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Abstract—Sparse coding has received an increasing amount of
interest in recent years. It is an unsupervised learning algorithm,
which finds a basis set capturing high-level semantics in the data
and learns sparse coordinates in terms of the basis set. Originally
applied to modeling the human visual cortex, sparse coding has
been shown useful for many applications. However, most of the ex-
isting approaches to sparse coding fail to consider the geometrical
structure of the data space. In many real applications, the data is
more likely to reside on a low-dimensional submanifold embedded
in the high-dimensional ambient space. It has been shown that the
geometrical information of the data is important for discrimina-
tion. In this paper, we propose a graph based algorithm, called
graph regularized sparse coding, to learn the sparse representa-
tions that explicitly take into account the local manifold structure
of the data. By using graph Laplacian as a smooth operator, the
obtained sparse representations vary smoothly along the geodesics
of the data manifold. The extensive experimental results on image
classification and clustering have demonstrated the effectiveness of
our proposed algorithm.

Index Terms—Image classification, image clustering, manifold
learning, sparse coding.

I. INTRODUCTION

I N IMAGE processing, image representation plays a very
important role. Researchers have long sought sparse and

efficient representations of images. Sparse representations en-
code many of the images using only a few active coefficients,
which make the encoding easy to interpret and reduce the com-
putational cost. It has been proven useful in many applications
[1]–[3]. To achieve sparse representations, many approaches
have been developed, e.g., sparse PCA [4], sparse NMF [5]. One
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of the most typical methods is sparse coding, which has received
a lot of attention in machine learning, signal processing and neu-
roscience [6]–[10].

Given an input data matrix, sparse coding aims to find a set
of basis vectors (i.e., dictionary) that capture high-level seman-
tics, and the sparse coordinates with respect to the dictionary.
Sparse coding has several advantages for data representation.
First, it yields sparse representations such that each data point
is represented as a linear combination of a small number of basis
vectors. Thus, these data points can be interpreted in a more el-
egant way. Second, sparse representations naturally make for
an indexing scheme that would allow quick retrieval. Third, the
sparse representation can be overcomplete, which offers a wide
range of generating elements. Potentially, the wide range al-
lows more flexibility in signal representation and more effec-
tiveness at tasks like signal extraction and data compression.
Finally, there is considerable evidence that biological vision
adopts sparse representations in early visual areas [10], [11].
Benefit from these advantages, sparse coding has been studied
in many applications, such as image restoration [12], [13] signal
classification [14], face recognition [15] and image classifica-
tion [16], [17].

Recently, various researchers [18]–[20] have considered the
case when the data is drawn from sampling a probability distri-
bution that has support on or near to a submanifold of the am-
bient space. Here, a -dimensional submanifold of a Euclidean
space is a subset which locally looks like a flat

-dimensional Euclidean space [21]. In order to detect the un-
derlying manifold structure, many manifold learning algorithms
have been proposed, such as locally linear embedding (LLE)
[19], ISOMAP [18], and Laplacian Eigenmap [20]. All these
algorithms use the so-called locally invariant idea [22], i.e., the
nearby points are likely to have similar embeddings. It has been
shown that learning performance can be significantly enhanced
if the geometrical structure is exploited and the local invariance
is considered.

Motivated by recent progress in sparse coding and manifold
learning, in this paper we propose a novel algorithm, called
graph regularized sparse coding (GraphSC), which explicitly
considers the local geometrical structure of the data. GraphSC
builds a -nearest neighbor graph to encode the geometrical
information in the data. Using techniques from spectral graph
theory, we use the graph Laplacian as a smooth operator to pre-
serve the local manifold structure. Specifically, the graph Lapla-
cian is incorporated into the sparse coding objective function
as a regularizer. In this way, the obtained representations vary
smoothly along the geodesics of the data manifold. By pre-
serving locality, GraphSC can have more discriminating power
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compared with traditional sparse coding algorithms and, hence,
can facilitate machine learning tasks such as classification and
clustering. The experimental results in this paper will show the
effectiveness of GraphSC.

The rest of this paper is organized as follows: We review the
related works on sparse coding in Section II. In Section III,
we provide a brief description of sparse coding problem and
the common methods to solve the sparse coding problem.
Section IV introduces the GraphSC algorithm, as well as the
optimization scheme, including learning sparse representations
and learning the dictionary. The experimental results on image
classification and clustering are presented in Section V. Finally,
we conclude the paper in Section VI.

II. RELATED WORKS

Recently people have witnessed a growing interest in sparse
coding. Several authors have suggested effective optimization,
extensions and modifications of the original algorithm.

One of the weak points of sparse coding is the expensive
computational cost for the optimization of the sparse coding
problem. Several work has been performed to pursue methods
for solving the optimization problem more effectively. An itera-
tive soft-thresholding method was proposed in [15], which con-
sists of the following simple iteration: take a Barzilai-Borwein
step length in the negative gradient direction and then apply the
soft-thresolding operator to the result. Lee et al. [7] proposed
a feature-sign search method to reduce the nondifferentiable
L1-norm problem to a L1-regularized least squares problem,
which accelerates the optimization process.

Several authors try to design a more proper dictionary for
sparse coding. Traditionally, the dictionary is chosen from stan-
dard bases (e.g., wavelet [23], curvelet [24], contourlets [25],
and bandlets [2]), or even generated from random matrices [26],
[27]. Recently, there are several novel works on the design of
the dictionary. One of the most efficient methods is the K-SVD
method [28]. The K-SVD is a way to learn a dictionary, instead
of exploiting standard bases as described previously, that leads
to sparse representations for the data. This algorithm uses ei-
ther orthogonal matching pursuit (OMP) or basis pursuit (BP),
as part of its iterative procedure for learning the dictionary.

Recently, several studies focus on developing the theoretical
frameworks which combine sparse coding with classical ma-
chine learning methods. In [14], the authors tried to combine the
linear discriminant analysis (LDA) with sparse representations,
which incorporated reconstruction properties, discrimination
power and sparsity for robust classification. In [16], the authors
proposed a discriminative approach that effectively exploited
the corresponding sparse signal decompositions in image
classification tasks, and learned a shared dictionary and the
discriminative models.

All of the previously mentioned studies focus on different
aspects of the original sparse coding. However, they all fail to
consider the geometrical structure in the data, which has been
demonstrated the powerful discriminant ability in many appli-
cations [29], [30]. Several variants of sparse coding methods
have been proposed to add some additional constraints for
grouping sparse coding coefficients to capture the structure
in the data. Locally-invariant sparse representations can be
learned by adding additional spatial consistent constraint,

which pools the sparse coefficients across overlapping win-
dows [31]. Mairal et al. proposed simultaneous sparse coding
by jointly decomposing groups of similar signals on subsets
of the learned dictionary, which is implemented by adding a
group-sparsity regularizer [32].

In this paper, we propose a novel sparse coding algorithm
to exploit the geometrical information in the data by using the
manifold assumption which has been shown effective in clas-
sification and clustering tasks [33]. It is important to note that
the similar idea has also been proposed in [34]. The detailed
optimization scheme is not clearly presented in [34] and the ef-
fectiveness of the proposed approach is only evaluated on the
image classification task [34]. Our paper provides the detailed
explanation of the optimization scheme and conducts a thorough
experimental evaluation on the image clustering task. These are
the complementary contributions made in our paper compared
with [34].

III. SPARSE CODING PROBLEM

Given a data matrix , let
be the dictionary matrix, where

each represents a basis vector in the dictionary, and
be the coefficient matrix, where

each column is a sparse representation for a data point. Each
data point can be represented as a sparse linear combination
of those basis vectors in the dictionary. A good representation
together with dictionary should minimize the empirical loss
function, which can be represented as .
The typical norms used for measuring the loss function are the

norms for and . Following [28] and [35], we
concentrate on the case of .

Then, the objective function of sparse coding can be formu-
lated as follows:

(1)

where is a function to measure the sparseness of and
denotes the matrix Frobenius norm. A straightforward choice of

is the norm of the , that is, , which counts
the nonzero entries of . However, while fixing the dictionary B,
the minimization problem on coefficient S has been proven to
be an NP-hard problem [36]. We, therefore, turn to approxima-
tions/relaxations of the problem instead. There are two common
methods for approximately solving this problem, i.e., matching
pursuit (MP) [37] and basis pursuit (BP) [38]. MP tries to find
the solution one entry at a time in a greedy way, while BP makes
a convex relaxation of the original problem by replacing the
norm with an norm, which has been adopted more often re-
cently [7], [16].

By following [7], [16], and [38], is chosen as
, rather than the norm. The objective function then

becomes

(2)
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Although the objective function in (2) is convex in only
or only, it is not convex in both variables together. A nat-
ural approach to solve this problem is to iteratively optimize the
objective function (2) by minimizing over one variable while
keeping the other one fixed. Thus, it becomes an -regular-
ized least squares problem plus an -constrained least squares
problem, which can both be solved efficiently by several opti-
mization methods.

IV. GRAPH REGULARIZED SPARSE CODING (GRAPHSC)

In this section, we present our Graph regularized Sparse
Coding (GraphSC) algorithm which takes into account the
local manifold structure of the data space.

A. Objective Function

Recall that sparse coding tries to find a dictionary and a
sparse coefficient matrix whose product can best approximate
the original data matrix. The column vectors of can be re-
garded as the basis vectors and each column of is the new
representation of each data point in this new space. One might
further hope that the basis vectors can respect the intrinsic Rie-
mannian structure, rather than ambient Euclidean structure. A
natural assumption here could be that if two data points
are close in the intrinsic geometry of the data distribution, then

and , the representations of this two points with respect
to the new basis, are also close to each other. This assumption
is usually referred to as manifold assumption [20], [39], which
plays an essential role in developing various kinds of algorithms
including dimensionality reduction algorithms [20], clustering
algorithms [40], [41] and semisupervised learning algorithms
[33], [42].

Given a set of -dimensional data points , , we can
construct a nearest neighbor graph with vertices, where
each vertex represents a data point. Let be the weight ma-
trix of . If is among the -nearest neighbors of or
is among the -nearest neighbors of , otherwise,

. We define the degree of as , and
.

Consider the problem of mapping the weighted graph to
the sparse representations , a reasonable criterion for choosing
a “good” map is to minimize the following objective function
[20]:

(3)

where is the Laplacian matrix. By incorporating
the Laplacian regularizer (3) into the original sparse coding, we
can get the following objective function of GraphSC:

(4)

where is the regularization parameter.
Following the iteratively optimization method in [7], we

divide the GraphSC algorithm into two steps: learning graph

regularized sparse codes while fixing the dictionary , and
learning dictionary while fixing the coefficient matrix .

B. Learning Graph Regularized Sparse Codes

In this section, we discuss how to solve problem (4) by fixing
the dictionary . The problem (4) becomes

(5)

Because problem (5) with -regularization is nondifferentiable
when contains values of 0, the standard unconstrained opti-
mization methods can not be applied. Several approaches have
been proposed to solve the problem of this form [43]–[47]. In
the following, we introduce an optimization method based upon
coordinate descent to solve this problem. It is easy to see that
the problem (5) is convex, thus, the global minimum can be
achieved.

We update each vector individually, while holding all the
other vectors constant. In order to solve the problem by opti-
mizing over each , we should rewrite the problem (5) in a
vector form.

The reconstruction error can be rewritten as
follows:

(6)

The Laplacian regularizer can be rewritten as
follows:

(7)

Combining (6) and (7), the problem (5) can be rewritten as

(8)

When updating , the other vectors are fixed. Thus, we
get the following optimization problem:

(9)

where and is the th coefficient of
.
Following the feature-sign search algorithm proposed in [7],

the problem 9 can be solved as follows. In order to solve the non-
differentiable problem, we adopt a subgradient strategy, which
uses subgradients of at nondifferentiable points. Firstly,
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we define , then
. Recall that in nonsmooth optimizations, a

necessary condition for a parameter vector to be a local minima
is that the zero-vector is an element of the subdifferential, the
set containing all subgradients at this parameter vector [48]. We
define as the subdifferentiable value of the th coeffi-
cient of . If , then the absolute value function
is differentiable, therefore, is given by the .
If , then the subdifferentiable value is the set

. So, the optimality conditions for achieving the optimal
value of translate to

if

if
(10)

Then, we consider how to select the optimal subgradient
when the optimality conditions are violated, i.e., in

the case that if . When , we
consider the first term in the previous expression .
Suppose that . This means that ,
regardless of the sign of . In this case, in order to decrease

, we will want to decrease . Since starts at zero,
the very first infinitesimal adjustment to will take it nega-
tive. Therefore, for our purposes we can let .
Similarly, if , then we can effectively let

.
To update , suppose we have known the signs of the ’s

at the optimal value, then we can remove the -form on by
replacing each term with either (if ),
(if ), or 0 (if ). Thus, the problem (9) can
be reduced to a standard, unconstrained quadratic optimization
problem (QP), which can be solved by the linear system. The al-
gorithmic procedure of learning graph regularized sparse codes
is described in the following:

• for each , search for signs of ;
• solve the reduced QP problem to get the optimal which

minimizes the objective function (9);
• return the optimal coefficients matrix .
In the algorithm, we maintain an active set

for potentially nonzero coefficients and
their corresponding signs while updating each

. Then, it systematically searches for the optimal active set and
coefficient signs which minimize the objective function (9). In
each activate step, the algorithm uses the zero-value whose vi-
olation of the optimality condition is largest.
The algorithm proceeds in a series of “feature-sign steps:” at
each step, given a current value for the active set and the signs,
it computes the analytical solution to the resulting uncon-
strained QP; then it updates the solution, the active set and the
signs using an efficient discrete line search between the cur-
rent solution and . The detailed algorithmic procedure of
learning graph regularized sparse codes, i.e., the matrix , is
stated in Algorithm 1.

Algorithm 1 Learning Graph regularized Sparse Codes

Input: A data set of data points , the
dictionary , the graph Laplacian matrix , the parameters

and .

1: for all such that do
2: Initialize step:

, and active set ,
where denotes .

3: Activate step:
From zero coefficient of , select

. Activate (add to the
active set) only if it locally improves the objective
(9), namely:

4: Feature-sign step:
(a). Let be a submatrix of that
contains only the columns corresponding to the

. Let and be subvectors of and
. Let be corresponding to the .

(b). Compute the solution to the resulting
unconstrained QP:

(11)

Let , we can get the optimal value of
under the current active set:

(12)

where is the identity matrix.
(c). Perform a discrete line search on the
closed line segment from to : Check
the objective value at and all points
where any coefficient changes sign, and update

(and the corresponding entries in ) to
the point with the lowest objective value.
(d). Remove zero coefficients of from the active set
and update .

5: Check the optimality conditions step:
Condition (a): Optimality condition for nonzero
coefficients:
If condition (a) is not satisfied, go to Step 4 (without
any new activation); else check condition (b).
Condition (b): Optimality condition for zero
coefficients: If condition
(b) is not satisfied, go to step 3; otherwise return as
the solution, redenoted as .

6: end for

Output: The optimal coefficient matrix .
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C. Learning Dictionary

In this section, we describe the method of learning the dic-
tionary , while fixing the coefficient matrix . The problem
becomes a least squares problem with quadratic constraints

(13)

There are many methods for solving this problem, such as gra-
dient descent with iterative projection [49]. In this paper, we
adopt the method that uses a Lagrange dual, which has been
shown more efficient than gradient descent [7].

Let , and be the Lagrange multiplier as-
sociated with the th inequality constraint , then
the Lagrange dual function of (13) is given by

(14)

Let be the diagonal matrix whose diagonal entry
for all . Then can be written as

(15)

The optimal solution can be obtained by letting the first-
order derivative of (15) equal to zero

(16)

Then, we have

(17)

Substituting (17) into (15), the Lagrange dual function becomes

(18)

This leads to the following Lagrange dual function:

(19)

This problem can be solved by using Newtons method or conju-
gate gradient. Let be the optimal solution, then the optimal

. It is important to note that
is not guaranteed invertible. In practice, one can use pseudoin-
verse instead of directly computing the inverse.

V. EXPERIMENTAL RESULTS

In this section, we present both image classification and clus-
tering experiments on publicly available image data sets. For

TABLE I
TEST SET ERROR RATES ON USPS HANDWRITTEN DIGITS DATASET

(� IS THE SIZE OF TRAINING SET)

Fig. 1. Examples from USPS, COIL20 and CMU-PIE data sets. (a) USPS.
(b) COIL20. (c) CMU-PIE.

each experiment, we describe the information of data sets and
the detailed settings. All the experimental results demonstrate
the efficacy of our proposed algorithm.

A. Image Classification

For image classification, we present experiments on the
benchmark USPS handwritten digits data set.1 USPS is com-
posed of 7291 training images and 2007 test images of size
16 16. Each image is represented by a 256-dimensional
vector.

It is important to note that we need to compute the sparse
representation for a new data point in the classification task.
Let denote the training data matrix and

denote the NN graph matrix. We can use GraphSC to
learn the dictionary matrix and coefficient ma-
trix . To compute the sparse representation of a
new data point , we need to modify the graph matrix .
Without loss of generality, let . The

can be constructed as

(20)

where is the -nearest neighbors weight vector of
in . Specifically, if and only if in the training set is
among the -nearest neighbors of . Now we can get the new
Laplacian matrix which includes the new data point. By solving

1http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
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Fig. 2. (a) Accuracy. (b) Normalized mutual information versus. the number of clusters on CMU-PIE data set.

the optimization problem (9) (fixing and ), we are able to
compute the sparse representation for the new data point .

We perform five-fold cross validation to find the best pa-
rameter pair for the original sparse coding (SC), which will
be used afterward in GraphSC. The test values for the size
of dictionary are , for the sparsity
parameter . Besides, there are another
two parameters in GraphSC, the regularization parameter
and the number of nearest neighbors . While fixing the best
parameter pair , we perform five-fold cross validation
to find the best pair for . The test values for the are

, and for .
We keep the best pair of parameters for GraphSC. For image
classification task, we train linear SVM classifiers to evaluate
the performance of different algorithms.

Table I shows the test results on the original representation
(OR) and the sparse representation of the image data set ob-
tained by SC and GraphSC. As can be seen, our algorithm
GraphSC performs best in all cases. This certifies that GraphSC
captures the most discriminative features of the images.

B. Image Clustering

For image clustering, we investigate the clustering perfor-
mance of GraphSC on two real world image data sets, i.e.,
CMU-PIE face database and COIL20 image database.

We compare the following five algorithms for data clustering:
• K-means clustering algorithm (K-means);
• our proposed graph regularized sparse coding (GraphSC)

K-means;
• normalized cut (Ncut) [50] K-means;
• principle component analysis (PCA) K-means;
• sparse coding (SC) [7] K-means.
Both SC and GraphSC algorithms learn sparse representa-

tions for the data points. Particularly, GraphSC explicitly takes
into account the local manifold structure. Ncut is a spectrally-
based algorithm which constructs an affinity matrix and uses
its eigenvectors to represent the data. PCA is one of the most
well known unsupervised dimensionality reduction algorithm
which can be applied to remove the noise corresponding to the

small eigenvalues of the data covariance matrix. In all the exper-
iments, we first apply PCA to reducing the data dimensionality
by keeping 98% information. The SC, GraphSC, and Ncut al-
gorithms are then performed in the subspace.

1) Evaluation Metrics: We evaluate the clustering results by
comparing the cluster label of each sample with its label pro-
vided by the data set. Two standard clustering metrics, the accu-
racy (AC) and the normalized mutual information metric
are used to measure the clustering performance [51]. Given a
data point , let and be the cluster label and the label pro-
vided by the data set, respectively. The AC is defined as follows:

(21)

where is the total number of samples and is the delta
function that equals one if and equals zero otherwise,
and map is the permutation mapping function that maps
each cluster label to the best label from the data set. The best
mapping can be found by using the Kuhn-Munkres algorithm
[52].

Let denote the set of clusters obtained from the ground truth
and obtained from our algorithm. Their mutual information
metric is defined as follows:

(22)

where and are the probabilities that a sample arbi-
trarily selected from the data set belongs to the clusters and

, respectively, and is the joint probability that the ar-
bitrarily selected sample belongs to the clusters as well as
at the same time. In our experiments, we use the normalized mu-
tual information as follows:

(23)

where and are the entropies of and , respec-
tively. It is easy to check that ranges from 0 to 1.
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TABLE II
CLUSTERING RESULTS ON CMU-PIE DATA SET (� IS THE NUMBER OF CLUSTERS)

Fig. 3. (a) Accuracy. (b) Normalized mutual information versus the number of clusters on COIL20 data set.

if the two sets of clusters are identical, and if
the two sets are independent.

2) Clustering on CMU-PIE Face Database: The CMU-PIE2

face database contains 68 subjects with 41 368 face images as a
whole. The size of each image is 32 32, with 256 grey levels
per pixel. Thus, each image is represented by a 1024-dimen-
sional vector. In this experiment, we fix the pose and expres-
sion. Thus, for each subject, we have 21 images under different
lighting conditions.

We carry out the clustering experiments with the cluster
number ranging from 4 to 68. For each except 68, 20
test runs are conducted on different randomly chosen clusters,
and the final performance scores are obtained by averaging
over the 20 tests. For each test, we first apply each one of the
compared algorithms to learn a new representation for the data,
and then apply -means in the new representation space. The

-means is repeated 50 times with different initializations and
the best result in terms of the objective function of -means is
recorded.

2http://www.ri.cmu.edu/projects/project_418.html

After PCA projection, the dimensionality is reduced to 64.
Since several recent works on sparse coding have advocated the
use of overcomplete representations for images, in which the
dimensionality of the feature vectors is larger than the dimen-
sionality of the input [28], [53], we use 128 basis vectors in the
SC and GraphSC algorithms. For Ncut, we use eigenvectors
where is the number of clusters, as suggested by previous work
[40].

Fig. 2 shows the plots of clustering accuracy and normalized
mutual information versus the number of clusters. As can be
seen, our GraphSC algorithm consistently outperforms the other
algorithms, especially when the number of clusters is large. The
detailed clustering results are summarized in Table II. The av-
erage clustering accuracy and normalized mutual information
for GraphSC is 90.1% and 96.7%, respectively. Compared with
SC, our algorithm achieves 10.5% and 7.5% improvement in ac-
curacy and normalized mutual information, respectively.

3) Clustering on COIL20 Image Database: The COIL20
image library3 contains 1 440 32 32 gray scale images of

3http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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TABLE III
CLUSTERING RESULTS ON COIL20 IMAGE LIBRARY (� IS THE NUMBER OF CLUSTERS)

Fig. 4. Clustering performance with different values of the regularization parameter ��� and the number of nearest neighbors ��� on CMU-PIE face database.
(a) Accuracy versus �. (b) NMI versus �. (c) Accuracy versus �. (d) NMI versus �.

Fig. 5. Clustering performance with different values of the regularization parameter ��� and the number of nearest neighbors ��� on COIL20 image database.
(a) Accuracy versus �. (b) NMI versus �. (c) Accuracy versus �. (d) NMI versus �.

20 objects (72 images per object). The images of each object
were taken 5 apart as the object is rotated on a turntable. Each
image is represented by a 1024-dimensional vector.

The experiment setup is essentially the same as before.
We carry out the experiments with the cluster number
ranging from 2 to 20. For this data set, the dimensionality
after PCA projection is 175. Therefore, we use 256 basis
vectors.

Fig. 3 and Table III show the clustering performance of the
five algorithms. As can be seen, our GraphSC algorithm per-

forms the best in all the cases. SC performs the second best.
These results indicate that by encoding geometrical information
in the sparse representations, the learning performance can be
significantly enhanced.

4) Model Selection on Clustering: In our GraphSC algo-
rithm, there are two parameters, that are, the regularization pa-
rameter and the number of nearest neighbors for graph
construction. We empirically set to 1 and to 3 in the previous
experiments. In this section, we study the influence of different
choices of and .
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We vary while fixing , and vary while fixing . From
Figs. 4 and 5, we observe that the performance of GraphSC is
significantly better than other algorithms over a large range of
both and .

VI. CONCLUSION

The authors present a novel sparse coding method called
GraphSC that explicitly considers the manifold structure of the
data space. By introducing a graph Laplacian regularizer into
the traditional sparse coding objective function, we can obtain
a set of basis vectors, and new sparse representations which
capture the intrinsic geometrical information in the data. The
experimental results on image classification and clustering have
demonstrated that our proposed algorithm can have better dis-
criminating power and significantly enhance the classification
and clustering performance.
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