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Abstract

Recently there has been a lot of interest in geometri-
cally motivated approaches to data analysis in high di-
mensional spaces. We consider the case where data is
drawn from sampling a probability distribution that has
support on or near a submanifold of Euclidean space. In
this paper, we propose a novel subspace learning algorithm
called Neighborhood Preserving Embedding (NPE). Differ-
ent from Principal Component Analysis (PCA) which aims
at preserving the global Euclidean structure, NPE aims at
preserving the local neighborhood structure on the data
manifold. Therefore, NPE is less sensitive to outliers than
PCA. Also, comparing to the recently proposed manifold
learning algorithms such as Isomap and Locally Linear
Embedding, NPE is defined everywhere, rather than only
on the training data points. Furthermore, NPE may be con-
ducted in the original space or in the reproducing kernel
Hilbert space into which data points are mapped. This gives
rise to kernel NPE. Several experiments on face database
demonstrate the effectiveness of our algorithm.

1. Introduction
Real data of natural and social sciences is often very high-
dimensional. However, the underlying structure can in
many cases be characterized by a small number of para-
meters. Reducing the dimensionality of such data is ben-
eficial for visualizing the intrinsic structure and it is also
an important preprocessing step in many statistical pattern
recognition problems.

In recent years, computer vision research has witnessed
a growing interest in discovering the manifold of perceptual
observation, [6], [7], [13], [11]. For example, an image can
be identified with a point in an abstract image space. Typi-
cally the image space is a very high dimensional space. The
perceptually meaningful structure of these images, however,
is of much lower dimensionality. A perceptual system that
discovers this manifold structures will support a wide range
of recognition, classification, and imagery tasks, despite

the absence of any prior physical knowledge about three-
dimensional object geometry, surface texture, or illumina-
tion conditions.

Learning a manifold of perceptual observation is difficult
because these observations usually exhibit significant non-
linear structure. Classical techniques for manifold learning,
such as PCA is designed to operate when the manifold is
embedded linearly or almost linearly in the ambient space.
When the class information is available, Linear Discrimi-
nant Analysis (LDA) [4] can be used to find a linear sub-
space which is optimal for discrimination. Meanwhile sev-
eral nonlinear techniques have been proposed to discover
the nonlinear structure of the manifold such as Laplacian
Eigenmap [2], Locally Linear Embedding (LLE) [11], and
Isomap [13]. These nonlinear methods do yield impres-
sive results on some benchmark artificial data sets besides
some real applications. However, their nonlinear property
makes them computationally expensive. Moreover, they
yield mappings that are defined only on the training data
points and it remains unclear how to naturally evaluate the
maps on novel testing points.

Kernel based techniques, such as kernel PCA [12] and
kernel LDA [8] that generate nonlinear maps have also been
considered. Most of these methods do not explicitly con-
sider the structure of the manifold on which the data may
possibly reside.

In this paper, we propose a new linear dimensionality
reduction algorithm, called Neighborhood Preserving Em-
bedding (NPE). Different from PCA which aims at preserv-
ing the global Euclidean structure, NPE aims at preserving
the local manifold structure. Given a set of data points in
the ambient space, we first build a weight matrix which de-
scribes the relationship between the data points. Specifi-
cally, for each data point, it is represented as a linear com-
bination of the neighboring data points and the combination
coefficients are specified in the weight matrix. We then find
an optimal embedding such that the neighborhood structure
can be preserved in the dimensionality reduced space.

It is worthwhile to highlight several aspects of the pro-

1



posed approach here:

1. NPE shares some similar properties with the Locality
Preserving Projection (LPP) algorithm [5]. Both of
them aims to discover the local structure of the data
manifold. However, their objective functions are to-
tally different.

2. NPE is linear. This makes it fast and suitable for prac-
tical applications. It may be conducted in the origi-
nal space or in the reproducing kernel Hilbert space
(RKHS) into which data points are mapped. This gives
rise to kernel NPE.

3. NPE can be performed in either supervised or unsuper-
vised mode. When the class information is available,
it can be utilized to build a better weight matrix.

The rest of this paper is organized as follows. The NPE
algorithm is proposed in Section 2 followed by a justifica-
tion in Section 3. Experimental results are shown in Section
4. Finally, we provide some Concluding remarks and sug-
gestions for future work in Section 5.

2. Linear Techniques for Dimensional-
ity Reduction

It is generally believed that the face space is a submanifold
embedded in the ambient image space. Two of the most
popular linear techniques for learning such a face manifold
are Principal Component Analysis (PCA) and Linear Dis-
criminant Analysis (LDA) [4]. PCA is unsupervised while
LDA is supervised.

The basic idea of PCA is to project the data along the di-
rections of maximal variances so that the reconstruction er-
ror can be minimized. Given a set of data points x1, · · · , xn,
let a be the transformation vector and yi = aT xi. The ob-
jective function of PCA is as follows:

aopt = arg max
a

n∑
i=1

(yi − y)2

= arg max
a

aT Ca

where y = 1
n

∑
yi and C is the data covariance matrix.

The basis functions of PCA are the eigenvectors of the data
covariance matrix corresponding to the largest eigenvalues.

While PCA seeks directions that are efficient for repre-
sentation, LDA seeks directions that are efficient for dis-
crimination. Suppose the data points belong to l classes.
The objective function of LDA is as follows:

aopt = arg max
a

aT SBa
aT SW a

SB =
l∑

i=1

ni

(
m(i) − m

)(
m(i) − m

)T

SW =
l∑

i=1

⎛
⎝ ni∑

j=1

(
x(i)

j − m(i)
) (

x(i)
j − m(i)

)T

⎞
⎠

where m is the total sample mean vector, ni is the number
of samples in the ith class, m(i) is the average vector of
the ith class, and x(i)

j is the jth sample in the ith class. We
call SW the within-class scatter matrix and SB the between-
class scatter matrix.

3. Neighborhood Preserving Embed-
ding (NPE)

In this Section, we introduce a new linear dimensionality
reduction algorithm, called Neighborhood Preserving Em-
bedding (NPE). NPE is a linear approximation to the LLE
[11] algorithm. The detailed theoretical justification of our
algorithm will be provided in the next Section.

3.1. The linear dimensionality reduction prob-
lem

The generic problem of linear dimensionality reduction is
the following. Given a set of points x1, · · · , xm in R

n, find
a transformation matrix A that maps these m points to a set
of points y1, · · · , ym in R

d (d � n), such that yi ”repre-
sents” xi, where yi = AT xi. Our method is of particular
applicability in the special case where x1, x2, · · · , xm ∈ M
and M is a nonlinear manifold embedded in R

n.

3.2. The algorithm
The algorithmic procedure is formally stated below:

1. Constructing an adjacency graph: Let G denote a
graph with m nodes. The i-th node corresponds to the
data point xi. There are two ways to construct the ad-
jacency graph:

• K nearest neighbors (KNN): Put a directed edge
from node i to j if xj is among the K nearest
neighbors of xi.

• ε neighborhood: Put an edge between nodes i
and j if ‖xj − xi‖ ≤ ε.

The graph constructed by the first method is a directed
graph, while the one constructed by the second method
is an undirected graph. In many real world applica-
tions, it is difficult to choose a good ε. In this work,
we adopt the KNN method to construct the adjacency
graph. When computational complexity is a major
concern, one may switch to ε neighborhood. We de-
note by i ∼ j that there is an edge from i to j.
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2. Computing the weights: In this step, we compute the
weights on the edges. Let W denote the weight matrix
with Wij having the weight of the edge from node i to
node j, and 0 if there is no such edge. The weights on
the edges can be computed by minimizing the follow-
ing objective function,

min
∑

i

‖xi −
∑

j

Wijxj‖2

with constraints∑
j

Wij = 1, j = 1, 2, ...,m

Please see [11] for the details about how to solve the
above minimization problem.

3. Computing the Projections: In this step, we compute
the linear projections. Solve the following generalized
eigenvector problem:

XMXT a = λXXT a (1)

where
X = (x1, · · · , xm)

M = (I − W )T (I − W )

I = diag(1, · · · , 1)

It is easy to check that M is symmetric and semi-
positive definite.

Let the column vectors a0, · · · , ad−1 be the solutions
of equation (1), ordered according to their eigenvalues,
λ0 ≤ · · · ≤ λd−1. Thus, the embedding is as follows:

xi → yi = AT xi

A = (a0, a1, · · · , ad−1)

where yi is a d-dimensional vector, and A is an n × d
matrix.

4. Theoretical Justification
In this Section, we provide theoretical analysis of the NPE
algorithm, which is fundamentally based on Locally Linear
Embedding [11].

4.1. Optimal Linear Embedding
As we described previously, NPE is a linear approxima-
tion to Locally Linear Embedding. Different from Princi-
pal Component Analysis which preserves global structure,
NPE preserves local manifold structure. Here, by ”local
structure” we mean that each data point can be represented
as a linear combination of its neighbors.

Recall that given a data set we first construct an adja-
cency graph on the data set. For each data point, we find its
K nearest neighbors. In many cases, the data points might
reside on a nonlinear submanifold, but it might be reason-
able to assume that each local neighborhood is linear. Thus,
we can characterize the local geometry of these patches by
linear coefficients that reconstruct each data point from its
neighbors. Reconstruction errors are measured by the cost
function [11]:

φ(W ) =
∑

i

‖xi −
∑

j

Wijxj‖2

which adds up the squared distances between all the data
points and their reconstructions. Note that, Wij vanishes for
distant data points. Consider the problem of mapping the
original data points to a line so that each data point on the
line can be represented as a linear combination of its neigh-
bors with the coefficients Wij . Let y = (y1, y2, · · · , ym)T

be such a map. A reasonable criterion for choosing a “good”
map is to minimize the following cost function [11]

Φ(y) =
∑

i

⎛
⎝yi −

∑
j

Wijyj

⎞
⎠

2

under appropriate constraints. This cost function, like the
previous one, is based on locally linear reconstruction er-
rors, but here we fix the weights Wij while optimizing the
coordinates yi.

Suppose the transformation is linear, that is, yT = aT X ,
where the i-th column vector of X is xi. We define

zi = yi −
∑

j

Wijyj

which can be written in vector form,

z = y − Wy

= (I − W )y

Following some algebraic formulations, the cost function
can be reduced to

Φ(y) =
∑

i

⎛
⎝yi −

∑
j

Wijyj

⎞
⎠

2

=
∑

i

(zi)
2

= zT z

= yT (I − W )T (I − W )y
= aT X(I − W )T (I − W )XT a
.= aT XMXT a
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where M = (I−W )T (I−W ). Clearly, the matrix XMXT

is symmetric and semi-positive definite. In order to remove
an arbitrary scaling factor in the projection, we impose a
constraint as follows:

yT y = 1 =⇒ aT XXT a = 1

Finally, the minimization problem reduces to finding:

argmin
a

aT XXT a= 1

aT XMXT a

The transformation vector a that minimizes the objective
function is given by the minimum eigenvalue solution to
the following generalized eigenvector problem:

XMXT a = λXXT a

It is easy to check that the matrices XMXT and XXT are
symmetric and positive semi-definite. Sometimes the row
vectors of X are linearly dependent, thus the matrix XXT

is singular. Suppose the rank of X is l. In this case, one can
apply Singular Value Decomposition (SVD) to project the
data points into a l-dimensional subspace in which the new
data matrix X̃ becomes non-singular:

X = USV T

X̃ = UT X = SV T

where U = (u1, · · · , ul), and ui is the eigenvector of
XXT ; V = (v1, · · · , vl), and vi is the eigenvector of
XT X; and S is a l × l diagonal matrix whose entries
are the non-zero singular values of X . Both S and V
are of full rank, so X̃ is also of full rank. In this way,
the optimal projections are the eigenvectors of the matrix
(X̃X̃T )−1(X̃MX̃T ).

4.2. Connections to Locality Preserving Pro-
jection

Locality Preserving Projection (LPP) is a recently proposed
linear dimensionality reduction algorithm [5]. In this Sec-
tion, we discuss the connections between LPP and NPE.

LPP is a linear approximation to Laplacian Eigenmaps
[2]. It is obtained by finding the optimal linear approxima-
tions to the eigenfunctions of the Laplace Beltrami operator
on the manifold. LPP can be obtained by solving the fol-
lowing minimization problem,

arg min
a

aT XDXT a= 1

aT XLXT a

where L is the so called graph Laplacian [3] induced from
the graph structure. Specifically, L = D − W , where W is
a pre-defined similarity matrix and D is a diagonal matrix,

(a) Eigenfaces

(b) Fisherfaces

(c) NPEfaces

Figure 1: The first 6 basis vectors of Eigenfaces, Fisher-
faces, and NPEfaces calculated from the face images in the
ORL database.

Dii =
∑

i Wij . As can be seen, LPP tries to minimize
aT XLXT a, while NPE tries to minimize aT XMXT a.
Note that, a vector f = (f1, · · · , fm) can be thought of as a
function defined on the graph such that fi is the map of the
i-th node. Thus, a matrix can be thought of as an operator
acting on functions defined on the graph. In [2], Belkin and
Niyogi show that under certain conditions

M f ≈ 1
2
L2f

Also, from spectral graph theory [3], we know that L pro-
vides a discrete approximation to the Laplace Beltrami op-
erator L on the manifold. Therefore, the matrix M pro-
vides a discrete approximation to L2. This indicates that
NPE essentially tries to find the linear approximations to
the eigenfunctions of the iterated Laplacian L2. Eigenfunc-
tions of L2 coincide with those of L. In this sense, NPE and
LPP provide two different ways to linearly approximate the
eigenfunctions of the Laplace Beltrami operator.

5. Experimental Results
In this Section, we investigate the use of NPE on face analy-
sis (representation and recognition). We compare our pro-
posed algorithm with Eigenface [14] and Fisherface [1], two
of the most popular linear techniques for appearance-based
face recognition.

5.1. Face Representation using NPE
As we described previously, a face image can be represented
as a point in image space. A typical image of size m×n de-
scribes a point in (m × n)-dimensional image space. How-
ever, due to the unwanted variations resulting from changes
in lighting, facial expression, and pose, the image space
might not be an optimal space for visual representation and
recognition.
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Figure 2: Sample face images from the ORL database. For
each subject, there are 10 face images with different facial
expression and details.

In Section 3, we have discussed how to learn a neigh-
borhood preserving face subspace which is insensitive to
outlier and noise. The images of faces in the training set are
used to learn such a face subspace. The subspace is spanned
by the basis vectors obtained from Eqn. (1). Therefore, any
image in the face subspace can be represented as a linear
combination of the basis vectors. We can display the ba-
sis vectors as a sort of feature images. Using the ORL face
database as the training set, we present the first 6 basis vec-
tors in Figure 1, together with Eigenfaces and Fisherfaces.

5.2. Face Recognition using NPE
PCA and LDA are the two most widely used subspace learn-
ing techniques for face recognition [1], [14]. These meth-
ods project the training sample faces to a low dimensional
representation space where the recognition is carried out.
The main supposition behind this procedure is that the face
space has a lower dimension than the image space, and that
the recognition of the faces can be performed in this reduced
space. In this section, we investigate the use of NPE for face
recognition.

5.2.1 Data Preparation

We use ORL face database in this work. In all the experi-
ments, preprocessing to locate the faces was applied. Orig-
inal images were normalized (in scale and orientation) such
that the two eyes were aligned at the same position. Then,
the facial areas were cropped into the final image for match-
ing. The size of each cropped image in all the experiments
is 32 × 32 pixels, with 256 gray levels per pixel. Thus, each
image can be represented by a 1024-dimensional vector in
image space. No further preprocessing is done. Different
pattern classifiers have been applied for face recognition,
including nearest-neighbor [14], Bayesian [9], and Support
Vector Machines [10], etc. In this paper, we apply nearest-
neighbor classifier for its simplicity.

5.2.2 Face Recognition on ORL Database

The ORL (Olivetti Research Laboratory) face database is
used in this test. It consists of a total of 400 face images,
of a total of 40 people (10 samples per person). The images

were captured at different times and have different varia-
tions including expressions (open or closed eyes, smiling or
non-smiling) and facial details (glasses or no glasses). The
images were taken with a tolerance for some tilting and ro-
tation of the face up to 20 degrees. 10 sample images of
one individual are displayed in Figure 2. For each individ-
ual, l(= 2, 3, 4, 5) images are randomly selected for training
and the rest are used for testing.

For each given l, we average the results over 20 ran-
dom splits. In general, the recognition rates varies with
the dimension of the face subspace. Figure 3 shows the
plots of error rate versus dimensionality reduction for the
Eigenface, Fisherface, and NPE. For the baseline method,
we simply performed face recognition in the original 1024-
dimensional image space. The best result obtained in the
optimal subspace and the corresponding dimensionality for
each method are shown in Table 1. Note that, the upper
bound of the dimensionality of Fisherface is c − 1 where c
is the number of individuals.

As can be seen, our NPE algorithm performed the best
for all the cases. The Fisherface method performed com-
paratively to NPE as the size of the training set increases.
Moreover, the optimal dimensionality obtained by NPE and
Fisherface is much lower than that obtained by Eigenface.

6. Conclusions
In this paper, we propose a novel linear dimensionality re-
duction algorithm called Neighborhood Preserving Embed-
ding. It is a linear approximation to Locally Linear Embed-
ding [11]. As a result it has similar neighborhood preserv-
ing properties. The main disadvantage of LLE is that, it is
defined only on the training samples, and there is no natural
maps of the testing sample. Instead, NPE is defined every-
where. Experiments on ORL face database have been con-
ducted to demonstrate the effectiveness of our algorithm.

Several questions remain to be investigated in our future
work,

1. As we described previously, both NPE and LPP [5]
try to linearly approximate the eigenfunctions of the
Laplace Beltrami operator L on the manifold. It is
unclear how to evaluate these two methods in theory.
More precisely, it is unclear how to define the optimal
graph structure which can provide the best discrete ap-
proximation to L.

2. When nearest neighbor search is involved, local struc-
ture seems to be more important than global structure.
Thus, the algorithms preserving local structure, such
as NPE and LPP, outperform the algorithms preserv-
ing global structure such as PCA and LDA. However,
it remains unclear how to define the locality theoreti-
cally. Specifically, it remains unclear how to select the
parameter k (or ε) in a principled manner.
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Figure 3: Recognition rate vs. dimensionality reduction on ORL database

Table 1: Performance comparisons on the ORL database
Method 2 Train 3 Train 4 Train 5 Train

Baseline 66.2%(1024) 75.4%(1024) 82.0%(1024) 85.9%(1024)
Eigenfaces 66.3%(78) 75.4%(119) 82.0%(159) 85.9%(199)
Fisherfaces 71.1%(22) 84.2%(39) 89.5%(39) 92.2%(39)

NPE 77.1%(39) 87.1%(40) 90.8%(39) 92.7%(40)
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