020 0.374 0.269
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Fig. 2. Error rate and computational time as functions of
number of labeled samples per class on Isolet.

each method on the four data sets are reported on the
Table (4 ∼ 11) respectively. These results are also showed
in the Figure (1 ∼ 4). For each given l (the number of
training samples per class), we average the results over
20 random splits and report the mean as well as the
standard deviation.

The main observations from the performance compar-
isons include:

• Both ULDA and RLDA need SVD decomposition
of the data matrix. They can be applied when
min(m,n) is small (the first three data sets). The
20Nesgroups has a very large number of features
(n = 26214). ULDA needs the memory to store the
centered data matrix and the left singular matrix,
which are both dense and with size of m × n [25].
With the size of training sample (m) increases, these
matrices can not be fit into memory and ULDA thus
can not be applied. The situation of RLDA is even
worse since it needs store a left singular matrix with
size of n×n [27]. The IDR/QR algorithm only need
to solve a QR decomposition of matrix with size of
n × c and an Eigen-decomposition of matrix with
size c × c, where c is number of classes [26]. Thus,
IDR/QR is very efficient. However, it still needs
to store the centered data matrix which can not
be fit into memory when both m and n are large
(In the case of using more than 40% samples in

TABLE 8
Classification error rates on MNIST (mean±std-dev%)

Train Size ULDA RLDA SRDA IDR/QR
30×10 48.1±1.5 23.4±1.4 23.6±1.4 26.8±1.6
50×10 73.3±2.2 21.5±1.2 21.9±1.2 26.1±1.7
70×10 62.1±7.3 20.4±0.9 20.8±0.8 24.9±1.1
100×10 43.1±3.3 19.5±0.5 19.7±0.5 24.7±0.7
130×10 45.5±9.7 18.8±0.5 19.0±0.6 24.2±0.9
170×10 38.4±8.0 18.1±0.3 18.5±0.5 24.0±0.6

TABLE 9
Computational time on MNIST (s)

Train Size ULDA RLDA SRDA IDR/QR
30×10 0.389 0.817 0.035 0.023
50×10 1.645 1.881 0.092 0.042
70×10 2.341 2.429 0.180 0.062
100×10 2.498 2.622 0.268 0.154
130×10 2.528 2.673 0.317 0.168
170×10 2.636 2.713 0.379 0.211
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Fig. 3. Error rate and computational time as functions of
number of labeled samples per class on MNIST.

20Newsgroups as training set). SRDA only needs to
solve c−1 regularized least squares problems which
make it almost as efficient as IDR/QR. Moreover, it
can fully explore the sparseness of the data matrix
and gain significant computational saving on both
time and memory.

• The ULDA seeks the projective functions which are
optimal on the training set. It does not consider the
possible overfitting in small sample size case. RLDA
and SRDA are regularized versions of LDA. The
Tikhonov regularizer is used to control the model
complexity. In all the test cases, RLDA and SRDA
are significantly better than ULDA, which suggests
that over-fitting is a very crucial problem which
should be addressed in LDA model.

• Although IDR/QR is developed from LDA idea,
there is no theoretical relation between the optimiza-
tion problem solved by IDR/QR and that of LDA. In
all the four data sets, RLDA and SRDA significantly
outperform IDR/QR.

• Considering both accuracy and efficiency, SRDA
is the best choice among four of the compared
algorithms. It provides an efficient and effective
discriminant analysis solution for large scale data
sets.



11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

25

30

α/(1+α)

E
rr

or
 r

at
e 

(%
)

SRDA ULDA IDR/QR

(a) PIE (10 Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

α/(1+α)

E
rr

or
 r

at
e 

(%
)

SRDA ULDA IDR/QR

(b) PIE (30 Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7

8

9

10

11

12

α/(1+α)

E
rr

or
 r

at
e 

(%
)

SRDA ULDA IDR/QR

(c) Isolet (50 Train)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

7

7.5

8

8.5

9

α/(1+α)

E
rr

or
 r

at
e 

(%
)

SRDA ULDA IDR/QR

(d) Isolet (90 Train)
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Fig. 5. Model selection of SRDA on PIE (a, b), Isolet (c, d), MNIST (e, f) and 20Newsgroup (g h). The curve shows
the test error of SRDA with respect to α/(1 + α). The other two lines show the test error of ULDA and IDR/QR. It is
clear that SRDA can achieve significantly better performance than ULDA and IDR/QR over a large range of α.

TABLE 10
Classification error rates on 20Newsgroups

(mean±std-dev%)

Train Size ULDA RLDA SRDA IDR/QR
5% 28.0±0.6 − 27.3±0.5 33.0±0.9
10% 22.7±0.6 − 21.3±0.5 29.0±0.4
20% − − 16.0±0.3 25.9±0.4
30% − − 13.8±0.2 25.2±0.4
40% − − 12.4±0.2 −

50% − − 11.4±0.2 −

TABLE 11
Computational time on 20Newsgroups (s)

Train Size ULDA RLDA SRDA IDR/QR
5% 61.84 − 16.47 5.705
10% 224.9 − 19.23 11.77
20% − − 22.93 20.18
30% − − 26.84 32.75
40% − − 31.24 −

50% − − 36.51 −
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Fig. 4. Error rate and computational time as functions of
number of labeled samples per class on 20Newsgroup.

5.4 Parameter selection for SRDA

The α ≥ 0 is an essential parameter in our SRDA al-
gorithm which controls the smoothness of the estimator.
We empirically set it to be 1 in the previous experiments.
In this subsection, we try to examine the impact of

parameter α on the performance of SRDA.
Figure (5) shows the performance of SRDA as a func-

tion of the parameter α. For convenience, the X-axis is
plotted as α/(1+α) which is strictly in the interval [0, 1].
It is easy to see that SRDA can achieve significantly
better performance than ULDA and IDR/QR over a large
range of α. Thus, the parameter selection is not a very
crucial problem in SRDA algorithm.

6 CONCLUSIONS

In this paper, we propose a novel algorithm for dis-
criminant analysis, called Spectral Regression Discriminant
Analysis (SRDA). Our algorithm is developed from a
graph embedding viewpoint of LDA problem. It com-
bines the spectral graph analysis and regression to pro-
vide an efficient and effective approach for discriminant
analysis. Specifically, SRDA only needs to solve a set
of regularized least squares problems and there is no
eigenvector computation involved, which is a huge save
of both time and memory. To the best of our knowl-
edge, our proposed SRDA algorithm is the first one
which can handle very large scale high dimensional
data for discriminant analysis. Extensive experimental
results show that our method consistently outperforms
the other state-of-the-art LDA extensions considering
both effectiveness and efficiency.

APPENDIX A
PROOF OF THEOREM 3

Proof: Suppose rank(X̄) = r, the SVD decomposi-
tion of X̄ is

X̄ = UΣV T (25)

where Σ = diag(σ1, · · · , σr), U ∈ R
n×r, V ∈ R

m×r and
we have UTU = V TV = I . The ȳ is in the space spanned
by row vectors of X̄ , therefore, ȳ is in the space spanned
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by column vectors of V . Thus, ȳ can be represented
as the linear combination of the column vectors of V .
Moreover, the combination is unique because the column
vectors of V are linearly independent. Suppose the com-
bination coefficients are b1, · · · , br. Let b = [b1, · · · , br]T ,
we have:

V b = ȳ ⇒ V TV b = V T ȳ

⇒ b = V T ȳ

⇒ V V T ȳ = ȳ (26)

To continue our proof, we need to introduce the concept
of pseudo inverse of a matrix [20], which we denote as
(·)+. Specifically, pseudo inverse of the matrix X̄ can be
computed by the following two ways:

X̄+ = V Σ−1UT

and
X̄+ = lim

α→0
(X̄T X̄ + αI)−1X̄T

The above limit exists even if X̄T X̄ is singular and
(X̄T X̄)−1 does not exist [20].

Thus, the regularized least squares solution of SRDA

a =
(

X̄X̄T + αI
)
−1

X̄ȳ

α→0
= (X̄T )+ȳ

= UΣ−1V T ȳ

Combined with Eqn. (26), we have

X̄T a = V ΣUT a

= V ΣUTUΣ−1V T ȳ = V V T ȳ = ȳ

By Theorem (2), a is the eigenvector of eigen-problem in
Eqn. (12).

APPENDIX B
PROOF OF COROLLARY 4

Proof: Since the m data points xi’s are linearly in-
dependent, we have rank(X̄) = m − 1. Also we have
X̄e = 0. The space spanned by row vectors of X̄ is
orthogonal to e and have dimension m − 1. Let us
examine the c − 1 vectors ȳk in Eqn. (18). We have
ȳk ∈ R

m and ȳT
k e = 0. Thus, all c − 1 vectors ȳk are in

the space spanned by row vectors of X̄ . By Theorem (3),
all c − 1 corresponding ak of SRDA are eigenvectors of
eigen-problem in Eqn. (12) as α decreases to zero. They
are

aSRDA
k = UΣ−1V T ȳk.

Consider the eigenvectors of V TWV . Since the c − 1
vectors ȳk are also in the space spanned by column
vectors of V , eigenvector bk will be the solution of linear
equations system V bk = ȳk. The column vectors of V are
linearly independent, thus bk is unique and

bk = V T ȳk.

Thus, the projective functions of LDA in Section 3

aULDA
k = UΣ−1bk = UΣ−1V T ȳk = aSRDA

k
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