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ABSTRACT 
Document representation and indexing is a key problem for 
document analysis and processing, such as clustering, classifica-
tion and retrieval. Conventionally, Latent Semantic Indexing (LSI) 
is considered effective in deriving such an indexing. LSI essen-
tially detects the most representative features for document repre-
sentation rather than the most discriminative features. Therefore, 
LSI might not be optimal in discriminating documents with differ-
ent semantics. In this paper, a novel algorithm called Locality 
Preserving Indexing (LPI) is proposed for document indexing. 
Each document is represented by a vector with low dimensionality. 
In contrast to LSI which discovers the global structure of the 
document space, LPI discovers the local structure and obtains a 
compact document representation subspace that best detects the 
essential semantic structure. We compare the proposed LPI ap-
proach with LSI on two standard databases. Experimental results 
show that LPI provides better representation in the sense of se-
mantic structure. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing – Indexing methods. 

General Terms 
Algorithms, Measurement, Performance, Experimentation, The-
ory. 

Keywords 
Locality Preserving Indexing, Latent Semantic Indexing, Docu-
ment Representation and Indexing, Similarity Measure, Dimen-
sionality Reduction, Vector Space Model 

1. INTRODUCTION 
Document representation and indexing is a fundamental problem 
for efficient clustering, classification, and retrieval [1][2] [22]. A 
document can be represented as a point in the vector space Rn 
(given by the number of terms in the documents) [20]. Through-

out this paper, we denote by document space the set of all docu-
ment vectors. The document space is typically a subspace of Rn, 
either linear or non-linear. n is typically very large while the in-
trinsic dimensionality of the document space might be much lower. 
Many dimensionality reduction techniques [1][2][5][7][14] [15] 
have been applied to document representation and indexing. 
Among these techniques, Latent Semantic Indexing (LSI) [7] by 
Singular Value Decomposition (SVD) is a well-known successful 
approach applied to document analysis [11][12] and information 
retrieval [16]. 

LSI is essentially a dimensionality reduction technique developed 
in the context of information retrieval in order to address the 
problems deriving from the use of synonymous, near-synonymous, 
and polysemous words as dimensions of document and query 
representations. Given a term-document matrix X, LSI applies 
SVD to project the document vectors into a subspace so that co-
sine similarity can accurately represent semantic similarity. LSI 
aims to find the best subspace approximation to the original 
document space in the sense of minimizing the global reconstruc-
tion error. In other words, LSI seeks to uncover the most represen-
tative features rather the most discriminative features for docu-
ment representation. Therefore, LSI might not be optimal in dis-
criminating documents with different semantics. 

Some variants of LSI have been proposed recently, such as prob-
abilistic LSI (PLSI) [14], iterative residual rescaling (IRR) [2], etc. 
PLSI is based on the likelihood principle, defines a generative 
data model, and directly minimizes word perplexity. It can also 
take advantage of statistical standard methods for model fitting, 
over-fitting control, and model combination. IRR is an alternative 
subspace-projection method that outperforms LSI by counteract-
ing its tendency to ignore minority-class documents. This is done 
by repeatedly rescaling vectors to amplify the presence of docu-
ments poorly represented in previous iterations. These methods 
achieved good empirical results on standard databases. However, 
similar to the standard LSI, these methods effectively see only the 
global structure of the document space while in many cases the 
local structure is more important. Moreover, these methods do not 
take into account the discriminating structure which might be the 
most important for real world applications. 

In this paper, we propose a new approach called Locality Preserv-
ing Indexing (LPI) to document representation, which aims to 
discover the local geometrical structure of the document space. 
Since the neighboring documents (data points in high dimensional 
space) probably relate to the same topic, LPI can have more dis-
criminating power than LSI even though LPI is also unsupervised. 
To be specific, an adjacency graph is constructed to model the 
local structure of the document space. A semantic space for 
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document representation is learned by using Locality Preserving 
Projections (LPP) [13] which is a recently proposed algorithm for 
linear dimensionality reduction. From the perspective of discrimi-
nation, we provide a theoretical analysis to show that LPP is an 
optimal approximation to Linear Discriminant Analysis (LDA) 
[10] based on the assumption that the neighboring documents are 
probably related to the same topic.  

It is worthwhile to highlight several aspects of our proposed algo-
rithm here: 

1. By using SVD, LSI effectively sees only the linear structure 
of the document space. In contrast, LPI is capable of discov-
ering the nonlinear structure of the document space to some 
extent due to its locality preserving character [13]. 

2. While the document space is generally embedded in an am-
bient space Rn, there is no convincing evidence that the 
document space is Euclidean, or flat. Therefore, it is more 
natural and reasonable to assume that the document space is 
a manifold, either linear or nonlinear. In this sense, LPI is 
particularly applicable since it essentially discovers the local 
geometrical structure of the data manifold. Specifically, LPI 
is obtained by finding the optimal linear approximations to 
the eigenfunctions of the Laplace Beltrami operator on the 
data manifold [4][13]. 

3. In [13], some examples on synthetic and real world data sets 
show that LPP has more discriminating power than PCA. 
SVD is similar in spirit to PCA when it is used for dimen-
sionality reduction. Consequently, LPI has more discriminat-
ing power than LSI. It can be used as a preprocessing for 
document clustering, classification and retrieval. 

The rest of this paper is organized as follows: Section 2 describes 
the Locality Preserving Projections for learning a semantic sub-
space. Section 3 introduces Locality Preserving Indexing for 
document representation. Theoretical analysis of LPP and its con-
nections to LDA are discussed in Section 4. The experimental 
results are shown in Section 5. Finally, we provide concluding 
remarks and future work in Section 6. 

2. LEARNING A SEMANTIC SUBSPACE 
In this section, we give a brief description of Locality Preserving 
Projections (LPP) [13], the core algorithm used for document 
representation and indexing in this paper. Different from LSI 
which assumes that the document space is a Euclidean space, LPI 
assumes that the document space is a manifold. Note that, Euclid-
ean space is actually a linear manifold which is a special manifold.  

Let x1, x1, …, xm denote the set of document vectors in Rn. We 
denote by X the term-document matrix whose column vectors are 
documents. Let w denote the transformation vector. Thus, the 
optimal projections preserving locality can be obtained by solving 
the following minimization problem [13]: 
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where Sij evaluate the local structure of the document space. It can 
be simply defined as follows: 
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The objective function with our choice of symmetric weights Sij 
(Sij = Sji) incurs a heavy penalty if neighboring points xi and xj are 
mapped far apart. Therefore, minimizing it is an attempt to ensure 
that if xi and xj are “close” then yi (= wTxi) and yj (= wTxj) are 
close as well. Sij can be thought of as a similarity measure between 
objects. Some more sophisticated definition of S can be found in 
[13]. The objective function can be reduced to: 
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where X = [x1, x2, …, xn], and D is a diagonal matrix; its entries 
are column (or row, since S is symmetric) sums of S, Dii = ∑j Sji.. 
L = D – S is the Laplacian matrix [6]. Matrix D provides a natural 
measure on the data points. The bigger the value Dii (correspond-
ing to yi) is, the more “important” is yi. Therefore, we impose a 
constraint as follows: 
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Finally, the minimization problem reduces to finding: 
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The transformation vector w that minimizes the objective function 
is given by the minimum eigenvalue solution to the generalized 
eigenvalue problem: 

ww TT XDXXLX λ=  (6) 

Note that the two matrices XLXT and XDXT are both symmetric 
and positive semi-definite. Also, the obtained projections w are 
actually the optimal linear approximation to the eigenfunctions of 
the Laplace Beltrami operator on the manifold [13]. Therefore, 
LPI is capable of discovering the intrinsic manifold structure to 
some extent. 

3. LOCALITY PRESERVING INDEXING 
3.1 The Problem 
The problem of document indexing and representation is the fol-
lowing. Given a set of documents x1, x1, …, xm in Rn, find a lower 
dimensional representation yi of xi such that || yi – yj || reflects the 
semantic relationship between xi and xj. Here, we assume that the 
documents reside on a linear subspace or non-linear submanifold 
of Rn. 



3.2 The Algorithm 
In Section 2, we have described LPP, a method for learning a 
locality preserving subspace. Based on LPP, we describe our 
method for document representation and indexing. 

In the document analysis and processing problems one is often 
confronted with the fact that the dimension of the document vec-
tor (n) is much larger than the number of documents (m). Thus, 
the n × n matrix XDXT is singular. Also, when n is very large, the 
computational complexity of the eigenproblem (6) is high. To 
overcome these computational problems, we first project the 
documents to a PCA subspace so that the resulting matrix XDXT is 
nonsingular and with small dimensions. Another consideration of 
using PCA as preprocessing is for noise reduction. The algo-
rithmic procedure of LPI is stated below: 

1. PCA Projection: We project the document set {xi} into the 
PCA subspace by throwing away the smallest principal com-
ponents. We denote the transformation matrix of PCA by 
WPCA. 

2. Constructing the adjacency graph: Let G denote a graph 
with n nodes. The ith node corresponds to the document xi. We 
put an edge between nodes i and j if xi and xj are “close”, i.e. 
xi is among k nearest neighbors of xi or xi is among k nearest 
neighbors of xj. Note that, if the documents have been classi-
fied into different semantic classes, one might construct an ad-
jacency graph based on the class labels. That is, we can put an 
edge between two nodes if and only if they have the same 
class label. 

3. Choosing the weights: If node i and j are connected, put 

j
T
iijS xx=  (7) 

Otherwise, put Sij = 0. The weight matrix S of graph G models 
the local structure of the document space. 

4. Eigenmap: Compute the eigenvectors and eigenvalues for the 
generalized eigenvector problem: 

ww TT XDXXLX λ=  (8) 

where D is a diagonal matrix whose entries are column (or 
row, since S is symmetric) sums of S, ∑= j jiii SD . L = D − 

S is the Laplacian matrix. The ith column of matrix X is xi. 

Let WLPP = [w0, w1, …, wk-1] be the solutions of equation (8), 

ordered according to their eigenvalues, λ0<λ1< <λk-1. Thus, the 

embedding is as follows: 

xyx TW=→  

LPPPCAWWW =  
(9) 

where y is a k-dimensional representation of the document x. W is 
the transformation matrix. This linear mapping best preserves the 
manifold’s estimated intrinsic geometry.  

4. THEORETICAL ANALYSIS 
As we described earlier, LSI is fundamentally based on SVD 
while LPI is fundamentally based on LPP [13]. In this section, we 
give a theoretical analysis of LSI and LPI. We begin with a brief 
review of SVD. 

4.1 Singular Value Decomposition 
Let X = [x1, x1, …, xm]T be a n × m data matrix, xi ∈ Rn. By SVD, 
X can be decomposed as follow: 

TUSVX =  (10) 

where U = [u1, u2, …, un] and ui is the eigenvector of XXT, ui ∈ 
Rn. V = [v1, v2, …, vm] and vj is the eigenvector of XTX, vj ∈ Rm. 
S is a n × m matrix such that σi = Sii is the ith largest singular value 
and Sij = 0 for i ≠ j. ui and vj are called left singular vectors and 
right singular vectors, respectively. The following points are well 
known or easily derived in matrix theory: 

1. σi is the square root the ith largest eigenvalues of XXT (or, 
XTX). 

2. U and V are both orthonormal matrices in that UTU=UUT=I 
and VTV=VVT=I. 

3. ui (i = 1,2,…,n) forms a orthonormal basis for the input space 
Rn. The matrix U can be thought of as a rotation transforma-
tion. 

Clearly, the number of non-zero singular values is determined by 
the rank of X, say k. Thus, equation (10) can be rewritten as fol-
lows: 
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Thus, the document vectors can be reduced to a k-dimensional 
subspace spanned by {u1, u2, …, uk} without losing any informa-

tion. Also, it is easy to see that ∑ =
p
i iii1

Tvuσ is the best rank-p (p 

≤ k) approximation to X in terms of Frobenius matrix norm. See 
[3][9][18] for theoretical interpretations of LSI using SVD. 

4.2 Geometry of Document Space --- Global 
vs. Local 
From section 4.1 we see that the projection of LSI can be simply 
computed by using SVD. The left singular vectors ui are the basis 
functions of the reduced subspace. 

Let A be a transformation matrix. The low dimensional representa-
tion of X is Y = ATX. The optimal linear transformation which 
preserves inner product can be obtained by solving the following 
minimization problem: 

FA
YYXX TTmin −  (12) 

where 
F

M  is the Frobenius matrix norm such that 

∑= ij ijF
MM 2 . By SVD, we have XTX = VSUTUSVT = VS2VT. 

Therefore, Y = SkVk
T is the k-dimensional representation of X 

which best preserves inner product, where Sk = diag(σ1, …, σk) 
and Vk = [v1, …, vk]. Correspondingly, the optimal transformation 
preserving inner product is A = Uk where Uk = [u1, …, uk].  

LSI uses the matrix Uk to perform linear dimensionality reduction. 
In document analysis, inner product is one of the most frequently 
used similarity measures to discover the semantic structure of the 
document space. It preserves the global structure in spirit. How-



ever, in many real world applications, the local structure is more 
important especially when nearest neighbor search is involved. 
Moreover, LSI aims to discover the linear subspace on which the 
documents possibly reside. However, there is no convincing evi-
dence that the document space is actually a linear subspace of the 
input space. A more naturally and reasonable assumption is that 
the document space is a sub-manifold embedded in the ambient 
space. It can be either linear or non-linear. Recently there have 
been some renewed interests in the problem of developing low 
dimensional representations when data arises from sampling a 
probability distribution on a manifold. Some typical manifold 
learning algorithms include ISOMAP [21], Locally Linear Em-
bedding [19], Laplacian Eigenmaps [4], Locality Preserving Pro-
jections (LPP, [13]), etc. All of them aim to discover the local 
manifold structure. The former three are non-linear algorithms 
while the last one is linear. Also, the maps obtained by the former 
three are only defined on the training data points, while the maps 
obtained by LPP are defined everywhere. In this paper, we apply 
LPP to learn a low dimensional semantic space for document 
representation. 

4.3 Discriminant Analysis of LPP 
Traditionally, document indexing and representation have been 
explored extensively from the perspectives of geometry and statis-
tics. We see little discriminant analysis for document indexing. 
One reason is that, for document indexing and representation, the 
labels of the documents are not available. When the labels are 
available, we can apply Linear Discriminant Analysis (LDA) to 
reduce the document space to a low dimensional space in which 
the documents of different classes are far from each other and at 
the same time the documents of a same class are close to each 
other. LDA is optimal in the sense of discrimination. In this sub-
section, we show that LPP provides an optimal approximation to 
LDA. Our basic assumption is that the neighboring documents are 
probably related to the same topic.  

Suppose the documents belong to l classes. LDA can be obtained 
by solving the following maximization problem [10]: 
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which leads to the following eigenvector problem: 

ww WB SS λ=  (14) 

where w is the transformation vector. m is the total sample mean 
vector. ni is the number of samples in the ith class. m(i) are the 
average vectors of the ith class, and x(i) is the random vector asso-
ciated to the ith class. We call SW the within-class scatter matrix 
and SB the between-class scatter matrix. 

We can rewrite the matrix SW as follows: 
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where T
iii XLX is the data covariance matrix of the ith class. 
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belong to the ith class, and Li = I – 1/ni ei ei
T is a ni × ni matrix 

where I is the identity matrix and ei = (1,1,…,1)T is a ni dimen-
sional vector. To further simplify the above equation, we define: 
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Thus, we get: 

T
W XLXS =  (17) 

Let e = (1,1,…,1)T be a n dimensional vector. Similarly, we can 
compute the matrix SB as follows: 
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where TT
n XIXC )( 1 ee−=  is the data covariance matrix. Note 

that, if the data has a zero mean, we can write the covariance ma-
trix as C = XXT. Thus, the projections of LDA are given by the 
maximum eigenvalue solutions to the following generalized ei-
genvector problem: 
 
 
 



category num of documents 
earn 3713 
acq 2055 

crude 321 
trade 298 

money-fx 245 
interest 197 

ship 142 
sugar 114 
coffee 110 
gold 90 

money-supply 87 
gnp 63 
cpi 60 

cocoa 53 
alum 45 
grain 45 

copper 44 
jobs 42 

reserves 38 
rubber 38 

Figure 1. 20 semantic categories from Reuters-21578 
used in our experiments. 
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which is equivalent to the minimum eigenvalue solutions to the 
following eigenproblem: 

     ww CXLX λ=T  (20) 

Based on our assumption that neighboring documents are proba-
bly related to the same topic, the similarity matrix S in (2) gives 
an optimal approximation to the similarity matrix W in (16). Also, 
the covariance matrix C can be approximated by the matrix XDXT 
since D is a diagonal matrix and D ≈ I. Therefore, even though the 
label information is not available, we can still discover the dis-
criminating structure to some extent by using LPP.  

5. EXPERIMENTAL RESULTS 
In this section, several experiments were performed to show the 
effectiveness of our proposed algorithm. Two standard document 
collections were used in our experiments, i.e Reuters-21578 and 
TDT2. We compared our proposed algorithm LPI with LSI. 

5.1 Similarity Evaluation on Reuters-21578 
The accuracy of similarity measure plays a crucial role in most of 
the information processing tasks, such as document clustering, 
classification, retrieval, etc. In this subsection, we evaluate the 
accuracy of similarity measure using two different indexing algo-
rithms, i.e. LPI and LSI. The similarity measure we used is the 
cosine similarity. 
 

 baseline LSI LPI 

Doc. Subsets dims AvP(%) dims ∆ AvP dims ∆ AvP 
agreement 753 65.78 6 1.33 4 16.95 

american 337 55.94 6 0.03 5 14.3 

bank 780 36.91 8 6.36 10 10.51 

control 226 78.95 209 0.59 12 -2.26 

domestic 246 56.75 235 0.22 5 -0.27 

export 254 70.1 254 0 5 5.46 

exports 295 53.74 290 0.02 8 5.54 

five 761 72.42 538 0.74 60 -13 

foreign 456 44.21 451 0.01 8 3.98 

growth 319 46.16 73 2.61 5 10.14 

income 333 81.83 177 0.89 60 -1.9 

increase 548 46.77 488 0.11 19 1.46 

industrial 232 49.16 7 3.38 2 16.42 

industry 361 50.67 355 0.02 5 13.62 

international 679 51.08 6 1.67 5 21.43 

investment 527 68.39 527 0 5 -2.27 

losses 234 88.27 132 0.95 45 -1.63 

money 247 53.11 231 0.06 10 -12 

national 379 37 15 9.82 9 20.28 

prices 551 57.16 550 0 6 10.19 

production 335 57.85 330 0.01 6 10.06 

public 282 56.3 274 0.01 9 -3.44 

rates 300 51.65 290 0.04 4 -4.42 

report 299 62.01 299 0 8 6.43 

services 234 55.18 4 4.26 4 15.96 

sources 256 52.74 252 0.03 8 11.68 

talks 274 68.72 272 0 6 15.08 

tax 594 95.67 245 0.16 35 -6.11 

trade 550 47.09 512 0.29 5 -0.7 

world 349 61.26 344 0.01 9 9.01 

Figure 2. Precision improvement and the corresponding 
dimensionality for each document subset using the Reuters-
21578 document corpus. The first column contains the key-
words generating the document subset. The LPI, LSI and 
baseline algorithms are compared. 

 

5.1.1 Data Preparation 
Reuters-21578 is used as our data collection. Documents that 
appear in two or more categories were removed, thus leaving us 
with 8293 documents. The collection consists of 65 semantic 
categories (topics). The numbers of documents in different catego-
ries range from 1 to 3713. We kept the largest 20 categories which 
contain 7800 documents in total, as listed in Figure 1. From the 
<title> field of 300 TREC ad hoc topics (topic 251-550), we 
chose 30 keywords that appear in our data collection with highest 
frequencies, say, qi (i = 1, 2, …, 30). For each keyword qi, let Di 
denote the set of the documents containing qi. Let D = D1 ∪…∪ 
D30. Finally, we get 30 document subsets and each subset contains 
multiple topics. Note that, these subsets are not necessarily dis-
joint. The numbers of documents of these 30 document subsets 
ranged from 226 to 802 with an average of 408, and the number 
of topics ranged from 12 to 20 with an average of 17.5. We re-
moved the stop words. No further preprocessing was done. For 



the ith subset, the documents are represented as vectors in a ni 
dimensional vector space using the Term Frequency (TF) index-
ing scheme. The reason for generating such 30 document subsets 
is to split the data collection into small subsets so that we can 
compare our algorithm to LSI on each subset. In fact, the key-
words can be thought of as queries in information retrieval. Thus, 
the comparison can be thought of as being performed on different 
queries.  

5.1.2 Experimental Design 
For the original document set D, we compute its lower dimen-
sional representations DLPI and DLSI by using LPI and LSI respec-
tively. Similarly, DLPI consists of 30 subsets, DLPI,1, …, DLPI,30. 
DLSI also consists of 30 subsets, DLSI,1, …, DLSI,30. We take the 
number of nearest neighbors for the LPI algorithm to be 7. 

For each document subset Di (or, DLPI,i, DLSI,i), we evaluate the 
similarity measure between the documents in Di. Intuitively, we 
expect that similarity should be higher for any document pair 
related to the same topic (intra-topic pair) than for any pair related 
to different topics (cross-topic pair). Therefore, we adopted the 
average precision used in TREC [1], regarding an intra-topic pair 
as a relevant document and the similarity value as the ranking 
score. Specifically, we denote by pi the document pair which has 
the ith highest similarity value among all pairs of documents in the 
document set Di. For each intra-topic pair pk, its precision is 
evaluated as follows: 

k

kjp
pprecision

j
k

≤
=

  where pairs topic-intra of #
)(  (21) 

The average of the precision values over all intra-topic pairs in Di 
was computed as the average precision of Di. Note that, the defini-
tion of precision (21) we used here is the same as that used in [1]. 

5.1.3 Results 
The experimental results are reported in this section. We com-
pared LPI (corresponding to document set DLPI) to LSI (corre-
sponding to document set DLSI) and the original document repre-
sentation (corresponding to document set D as baseline algorithm). 
In general, the performance of LPI and LSI varies with the num-
ber of dimensions. We showed the best results obtained by them. 
For each document subset, Figure 2 listed the average precision 
and the dimensionality by using the baseline algorithm, and the 
precision improvement and the dimensionality by using LPI and 
LSI. In our experiments, the number of terms (m > 6,000) is larger 

than the number of documents (n). So for the baseline algorithm, 
we reduced the document space to an n-dimensional subspace 
using SVD without losing any information. As can be seen, LPI 
achieved higher accuracy than LSI on 19 document subsets, while 
it failed on the other 11 subsets. 

Figure 3 showed the average of the “best average precisions”. The 
overall average precisions for LPI, LSI and baseline algorithms 
are 64.78%, 60.22%, and 59.10%, respectively. LSI achieved 
little improvement (1.12%) over the baseline algorithm, while LPI 
achieved 5.68% improvement. Moreover, the average dimension 
in the original representation space of the 30 document subsets is 
399.7. The average optimal dimensions for LSI and LPI are 246 
and 12.7, respectively, as shown in Figure 4.  

5.2 Similarity Evaluation on TDT2 
In this subsection, we evaluated the accuracy of similarity meas-
ures using the TDT2 document dataset∗. 

5.2.1 Data Preparation 
The TDT2 corpus consists of data collected during the first half of 
1998 and taken from 6 sources, including 2 newswires (APW, 
NYT), 2 radio programs (VOA, PRI) and 2 television programs 
(CNN, ABC). It consists of 11201 on-topic documents which are 
classified into 96 semantic categories. In this experiment, those 
documents appearing in two or more categories were removed, 
and only the largest 20 categories were kept, thus leaving us with 
8741 documents in total. The sizes of these 20 categories are as 
follows: 1844, 1828, 1222, 811, 441, 407, 272, 238, 226, 167, 
160, 145, 141, 140, 131, 123, 123, 120, 104, and 98. Using the 
same strategy described in Section 5.1.1, we split this data collec-
tion into 30 subsets. The numbers of documents of these 30 
document subsets ranged from 256 to 805 with an average of 507, 
and the number of topics ranged from 6 to 20 with an average of 
16.7.  

5.2.2 Performance Evaluations and Comparisons 
In this test, we used the same experimental design as described in 
Section 5.1.2. We evaluated the accuracy of similarity measure in 
the LPI subspace, LSI subspace and original representation space. 
Figure 5 listed the average precision and dimensionality for each 
document subset by using LPI, LSI and the baseline algorithms. 
                                                                 
∗ Nist Topic Detection and Tracking corpus at 

  http://www.nist.gov/speech/tests/tdt/tdt98/index.html 

Figure 3. The overall average precision using the 
Reuters-21578 document corpus. 
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Figure 4. The optimal dimensions of the original repre-
sentation space, LSI subspace and LPI subspace using 
the Reuters-21578 document corpus. 
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As can be seen, LPI achieved higher accuracy than LSI on all the 
document subsets. 

Figure 6 showed the average of the “best average precisions”. The 
overall average precisions for LPI, LSI and baseline algorithms 
are 90.6%, 81.5%, and 81.4%, respectively. As can be seen, LPI 
significantly outperformed LSI on this data corpus. The average 
optimal dimensions for LPI, LSI and baseline are 9.1, 469.6, and 
488.6, respectively, as shown in Figure 7. LPI successfully en-
coded the discriminating information in a very low dimensional 
subspace. 

 baseline LSI LPI 

Doc. Subsets dims AvP(%) dims ∆ AvP dims ∆ AvP 
air 632 90.62 596 0.07 6 6.5 

british 502 90.66 470 0.04 3 3.64 

building 346 63.36 344 0.01 9 14.91 

control 629 64.13 624 0 6 12.92 

cooperation 337 91.73 337 0 4 5.19 

court 715 93.91 670 0.02 9 4.19 

decision 743 78.92 734 0 9 12.89 

domestic 406 81.68 351 0.35 4 11.74 

drug 272 91.87 254 0.35 4 6.76 

fire 308 79.06 300 0.06 7 6.93 

food 482 82.27 482 0 5 6.2 

growth 554 92.34 360 1.16 29 1.21 

health 429 83.82 424 0 9 8.29 

history 419 73.62 396 0.3 11 21.03 

human 383 65.4 372 0.04 7 13.58 

impact 417 79.55 415 0 9 16.39 

information 617 91.94 616 0 8 5.35 

legal 542 94.61 541 0 7 3.96 

material 735 80.99 735 0 11 10.41 

money 770 70.43 770 0 7 17.63 

peace 583 79.38 550 0.01 7 8.57 

police 473 63.24 470 0.01 8 5.76 

robert 337 85.38 337 0 6 10.67 

russia 595 95.14 590 0 3 3.64 

school 422 68.54 422 0 8 12.33 

smoking 247 99 173 0.05 51 0.23 

technology 332 78.9 332 0 4 7.04 

trade 596 75.64 596 0 6 16.07 

violence 337 72.66 337 0 7 11.39 

women 499 83.08 491 0.01 9 9.41 

Figure 5. Precision improvement and the corresponding 
dimensionality for each document subset using the TDT2 
document corpus. The first column contains the key-
words generating the document subset. The LPI, LSI and 
baseline algorithms are compared. 

5.3 Discussion 
The experiments above reveal a number of interesting points: 

1. Both LPI and LSI performed better in the optimal subspace 
than in the original space. 

2. The optimal representation subspace obtained by LPI has 
smaller dimensionality (12.7 for Reuters-21578 and 9.1 for 
TDT2) than LSI (246 for Reuters-21578 and 469.6 for TDT2) 
while LPI achieved much better results. This shows that LPI 
is more powerful than LSI as to discovering the intrinsic di-
mensionality of the document space. One reason is that, by 
preserving the local structure of the document space, LPI can 
discover the discriminating structure to some extent, as we 
show in Section 4. 

3. The low dimensionality of the document subspace obtained 
in our experiments show that dimensionality reduction is in-
deed necessary as a preprocessing for document clustering, 
classification, retrieval, etc. 

4. The improvement achieved by LPI on the TDT2 corpus is 
much higher than that on the Reuters-21578 corpus. This is 
probably because that the TDT2 has a higher baseline per-
formance. Therefore, our assumption that the neighboring 
documents are probably related to the same topic can hold 
with high probability. 

 

 

6.  CONCLUSIONS  
A novel algorithm called Locality Preserving Indexing is pro-
posed in this paper. Different from LSI which discovers the linear 
structure of the document space, LPI is capable of discovering the 
non-linear structure of the document space to some extent. The 
locality preserving character makes LPI insensitive to noise and 
outliers. Theoretical analysis of LPI and its connections to LDA 
are provided. Based on the assumption that neighboring docu-

Figure 7. The optimal dimensions of the original repre-
sentation space, LSI subspace and LPI subspace using 
the TDT2 document corpus. 
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Figure 6. The overall average precision using the 
TDT2 document corpus. 
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ments are probably related to the same topic, we conclude that 
LPI is an optimal approximation to LDA when the label informa-
tion is not available. Therefore, even though LPI is unsupervised, 
it can to some extent discover the discriminating structure of the 
document space. Experimental results on Reuters-21578 and 
TDT2 show the effectiveness of our algorithm. 

Though dimensionality reduction has proved to be useful, it re-
mains unclear how to estimate the intrinsic dimensionality of the 
document space. SVD is guaranteed to discover the intrinsic di-
mensionality if the document space is linear. However, there is no 
convincing evidence that it is actually linear. Also, LPI seems to 
be superior to LSI for similarity measure, as shown in our experi-
ments. However, it is unclear how LPI works in the real world 
applications, such as information retrieval. 
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