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Abstract

Following the intuition that the naturally occurring face data may be generated by sampling

a probability distribution that has support on or near a sub-manifold of ambient space, we

propose an appearance-based face recognition method, called Orthogonal Laplacianface (OLPP).

Our algorithm is based on the Locality Preserving Projection (LPP) algorithm, which aims at

finding a linear approximation to the eigenfunctions of the Laplace Beltrami operator on the face

manifold. However, LPP is non-orthogonal and this makes it difficult to reconstruct the data.

The OLPP method produces orthogonal basis functions and can have more locality preserving

power than LPP. Since the locality preserving power is potentially related to the discriminating

power, the OLPP is expected to have more discriminating power than LPP. Experimental results

on three face databases demonstrate the effectiveness of our proposed algorithm.

Keywords

Appearance-based vision, face recognition, Locality preserving projection, Orthogonal locality pre-

serving projection,

1 INTRODUCTION

Recently, appearance-based face recognition has received a lot of attention [20][14]. In general, a

face image of size n1 × n2 is represented as a vector in the image space R
n1×n2 . We denote by face

space the set of all the face images. Though the image space is very high dimensional, the face

space is usually a submanifold of very low dimensionality which is embedded in the ambient space.

A common way to attempt to resolve this problem is to use dimensionality reduction techniques

[1][2][8][12][11][17]. The most popular methods discovering the face manifold structure include

Eigenface [20], Fisherface [2], and Laplacianface [9].

Face representation is fundamentally related to the problem of manifold learning [3][16][19]

which is an emerging research area. Given a set of high-dimensional data points, manifold learning

techniques aim at discovering the geometric properties of the data space, such as its Euclidean

embedding, intrinsic dimensionality, connected components, homology, etc. Particularly, learning

representation is closely related to the embedding problem, while clustering can be thought of as
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finding connected components. Finding a Euclidean embedding of the face space for recognition

is the primary focus of our work in this paper. Manifold learning techniques can be classified

into linear and non-linear techniques. For face processing, we are especially interested in linear

techniques due to the consideration of computational complexity.

The Eigenface and Fisherface methods are two of the most popular linear techniques for face

recognition. Eigenface applies Principal Component Analysis [6] to project the data points along

the directions of maximal variances. The Eigenface method is guaranteed to discover the intrinsic

geometry of the face manifold when it is linear. Unlike the Eigenface method which is unsupervised,

the Fisherface method is supervised. Fisherface applies Linear Discriminant Analysis to project the

data points along the directions optimal for discrimination. Both Eigenface and Fisherface see only

the global Euclidean structure. The Laplacianface method [9] is recently proposed to model the

local manifold structure. The Laplacianfaces are the linear approximations to the eigenfunctions

of the Laplace Beltrami operator on the face manifold. However, the basis functions obtained by

the Laplacianface method are non-orthogonal. This makes it difficult to reconstruct the data.

In this paper, we propose a new algorithm called Orthogonal Laplacianface. O-Laplacianface

is fundamentally based on the Laplacianface method. It builds an adjacency graph which can best

reflect the geometry of the face manifold and the class relationship between the sample points. The

projections are then obtained by preserving such a graph structure. It shares the same locality

preserving character as Laplacianface, but at the same time it requires the basis functions to be

orthogonal. Orthogonal basis functions preserve the metric structure of the face space. In fact,

if we use all the dimensions obtained by O-Laplacianface, the projective map is simply a rotation

map which does not distort the metric structure. Moreover, our empirical study shows that O-

Laplacianface can have more locality preserving power than Laplacianface. Since it has been

shown that the locality preserving power is directly related to the discriminating power [9], the

O-Laplacianface is expected to have more discriminating power than Laplacianface.

The rest of the paper is organized as follows. In Section 2, we give a brief review of the Lapla-

cianface algorithm. Section 3 introduces our O-Laplacianface algorithm. We provide a theoretical

justification of our algorithm in Section 4. Extensive experimental results on face recognition are

presented in Section 5. Finally, we provide some concluding remarks and suggestions for future

work in Section 6.
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2 A BRIEF REVIEW OF LAPLACIANFACE

Laplacianface is a recently proposed linear method for face representation and recognition. It is

based on Locality Preserving Projection [10] and explicitly considers the manifold structure of the

face space.

Given a set of face images {x1, · · · ,xn} ⊂ R
m, let X = [x1,x2, · · · ,xn]. Let S be a similar-

ity matrix defined on the data points. Laplacianface can be obtained by solving the following

minimization problem:

aopt = arg min
a

m
∑

i=1

m
∑

j=1

(

aTxi − aTxj

)2
Sij

= arg min
a

aT XLXTa

with the constraint

aT XDXTa = 1

where L = D − S is the graph Laplacian [4] and Dii =
∑

j Sij . Dii measures the local density

around xi. Laplacianface constructs the similarity matrix S as:

Sij =



































e−
‖xi−xj‖

2

t , if xi is among the p nearest

neighbors of xj or xj is among

the p nearest neighbors of xi

0, otherwise.

Here Sij is actually heat kernel weight, the justification for such choice and the setting of the

parameter t can be referred to [3].

The objective function in Laplacianface incurs a heavy penalty if neighboring points xi and xj

are mapped far apart. Therefore, minimizing it is an attempt to ensure that if xi and xj are “close”

then yi (= aTxi) and yj (= aTxj) are close as well [9]. Finally, the basis functions of Laplacianface

are the eigenvectors associated with the smallest eigenvalues of the following generalized eigen-

problem:

XLXTa = λXDXTa

XDXT is non-singular after some pre-processing steps on X in Laplacianface, thus, the basis

functions of Laplacianface can also be regarded as the eigenvectors of the matrix (XDXT )−1XLXT
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associated with the smallest eigenvalues. Since (XDXT )−1XLXT is not symmetric in general, the

basis functions of Laplacianface are non-orthogonal.

Once the eigenvectors are computed, let Ak = [a1, · · · ,ak] be the transformation matrix. Thus,

the Euclidean distance between two data points in the reduced space can be computed as follows:

dist(yi,yj) = ‖yi − yj‖

= ‖ATxi − ATxj‖

= ‖AT (xi − xj)‖

=
√

(xi − xj)T AAT (xi − xj)

If A is an orthogonal matrix, AAT = I and the metric structure is preserved.

3 THE ALGORITHM

In this Section, we introduce a novel subspace learning algorithm, called Orthogonal Locality

Preserving Projection (OLPP). Our Orthogonal Laplacianface algorithm for face representation

and recognition is based on OLPP. The theoretical justifications of our algorithm will be presented

in Section 4.

In appearance-based face analysis one is often confronted with the fact that the dimension of

the face image vector (m) is much larger than the number of face images (n). Thus, the m × m

matrix XDXT is singular. To overcome this problem, we can first apply PCA to project the faces

into a subspace without losing any information and the matrix XDXT becomes non-singular.

The algorithmic procedure of OLPP is stated below.

1. PCA Projection: We project the face images xi into the PCA subspace by throwing away

the components corresponding to zero eigenvalue. We denote the transformation matrix of

PCA by WPCA. By PCA projection, the extracted features are statistically uncorrelated and

the rank of the new data matrix is equal to the number of features (dimensions).

2. Constructing the Adjacency Graph: Let G denote a graph with n nodes. The i-th node

corresponds to the face image xi. We put an edge between nodes i and j if xi and xj are

“close”, i.e. xi is among p nearest neighbors of xj or xj is among p nearest neighbors of
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xi. Note that, if the class information is available, we simply put an edge between two data

points belonging to the same class.

3. Choosing the Weights: If node i and j are connected, put

Sij = e−
‖xi−xj‖

2

t

Otherwise, put Sij = 0. The weight matrix S of graph G models the local structure of the

face manifold. The justification of this weight can be traced back to [3].

4. Computing the Orthogonal Basis Functions: We define D as a diagonal matrix whose

entries are column (or row, since S is symmetric) sums of S, Dii =
∑

j Sji. We also define

L = D−S, which is called Laplacian matrix in spectral graph theory [4]. Let {a1,a2, · · · ,ak}

be the orthogonal basis vectors, we define:

A(k−1) = [a1, · · · ,ak−1]

B(k−1) =
[

A(k−1)
]T

(XDXT )−1A(k−1)

The orthogonal basis vectors {a1,a2, · · · ,ak} can be computed as follow.

• Compute a1 as the eigenvector of (XDXT )−1XLXT associated with the smallest eigen-

value.

• Compute ak as the eigenvector of

M (k) =

{

I − (XDXT )−1A(k−1)
[

B(k−1)
]−1 [

A(k−1)
]T

}

· (XDXT )−1XLXT

associated with the smallest eigenvalue of M (k).

5. OLPP Embedding: Let WOLPP = [a1, · · · ,al], the embedding is as follows.

x → y = W Tx

W = WPCAWOLPP

where y is a l-dimensional representation of the face image x, and W is the transformation

matrix.
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4 JUSTIFICATIONS

In this section, we provide theoretical justifications of our proposed algorithm.

4.1 Optimal Orthogonal Embedding

We begin with the following definition.

Definition Let a ∈ R
m be a projective map. The Locality Preserving Function f is defined

as follows.

f(a) =
aT XLXTa

aT XDXTa
(1)

Consider the data are sampled from an underlying data manifold M. Suppose we have a map

g : M → R. The gradient ∇g(x) is a vector field on the manifold, such that for small δx

|g(x + δx) − g(x)| ≈ |〈∇g(x), δx〉| ≤ ‖∇g‖‖δx‖

Thus we see that if ‖∇g‖ is small, points near x will be mapped to points near g(x). We can use

∫

M
‖∇g(x)‖2dx

∫

M
|g(x)|2dx

(2)

to measure the locality preserving power on average of the map g [3]. With finite number of samples

X and a linear projective map a, f(a) is a discrete approximation of equation (2) [10]. Similarly,

f(a) evaluates the locality preserving power of the projective map a.

Directly minimizing the function f(a) will lead to the original Laplacianface (LPP) algorithm.

Our O-Laplacianface (OLPP) algorithm tries to find a set of orthogonal basis vectors a1, · · · ,ak

which minimizes the locality preserving function. Thus, a1, · · · ,ak are the set of vectors minimizing

f(a) subject to the constraint aT
k a1 = aT

k a2 = · · · = aT
k ak−1 = 0.

The objective function of OLPP can be written as,

a1 = arg min
a

aT XLXTa

aT XDXTa
(3)

and,

ak = arg min
a

aT XLXTa

aT XDXTa
(4)

subject to aT
k a1 = aT

k a2 = · · · = aT
k ak−1 = 0
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Since XDXT is positive definite after PCA projection, for any a, we can always normalize it such

that aT XDXTa = 1, and the ratio of aT XLXTa and aT XDXTa remains unchanged. Thus, the

above minimization problem is equivalent to minimizing the value of aT XLXTa with an additional

constraint as follows,

aT XDXTa = 1

Note that, the above normalization is only for simplifying the computation. Once we get the

optimal solutions, we can re-normalize them to get an orthonormal basis vectors.

It is easy to check that a1 is the eigenvector of the generalized eigen-problem:

XLXTa = λXDXTa

associated with the smallest eigenvalue. Since XDXT is non-singular, a1 is the eigenvector of the

matrix (XDXT )−1XLXT associated with the smallest eigenvalue.

In order to get the k-th basis vector, we minimize the following objective function:

f(ak) =
aT

k XLXTak

aT
k XDXTak

(5)

with the constraints:

aT
k a1 = aT

k a2 = · · · = aT
k ak−1 = 0, aT

k XDXTak = 1

We can use the Lagrange multipliers to transform the above objective function to include all

the constraints

C(k) = aT
k XLXTak − λ

(

aT
k XDXTak − 1

)

− µ1a
T
k a1 − · · · − µk−1a

T
k ak−1

The optimization is performed by setting the partial derivative of C(k) with respect to ak to zero:

∂C(k)

∂ak

= 0

⇒ 2XLXTak − 2λXDXTak − µ1a1 · · · − µk−1ak−1 = 0

(6)

Multiplying the left side of (6) by aT
k , we obtain

2aT
k XLXTak − 2λaT

k XDXTak = 0

⇒ λ =
aT

k XLXTak

aT
k XDXTak

(7)
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Comparing to (5), λ exactly represents the expression to be minimized.

Multiplying the left side of (6) successively by aT
1 (XDXT )−1, · · · , aT

k−1(XDXT )−1, we now

obtain a set of k − 1 equations:

µ1a
T
1 (XDXT )−1a1 + · · · + µk−1a

T
1 (XDXT )−1ak−1 = 2aT

1 (XDXT )−1XLXTak

µ1a
T
2 (XDXT )−1a1 + · · · + µk−1a

T
2 (XDXT )−1ak−1 = 2aT

2 (XDXT )−1XLXTak

· · · · · ·

µ1a
T
k−1(XDXT )−1a1 + · · · + µk−1a

T
k−1(XDXT )−1ak−1 = 2aT

k−1(XDXT )−1XLXTak

We define:

µ(k−1) = [µ1, · · · , µk−1]
T , A(k−1) = [a1, · · · ,ak−1]

B(k−1) =
[

B
(k−1)
ij

]

=
[

A(k−1)
]T

(XDXT )−1A(k−1)

B
(k−1)
ij = aT

i (XDXT )−1aj

Using this simplified notation, the previous set of k − 1 equations can be represented in a single

matrix relationship

B(k−1)µ(k−1) = 2
[

A(k−1)
]T

(XDXT )−1XLXTak

thus

µ(k−1) = 2
[

B(k−1)
]−1 [

A(k−1)
]T

(XDXT )−1XLXTak (8)

Let us now multiply the left side of (6) by (XDXT )−1

2(XDXT )−1XLXTak − 2λak − µ1(XDXT )−1a1 − · · · − µk−1(XDXT )−1ak−1 = 0

This can be expressed using matrix notation as

2(XDXT )−1XLXTak − 2λak − (XDXT )−1A(k−1)µ(k−1) = 0

With equation (8), we obtain

{

I − (XDXT )−1A(k−1)
[

B(k−1)
]−1 [

A(k−1)
]T

}

(XDXT )−1XLXTak = λak

As shown in (7), λ is just the criterion to be minimized, thus ak is the eigenvector of

M (k) =

{

I − (XDXT )−1A(k−1)
[

B(k−1)
]−1 [

A(k−1)
]T

}

(XDXT )−1XLXT
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Figure 1: The eigenvalues of LPP and OLPP

associated with the smallest eigenvalue of M (k).

Finally, we get the optimal orthogonal basis vectors. The orthogonal basis of O-Laplacianface

preserves the metric structure of the face space. It would be important to note that the derivation

presented here is motivated by [5].

Recall in the Laplacianface method [9], the basis vectors are the first k eigenvectors associated

with the smallest eigenvalues of the eigen-problem:

XLXTb = λXDXTb (9)

Thus, the basis vectors satisfy the following equation:

bT
i XDXTbj = 0 (i 6= j)

Clearly, the transformation of the Laplacianface (LPP) method is non-orthogonal. In fact, it is

XDXT -orthogonal.

4.2 Locality Preserving Power

Both LPP and OLPP try to preserve the local geometric structure. They find the basis vectors by

minimizing the Locality Preserving Function:

f(a) =
aT XLXTa

aT XDXTa
(10)

f(a) reflects the locality preserving power of the projective map a.

In the LPP algorithm, based on the Rayleigh Quotient format of the eigen-problem (Eqn. (9))

[7], the value of f(a) is exactly the eigenvalue of Eqn. (9) corresponding to eigenvector a. Therefore,
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the eigenvalues of LPP reflect the locality preserving power of LPP. In OLPP, as we show in Eqn.

(7), the eigenvalues of OLPP also reflect its locality preserving power. This observation motivates

us to compare the eigenvalues of LPP and OLPP.

Fig. 1 shows the eigenvalues of LPP and OLPP. The data set used for this study is the PIE

face database (please see Section 5.2 for details). As can be seen, the eigenvalues of OLPP are con-

sistently smaller than those of LPP, which indicates that OLPP can have more locality preserving

power than LPP.

Since it has been shown in [9] that the locality preserving power is directly related to the

discriminating power, we expect that the O-Laplacianface (OLPP) based face representation and

recognition can obtain better performance than those based on Laplacianface (LPP).

5 EXPERIMENTAL RESULTS

In this section, we investigate the performance of our proposed O-Laplacianface method (PCA+OLPP)

for face representation and recognition. The system performance is compared with the Eigen-

face method (PCA) [21], the Fisherface method (PCA+LDA) [2] and the Laplacianface method

(PCA+LPP) [9], three of the most popular linear methods in face recognition. We use the same

graph structures in the Laplacianface and O-Laplacianface methods, which is built based on the

label information.

In this study, three face databases were tested. The first one is the Yale database1, the second

is the ORL (Olivetti Research Laboratory) database2, and the third is the PIE (pose, illumination,

and expression) database from CMU [18]. In all the experiments, preprocessing to locate the faces

was applied. Original images were manually aligned (two eyes were aligned at the same position),

cropped, and then re-sized to 32×32 pixels, with 256 gray levels per pixel. Each image is represented

by a 1, 024-dimensional vector in image space. Different pattern classifiers have been applied for

face recognition, such as nearest-neighbor [2], Bayesian [13], Support Vector Machine [15]. In this

paper, we apply the nearest-neighbor classifier for its simplicity. The Euclidean metric is used as

our distance measure.

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.uk.research.att.com/facedatabase.html
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(a) Eigenfaces (b) Fisherfaces

(c) Laplacianfaces (d) O-Laplacianfaces

Figure 2: The first 6 Eigenfaces, Fisherfaces, Laplacianfaces, and O-Laplacianfaces calculated from

the face images in the ORL database.

Figure 3: Sample face images from the Yale database. For each subject, there are 11 face images

under different lighting conditions with facial expression.

In short, the recognition process has three steps. First, we calculate the face subspace from the

training samples; then the new face image to be identified is projected into d-dimensional subspace

by using our algorithm; finally, the new face image is identified by a nearest neighbor classifier.

We implemented all the algorithms in Matlab 7.04. The codes as well as the databases in Matlab

format can be downloaded at http://www.ews.uiuc.edu/~dengcai2/Data/data.html.

5.1 Face Representation using O-Laplacianfaces

In this sub-section, we compare the four algorithms for face representation, i.e., Eigenface, Fisher-

face, Laplacianface, and O-Laplacianface. For each of them, the basis vectors can be thought of as

the basis images and any other image is a linear combination of these basis images. It would be

interesting to see how these basis vectors look like in the image domain.

Using the ORL face database, we present the first 6 O-Laplacianfaces in Figure 2, together with

Eigenfaces, Fisherfaces, and Laplacianfaces.
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Table 1: Performance comparisons on the Yale database

Method 2 Train 3 Train 4 Train 5 Train

Baseline 56.5% 51.1% 47.8% 45.6%

Eigenfaces 56.5%(29) 51.1%(44) 47.8%(58) 45.2%(71)

Fisherfaces 54.3%(9) 35.5%(13) 27.3%(14) 22.5%(14)

Laplacianfaces 43.5%(14) 31.5%(14) 25.4%(14) 21.7%(14)

O-Laplacianfaces 44.3%(14) 29.9%(14) 22.7%(15) 17.9%(14)
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Figure 4: Error rate vs. dimensionality reduction on Yale database

5.2 Yale Database

The Yale face database was constructed at the Yale Center for Computational Vision and Control.

It contains 165 gray scale images of 15 individuals. The images demonstrate variations in lighting

condition, facial expression (normal, happy, sad, sleepy, surprised, and wink). Figure 3 shows

the 11 images of one individual in Yale data base. A random subset with l(= 2, 3, 4, 5) images

per individual was taken with labels to form the training set, and the rest of the database was

considered to be the testing set. For each given l, we average the results over 20 random splits.

Note that, for LDA, there are at most c − 1 nonzero generalized eigenvalues and, so, an upper

bound on the dimension of the reduced space is c − 1, where c is the number of individuals [2]. In

general, the performance of all these methods varies with the number of dimensions. We show the

best results and the optimal dimensionality obtained by Eigenface, Fisherface, Laplacianface, O-

Laplacianface, and baseline methods in Table 1. For the baseline method, the recognition is simply

performed in the original 1024-dimensional image space without any dimensionality reduction.
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Figure 5: Sample face images from the ORL database. For each subject, there are 10 face images

with different facial expression and details.

As can be seen, our algorithm performed the best. The Laplacianfaces and Fisherfaces methods

performed comparatively to our algorithm, while Eigenfaces performed poorly. Figure 4 shows the

plots of error rate versus dimensionality reduction. It is worthwhile to note that in the cases where

only two training samples are available, Fisherfaces method works even worse than baseline and

Eigenfaces method. This result is consistent with the observation in [12] that Eigenface method

can outperform Fisherface method when the training set is small.

5.3 ORL Database

The ORL (Olivetti Research Laboratory) face database is used for this test. It contains 400 images

of 40 individuals. Some images were captured at different times and have different variations

including expression (open or closed eyes, smiling or non-smiling) and facial details (glasses or no

glasses). The images were taken with a tolerance for some tilting and rotation of the face up to

20 degrees. 10 sample images of one individual in the ORL database are displayed in Figure 5. A

random subset with l(= 2, 3, 4, 5) images per individual was taken with labels to form the training

set. The rest of the database was considered to be the testing set. For each given l, we average the

results over 20 random splits. The experimental protocol is the same as before. The recognition

results are shown in Table 2 and Figure 6. Our O-Laplacianface method outperformed all the other

methods.

5.4 PIE Database

The CMU PIE face database contains 68 individuals with 41,368 face images as a whole. The face

images were captured by 13 synchronized cameras and 21 flashes, under varying pose, illumination,

and expression. We choose the five near frontal poses (C05, C07, C09, C27, C29) and use all the

images under different illuminations, lighting and expressions which leaves us 170 near frontal face

13



Table 2: Performance comparisons on the ORL database

Method 2 Train 3 Train 4 Train 5 Train

Baseline 33.8% 24.6% 18.0% 14.1%

Eigenfaces 33.7%(78) 24.6%(119) 18.0%(159) 14.1%(199)

Fisherfaces 28.9%(22) 15.8%(39) 10.5%(39) 7.75%(39)

Laplacianfaces 23.9%(39) 13.4%(39) 9.58%(39) 6.85%(40)

O-Laplacianfaces 20.4%(40) 11.4%(39) 5.92%(48) 3.65%(59)
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Figure 6: Error rate vs. dimensionality reduction on ORL database
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Figure 7: Sample face images from the CMU PIE database. For each subject, there are 170 near

frontal face images under varying pose, illumination, and expression.

images for each individual. Figure 7 shows several sample images of one individual with different

poses, expressions and illuminations. A random subset with l(= 5, 10, 20, 30) images per individual

was taken with labels to form the training set, and the rest of the database was considered to be

the testing set. For each given l, we average the results over 20 random splits. Table 3 shows the

recognition results.

As can be seen, our method performed significantly better than the other methods. The Fish-

erface and Laplacianface methods performed comparably to each other. The Eigenface method

performed the worst. Figure 8 shows a plot of error rate versus dimensionality reduction.

5.5 Discussion

We summarize the experiments below:

1. Our proposed O-Laplacianface consistently outperforms the Eigenface, Fisherface, and Lapla-

cianface methods.

2. The Fisherface, Laplacianface, and O-Laplacianface methods all outperform the baseline

method. Eigenface fails to obtain any improvement. This is probably because it does not

encode discriminative information.

3. The low dimensionality of the face subspace obtained in our experiments show that dimen-

sionality reduction is indeed necessary as a preprocessing for face recognition.
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Table 3: Performance comparisons on the PIE database

Method 5 Train 10 Train 20 Train 30 Train

Baseline 69.9% 55.7% 38.2% 27.9%

Eigenfaces 69.9%(338) 55.7%(654) 38.1%(889) 27.9%(990)

Fisherfaces 31.5%(67) 22.4%(67) 15.4%(67) 7.77%(67)

Laplacianfaces 30.8%(67) 21.1%(134) 14.1%(146) 7.13%(131)

O-Laplacianfaces 21.4%(108) 11.4%(265) 6.51%(493) 4.83%(423)
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Figure 8: Error rate vs. dimensionality reduction on PIE database

6 CONCLUSIONS AND FUTURE WORK

We have proposed a new algorithm for face representation and recognition, called Orthogonal

Laplacianfaces. As shown in our experiment results, Orthogonal Laplacianfaces can have more

discriminative power than Laplacianfaces.

Several questions remain unclear and will be investigated in our future work:

1. In most of previous work on face analysis, it is assumed that the data space is connected.

Correspondingly, the data space has an intrinsic dimensionality. However, this might not be

the case for real world data. Specifically, the face manifolds pertaining to different individuals

may have different geometrical properties, e.g., dimensionality. The data space can be dis-

connected and different components (individual manifold) can have different dimensionality.

It remains unclear how often such a case may occur and how to deal with it.

2. Orthogonal Laplacianfaces is linear, but it can be also performed in reproducing kernel Hilbert
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space which gives rise to nonlinear maps. The performance of OLPP in reproducing kernel

Hilbert space need to be further examined.
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