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ABSTRACT 
It is important and challenging to make the growing image re-
positories easy to search and browse. Image clustering is a tech-
nique that helps in several ways, including image data preproc-
essing, user interface designing, and search result representation. 
Spectral clustering method has been one of the most promising 
clustering methods in the last few years, because it can cluster 
data with complex structure, and the (near) global optimum is 
guaranteed. However, existing spectral clustering algorithms, like 
Normalized Cut, are difficult to handle data points out of training 
set. In this paper, we propose a clustering algorithm named Local-
ity Preserving Clustering (LPC), which shares many of the data 
representation properties of nonlinear spectral method. Yet LPC 
provides an explicit mapping function which is defined every-
where, both on training data points and testing points. Experi-
mental results show that LPC is more accurate than both “direct 
Kmeans” and “PCA + Kmeans”. We also show that LPC produces 
in general comparable results with Normalized Cut, yet is more 
efficient than Normalized Cut. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information Search 
and Retrieval –Clustering; I.4.m [Image Processing and Com-
puter Vision]: Miscellaneous –Image Clustering. 

General Terms 
Algorithms, Performance, Experimentation, Theory 

Keywords 
Locality preserving clustering, Locality preserving projections, 
Spectral clustering, Image clustering 

1. INTRODUCTION 
Image repositories are growing rapidly nowadays. It is important 

and challenging to make the repositories easy to search and 
browse. Image clustering is a technique that helps in several ways. 
For example, image clustering can be used as a preprocessing step 
that improves the speed and performance of content-based image 
retrieval (CBIR) [7]. For users who want to browse image data-
base, hierarchical clusters of images will be useful for designed a 
convenient user interface (UI) [13]. Even in powerful search en-
gines, image clustering will help to make more meaningful repre-
sentation of query results [3]. 

Image clustering is a technique that associates each image in da-
tabase with a class label such that the images associated with the 
same label are similar to each other. Traditional clustering meth-
ods (such as Kmeans, Gaussian Mixture Model (GMM), etc) used 
in image clustering often get poor results in complex data, e.g. 
data points sampled from a non-linear manifold. Image database 
might be one of such examples because images with different 
concepts are generally not well-separated using traditional clus-
tering methods. The reason why traditional methods failed is that 
the typical Gaussian distribution (or mixture of Gaussian distribu-
tions) is defined on the Euclidean space, and hence it can not al-
ways describe the data points sampled from a non-linear manifold. 
Note that, Parzen window [5] might be an exception, but it re-
mains unclear how to apply it for clustering. In order to deal with 
such situations, spectral clustering method was proposed and has 
been successfully used in several applications. For example, 
Normalized Cut (NCut) [18] was used for image segmentation, 
video structuring [13], scene detection [14], video segmentation 
[16] and motion segmentation [17]. Ng et.al proposed a spectral 
clustering algorithm that extends classical Normalized Cut and 
gets better results [12]. Although Laplacian Eigenmaps [1] is fo-
cused on embedding of manifold data rather than clustering, it is 
easy to see that Eigenmaps is essentially equivalent to the embed-
ding step of Normalized Cut in the case of certain kernel (e.g. 
Gaussian kernel). 

In spite of the success of Normalized Cut and Eigenmaps on 
manifold data embedding and clustering, they can not provide us 
with an explicit mapping function. Actually, when dealing with 
new data points, similarities between the new points and all train-
ing data are needed [2]. The computation of the similarities can be 
very complicated due to the large size of training set. In order to 
solve this problem, Locality preserving projections (LPP) was 
proposed recently [8] and has bees used in document representa-
tion [9] and face recognition [10]. As a spectral embedding 
method, LPP shares many of the data representation properties of 
nonlinear methods such as Laplacian Eigenmaps. Yet LPP pro-
vides an explicit mapping function which is defined everywhere, 
either on training data points and testing points. 
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An interesting modification of spectral clustering is the 
out-of-sample extension [2]. Although the out-of-sample formula 
seems to be more useful for supervised learning than traditional 
clustering algorithm, it does help for spectral clustering. In fact, 
the state-of-the-art spectral clustering algorithms involve two 
steps, dimensionality reduction and traditional clustering like 
Kmeans. Out-of-sample extension is crucial for dimensionality 
reduction due to the saved computation. In detail, only the affini-
ties between each data point and the points in a subset of the data, 
rather than the whole data set, are to be computed. 

In this paper, we propose a clustering algorithm named Locality 
Preserving Clustering (LPC) which is a clustering method base on 
modified LPP. Technically, LPP solves a generalized eigenvalue 
problem, but the original LPP algorithm stated in [8] may mix true 
solutions (eigenvectors) with pseudo solutions and the trivial so-
lution. We show that the pseudo solutions and the trivial solution 
carry no useful information and thus waste the dimensions of 
embedded results. In our version of LPP, these two kinds of use-
less solutions are well-handled, and a renormalization step is 
added to improve the robustness of the algorithm. Theoretic 
analysis is provided to show why modified LPP gives better and 
more robust results. In the algorithmic framework, we treat LPP 
as a feature selection method, and adopt a traditional clustering 
method (Kmeans in this paper) in the resultant space of LPP. We 
apply our methods on the problem of image clustering. Experi-
mental results show that LPC is more accurate than both “direct 
Kmeans” and “PCA + Kmeans”. We also show that LPC produces 
in general comparable results with Normalized Cut, yet is much 
faster than Normalized Cut. 

It would be worthwhile to highlight several aspects of our pro-
posed algorithm here: 

 LPC is defined everywhere, but traditional spectral cluster-
ing are only defined on training data points. This implies 
that clustering on incremental data points using LPC is 
much straightforward and faster than using traditional spec-
tral clustering.  

 As a spectral method, the eigenvalue problem of LPC scales 
with the number of feature dimensions, while the eigenvalue 
problem of NCut scales with the number of data points. In 
most of image applications, the number of images in data-
base is much larger than the number of feature dimensions. 
In this sense, LPC is much more efficient than NCut.  

 Since LPC is designed for preserving local structure, it is 
likely that the neighboring points in the low dimensional 
space are also near to each other in the original high dimen-
sional space. So the clustering results of such data are 
probably more reasonable than that of data generated by 
PCA.  

The rest of this paper is organized as follows: Section 2 describes 
the proposed Locality Preserving Clustering (LPC) algorithm 
which is based on modified LPP. Theoretic analysis of the modi-
fication is discussed in Section 3. The experimental results are 
shown in Section 4, followed by the conclusion in Section 5.  

2. LOCALITY PRESERVING CLUSTER-
ING (LPC) 
Locality preserving clustering (LPC) is fundamentally based on 
LPP and Kmeans clustering. The algorithmic procedure is stated 
below: 

ALGORITHM 1. (LPC) Suppose we are given a set of M data points 
with N-dimensional features denoted by matrix 

[ ]1 2 Mx , x , , x
T

M NX × = " . 

1. Constructing the adjacency graph (same as LPP): Let G 
denote a graph with M nodes. We put an edge between 
nodes i and j if i is among N nearest neighbors of j or j is 
among N nearest neighbors of i.  

2. Choosing the weights (same as LPP): Affinity matrix W is 
a sparse symmetric matrix generated from Heat kernel: If 
nodes i and j are connected, put 

2

exp
i j

ijW
σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x x  
(1) 

3. Full-rank (additive): Calculate X� , the orthonormal basis 

of column space of [ ] X1 ( [ ]( ) span X1 ) using singular 

value decomposition (SVD):  

[ ] TX X V= Λ1 �  (2) 

where 1  denotes a column vector consisted of all one and 
only the non-zero singular values are reserved in Λ . This 
step results in a linear mapping function:  

11 ,
TT T T T

i i SVD i SVDE E V−⎡ ⎤→ = = Λ⎣ ⎦x x x�  (3) 

4. Embedding (modified): Solve the following generalized 
eigenvalue problem:  

T TX LX X DXλ=a a� � � �  (4) 

Let the column vectors { }ˆ ˆ, , , , ,1 1r r t+a a a a" " be the top 

(smallest) solutions of the above equation, ordered accord-
ing to their eigenvalues, 

0 1 1r r tλ λ λ λ= = = < ≤ ≤+" " . Calculate the or-

thogonal basis starting from 1 , i.e. ( ){ }1 , , r=a 1 a"  s.t. 

( ) ( )1 1
ˆ ˆ, , , ,r rspan span=a a a a" " . The embedding in 

this step is as follows:  

[ ]2 3, , , ,T T
i i LPC i LPC tE E→ = =x y x a a a� � "  (5) 

The above two steps generate a linear embedding function: 

1 
TT T T

i i LPC SVD iE E ⎡ ⎤→ = ⎣ ⎦x y x  (6) 

5. Renormalization: Project the embedding into unit sphere.  



i
i i

i

→ = y
y v

y
 

(7) 

6. Clustering: Perform Kmeans on renormalized embedded 
results { }iv .  

3. THEORETICAL ANALYSIS 
In this section we give the theoretical analysis of our algorithm. 

3.1 Relation between LPP and Eigenmaps 
LPP can be seen as generalized Laplacian Eigenmaps [1]. Lapla-
cian Eigenmaps solves the generalized eigenvalue problem of  

L Dλ=y y  (8) 

It is clear, according to definition of General Rayleigh Quotient, 
the eigenvector corresponding to the least eigenvalue of (8) is 
actually  

1 arg min
T

T

L

D
=

y

y y
y

y y
 (9) 

and the i-th eigenvector is 

0,

arg min
T

j

T

i T
D j i

L

D= <
=

y y

y y
y

y y
 (10) 

Given X=y a� , we found that the solution of (4) is 

( )
1 arg min

T

T
span X

L

D∈
=

y

y y
y

y y�
 (11) 

and the i-th eigenvector is 

( ), 0,

arg min
T

j

T

i T
span X D j i

L

D∈ = <
=

y y y

y y
y

y y�
 (12) 

Thus (4) is actually solving (8) in subspace ( )span X� . 

3.2 Motivation of modified LPP 
The original LPP [8] solves the eigenvalue problem without pre-
processing of data matrix: 

T TX LX X DXλ=a a  (13) 

It then constructs the embedding results by 

( )1 2, , , ,T
i i i tA A→ = =x y x a a a"  (14) 

This procedure probably causes two kinds of problems.  

1. Pseudo solution: A regular condition of generalized sym-

metric eigenvalue problem of (13) is that TX DX  should 
be positive definite. However this condition is not guaran-
teed when the column rank of X  is not full ( ( )rank X N< ). 

Technically, when solving the broken-conditioned problem 

using pseudo inverse of TX DX , there are some ≠a 0 , s.t. 
X =a 0 , which appear to be zero-eigenvectors during calcu-

lation. However, they are pseudo ones and bring no embed-
ding information, due to that the embedded coordinates of 
the dimensions corresponding to a are all zero.  

2. Near trivial solution: It is shown in literature of spectral 
graph theory (e.g. [4]) that 1  is the trivial eigenvector of 
(8) associated with eigenvalue of 0, where 1  denotes the 
column vector of all one. However, 1  is meaningless for 
embedding, since the coordinates of all embedded data 
points are identical in the dimension corresponding to 1 . 
The original LPP (13) solve eigenvalue problem in span(X). 
If 1  is not perpendicular to span(X) and is not located in 
span(X), the original LPP probably produces some eigen-
vector a  that is near trivial, i.e. X ≈a 1 . This implies that 
the embedded coordinates along some dimensions are 
dominated by constant components and carry little useful 
information.  

The modifications which we present in Algorithm 1 are designed 
to avoid the problems mentioned above. 

3.3 Justification of modified LPC 
The two major modifications of the algorithms are: a) 1  is ex-
plicitly introduced to feature space, i.e. [ ] X1  is used instead of 

[ ]X ; b) X�  is enforced to be a column-full-rank col-

umn-orthogonal matrix. The column-full-rank property of X�  is 

necessary because TX DX� �  need to be positive definite. We can 
further explain the significance of the modifications using the 
following theorem.  

THEOREM 1. ∃ the unique eigenvector â  of eigenvalue prob-

lem (4) associated with eigenvalue of 0, s.t. ˆX =a 1� . 

PROOF. See Appendix.  

Theorem 1 implies that the employment of [ ] X1  extends the 

space of optimization (see (11)) and brings 1  to the eigenspace 
of (4) associated with eigenvalue of 0. In the Embedding step, we 
reorganize the 0-eigen-space s.t. 1  is the first eigenvector. 
Therefore the meaningless eigenvector 1  is explicitly removed.  

Note that LPP can be modified in different ways. For instance, He 
et.al [10] applied Principle Component Analysis (PCA) on X be-
fore conducting LPP. In their strategy, by subtracting the mean 
from X, 1  is orthogonal to span(X). That avoids the “near trivial 
solution” problem. Further more, by preserving only a majority of 
information, say 98%, the remains is full-ranked. That avoids the 
“pseudo solution” problem. Nevertheless, it should be mentioned 
that such strategy does not guarantee optimal embedding. This is 
explained as follows. 

THEOREM 2. Given data matrix X, suppose X̂  is the results of 
PCA on X that subtracts the mean and keeps 100% information. 

X� is set as (2). Denote ( ) ( )1 1span X span X⊥ ⊥= ∩� � . The 

solution of LPP on X̂  is 



( )1
1ˆ arg min

y

y y
y

y y

T

T
span X

L

D⊥∈
=

�

 (15) 

and 

( )1 ˆ, 0,

ˆ arg min
y y y

y y
y

y yT
j

T

i T
span X D j i

L

D⊥∈ = <
=

�

 (16) 

PROOF. It is easy to prove from the definition of General Rayleigh 
Quotient. 

Comparing 1y i+  and ŷ i  from Equation (11-12) and (15-16), it 

is clear that they are optimizing different criterion. They become 
the same if and only if D=cI with I the identity matrix. 

The justification of orthogonalization (2) is to improve numerical 
precision. If X is far from column-orthogonal, the generalized 
eigenvalue problem will be ill-posed. That will increase the time 
of convergence or/and reduce the precision [5].  

The last but not least modification is to perform renormalization 
before further clustering. It is shown by Andrew Y. Ng, et.al that 
renormalization of embedded results helps when the intra-cluster 
connection degree varies across clusters [12]. Experimental results 
show that it also works on LPC.  

4. EXPERIMENTS 
We have designed three kinds of experiments and the results show 
the effectiveness of our proposed algorithm. Some other methods 
are implemented for comparison, i.e. Normalized Cut, PCA + 
Kmeans and direct Kmeans. 

4.1 Data Corpora 
We test the algorithms on a general-purpose image database, in 
which 79 categories of COREL are included. The image number 
included in each category is between 100 and 300, and the total 
number of image is 10,000. Each COREL category was treated as 
a human-labeled cluster and is used as groundtruth for our clus-
tering task, while the multiple labels assigned with each images in 
the original CDs are ignored. Some sample images are shown in 
Figure 1. 

Image feature used in our experiments is the union of color histo-
gram and Color Texture Moment (CTM) proposed by Yu et.al 
[19]. CTM is a 48-dimensional feature that integrates the color 
and texture characteristics of an image in a compact form. The 
color histogram is calculated using 4*4*4 bins in HSI space. Thus 
an 112-dimensional feature vector is used for each image. The 
feature vector is normalized s.t. each image has a feature vector of 
norm 1.  

4.2 Evaluation metric 
We test the algorithms on several different subsets of the database. 
Each subset is a mixture of k randomly selected categories. For 
each experiment, mixed images together with the cluster number k 
are provided to the clustering algorithms, and the performance is 
evaluated by comparing the cluster label of each image given by 
algorithm with the groundtruth. Two metric, the accuracy (AC) 

and the normalized mutual information ( MI ), are used for evalu-
ation. They are defined as follows. Suppose that ri is the clustering 
result of a given image Ii and gi is groundtruth, AC is defined by:  

( )( )
1

,
n

i i
i

g map r
AC

n

δ
==
∑

 (15) 

where n denotes the total number of images in this experiment, 

( ),x yδ  is the delta function that equals 1 if and only if x=y. 

map(ri) is the best mapping function that permute clustering labels 
to match the labels given by groundtruth. The Kuhn-Munkres 
algorithm can be used to obtain best mapping [11].  

On the other hand, given clustering result R = ri with the ground-

truth G = gj, and denote ( )RC Range R= , ( )
G

C Range G= , the 

mutual information between them is defined by:  

( ) ( )
( ) ( )2

,

,
( , ) , log

R Gs C t C

p s t
MI R G p s t

p s p t∈ ∈

= ∑ i  
(16) 

where p(s), p(t) denote the probabilities that an arbitrary image in 
the subset belongs to the clusters s (in cluster result) or t (in 
groundtruth), respectively. p(s,t) denotes the joint probability that 
this image belongs to the clusters s and t at the same time. Sup-
pose H(R) and H(G) denote the entropies of p(s) and p(t). MI(R;G) 
varies between 0 and max(H(R);H(G)). We use normalized mu-

tual information MI  as the second metric. 

Figure 1. Sample images of some categories from 
data corpora. One row for each category. Category 
names are (from top to bottom): “Antelope”, “Bus”, 
“Couples”, “Firework”, “Horse”, “Men”, “Pyra-
mid”. 



It is obvious that the normalized mutual information MI  takes 
values in [0; 1]. It reaches 1 if the clustering result is identical 
with the groundtruth, and becomes 0 if the clustering result is 

independent with the groundtruth. Unlike AC, MI is invariant 

with the permutation of labels. That is to say, MI does not need 
matching the clustering result and the groundtruth in advance. 

4.3 Image Clustering 
The first experiment is designed to compare the performance of 
four algorithms:  

1. Direct Kmeans: Kmeans is performed directly on the 
112-dimensional feature vectors.  

2. PCA + Kmeans: PCA is firstly performed on the feature 
vectors. The reduced dimension of PCA is set to the minimal 
number that preserves at least 95% of the information. This 
number is about 40 for the 112- dimensional features. Then 
Kmeans is performed on the embedded data.  

3. LPC: As described in Algorithm 1. The affinity matrix W is 
constructed using N nearest neighbors with N=10. We 

empirically choose the reduced dimension equal to (cluster 
number - 1). 

4. Normalized Cut: Ng’s version of Normalized Cut is used 
[12]. The affinity matrix W is defined exactly in the same 
way as LPC. The reduced dimension is equal to cluster num-
ber.  

The cluster number k varies between 2 and 10, and is provided 
along with the data to all four algorithms, . For each cluster num-
ber k, 100 subsets are randomly selected from the corpora. All 
four algorithms are performed on each subset and their average of 

AC and MI  are calculated over the 100 subsets. The compari-
son of performance is shown in Figure 2, and one example of 
clustering result of k=7 is shown in Figure 5. 

It can be seen from Figure 2 that LPC outperforms “PCA + 
Kmeans” and “direct Kmeans”. At the same time, we note that the 

reduced dimension of LPC (= 2; ⋯; 10) is greatly less than that 

of PCA (≈ 40) and direct Kmeans (= 112). Kmeans for LPC is 
thus much faster than Kmeans for PCA or direct Kmeans. The 
performance of LPC approaches that of Kmeans when the number 
of clusters increases. This is because it is more and more unlikely 
to be linearly separable with the increases of cluster number, 
which indicates the limitation of linear projection.  

( ) ( ) ( )( )
( , )

,
max ,

MI R G
MI R G

H R H G
=  

(17) 
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Figure 3. Generalization capability comparison 
among NCut, LPC, PCA + Kmeans, and direct 
Kmeans. 70% data are used for training; all 100% 
data points are used for clustering; the precision of 
test data (the rest 30%) are shown in the figures. 
X-axis – number of clusters; Y-axis – Accuracy(a) 
or Normalized mutual information(b). 
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Figure 2. Clustering results comparison 
among NCut, LPC, PCA + Kmeans, and 
direct Kmeans. X-axis – number of clusters; 
Y-axis – Accuracy(a) or Normalized mutual 
information(b). 



As can be seen from Figure 2 that LPC has lower performance 
than Normalized Cut. Since LPC is LPP + Kmeans and Normal-
ized Cut is Eigenmaps + Kmeans, this result is reasonable because 
LPP optimizes the same object function with Eigenmaps, yet 
within a smaller space (linear space of feature). However, as men-
tioned above, LPP offers explicit linear embedding operator on 
feature space. This property enables LPP to perform a fast em-
bedding for out-of-sample data points, thus, enable LPC to cluster 
out-of-sample data. This is discussed in the next experiment in 
Section 4.4. 

We currently do not conduct significance test of the difference of 
the performance between the four algorithms and other variations 
of LPP (e.g. that of He et.al [10]), and this should be part of a 
more thorough evaluation. 

4.4 Generalization Capability 
We also test generalization capability of LPC using the out-of- 
sample clustering procedure. The procedure is stated as follows: 
Given a training set A and a test set B both drawn from the same 

distribution, learn an embedding function from A using PCA, LPP, 
and Eigenmaps, respectively. Then perform the embedding func-
tion to the test set B and re-cluster (using Kmeans) the union of 
embedded A and embedded B. Finally the precision of cluster 
label of B are calculated and compared among different algo-
rithms.  

We build PCA-based, LPP-based (LPC) and Eigenmaps-based 
(NCut) out-of-sample clustering algorithms, where PCA, Eigen-
maps, LPP are regarded as three different choices of embedding 
methods.  

All three algorithms are performed on each subset described in 
Section 4.3. The different thing is, for each of the subset, 70% 
data points are used as training data A and the rest 30% are used 
as newcomer data B. For comparison, direct Kmeans is also per-
formed on A∪B0, without learning of course, and the precision of 
cluster label of B is also calculated. The experiment results are 
shown in Figure 3.  

It can be seen that Eigenmaps-based and LPP-based methods out-
performs PCA-based method. Although Eigenmaps generates 
slightly better results than LPP, it is much slower than LPP . The 

Figure 5. Results of LPC on COREL database. 
7 categories. One row for each category. The 
rightmost position of each row shows one error 
example. Category names are (from top to bot-
tom): “Antelope”, “Bus”, “Couples”, “Fire-
work”, “Horse”, “Men”, “Pyramid”. 
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reason is that before Eigenmaps can perform embedding function 
on B the similarities between all test points in B and all training 
points in A should be calculated in advance [2]. Suppose there are 
NA points in A and NB points in B. Note N the dimension number 
of feature space and k the cluster number. For Eigenmaps, simi-
larity computation needs NA*NB*N times multiplications and the 
embedding needs NA*NB*k times multiplications. So the total 
complexity of out-of-sample embedding in Eigenmaps is 

( )( )A BO N N N k× × + . While what LPP does is doing matrix 

multiplication between embedding function (matrix) and data 
matrix of B. So the complexity is ( )O k N NB× × . Typically, 

N NA �  and N kA � . This explains why LPC is much more 

efficient than Eigenmaps-based method. 

4.5 Improvement with the Number of Train-
ing Samples 
Since the training data set A and the newcomer data set B share 
the same distribution. It is a reasonable demand that the perform-
ance is improved with the number of training samples. We de-
signed a third experiment to exam if the performance of LPP im-
proves with the number of training samples, and empirically an-
swer the question of how many percentage is enough to model the 
distribution for the data sets. At this time, 1; 000 subsets are se-
lected for each category number k. The sample rate of training 

data (i.e. ( )| | | | | |A A B+ ) varies from 10%, 20% to 90%. 

After embedding operators are learnt from A, the whole data set 
are embedded and then clustered. The average accuracy and nor-
malized mutual information are shown in Figure 4. It is clear that 
the performance improves with the number of training samples. 
And for this data corpora, 40% is enough for satisfying data 
model and embedding operator. 

5. CONCLUSION 
In this paper we proposed a Locality Preserving Clustering (LPC) 
algorithm. LPC shares many of the data representation properties 
of nonlinear spectral method yet LPC provides an explicit map-
ping function which is defined everywhere, both on training data 
points and testing points. So LPC shows powerful capability for 
data representation and computational efficiency at the same time. 

6. REFERENCES 
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral 

techniques for embedding and clustering. Advances in Neural 
Information Processing Systems 14, Cambridge, MA, 2002. 
MIT Press. 

[2] Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. L. Roux, 
and M. Ouimet. Out-of-Sample extensions for LLE, Isomap, 
MDS, eigenmaps, and spectral clustering. Advances in Neu-
ral Information Processing Systems 16. MIT Press, Cam-
bridge, MA, 2004. 

[3] Y. Chen, J. Z. Wang, and R. Krovetz. Content-based image 
retrieval by clustering. In Proceedings of the 5th ACM 
SIGMM international workshop on Multimedia information 
retrieval, pages 193–200. ACM Press, 2003. 

[4] F. R. Chung. Spectral Graph Theory. American Mathemati-
cal Society, Rhode Island, 1997. 

[5] R. O. Duda and P. E. Hart, Pattern Classification and Scene 
Analysis, John Wiley and Sons, 1973. 

[6] G. H. Golub and C. F. Van Loan. Matrix computations (3rd 
ed.). Johns Hopkins University Press, 1996. 

[7] S. Gordon, H. Greenspan, and J. Goldberger. Applying the 
information bottleneck principle to unsupervised clustering 
of discrete and continuous image representations. In Pro-
ceedings of ICCV, 2003. 

[8] X. He and P. Niyogi. Locality preserving projections. Ad-
vances in Neural Information Processing Systems 16. MIT 
Press, Cambridge, MA, 2004. 

[9] X. He, D. Cai, H. Liu and W-Y. Ma, Locality Preserving 
Indexing for Document Representation, The 27th Annual In-
ternational ACM SIGIR Conference (SIGIR'2004) , July 
2004. 

[10] X. He, S. Yan, Y. Hu, and H.-J. Zhang. Learning a Locality 
Preserving Subspace for Visual Recognition, IEEE Interna-
tional Conference on Computer Vision (ICCV), Nice, France, 
2003. 

[11] L. Lovasz and M. Plummer. Matching Theory. Akadémiai 
Kiadó, North Holland, Budapest, 1986. 

[12] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: 
Analysis and an algorithm. Advances in Neural Information 
Processing Systems 14, Cambridge, MA, 2002. MIT Press. 

[13] J-M. Odobez, D. Gatica-Perez, and M. Guillemot, Spectral 
Structuring of Home Videos. International Conference on 
Image and Video Retrieval (CIVR'03), 2003. 

[14] Z. Rasheed and M. Shah, A Graph Theoretic Approach for 
Scene Detection in Produced Videos. Multimedia Informa-
tion Retrieval Workshop, 2003. 

[15] K. Rodden, W. Basalaj, D. Sinclair, and K. R. Wood. Does 
organisation by similarity assist image browsing? In Pro-
ceedings of CHI, pages 190–197, 2001. 

[16] J. Shi, S. Belongie, T. Leung, and J. Malik. Image and video 
segmentation: The normalized cut framework. IEEE Interna-
tional Conference on Image Processing (ICIP), October, 
1998. 

[17] J. Shi and J. Malik. Motion segmentation and tracking using 
normalized cuts. In ICCV, pages 1154–1160, 1998. 

[18] J. Shi and J. Malik. Normalized cuts and image segmentation. 
IEEE Trans. On Pattern Analysis and Machine Intelligence, 
2000. 

[19] H. Yu, M. Li, H.-J. Zhang, and J. Feng. Color texture mo-
ments for content-based image retrieval. IEEE International 
Conference on Image Processing, pages 24–28, 2002. 

Appendix A PROOF OF THEOREM 1 
In this appendix, we prove Theorem 1 in Section 3.3.  

PROOF. ( ) [ ]( ) span X span X= 1� . Since X� is the union of in-

dependent column vectors, ∃  the unique vector â  s.t. X =a 1� . 
It is clear that 1  is an eigenvector of (8) associated with eigen-
value of 0 because 

0T
ij ij

ij ij

L D W= − =∑ ∑1 1  
(18) 

and 
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According to definition of generalized Rayleigh quotient, â is an 
eigenvector of (4) associated with eigenvalue of 0.□

  
 


