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ABSTRACT
We consider the problem of document indexing and representa-
tion. Recently, Locality Preserving Indexing (LPI) was proposed
for learning a compact document subspace. Different from Latent
Semantic Indexing which is optimal in the sense of global Euclid-
ean structure, LPI is optimal in the sense of local manifold struc-
ture. However, LPI is extremely sensitive to the number of dimen-
sions. This makes it difficult to estimate the intrinsic dimensional-
ity, while inaccurately estimated dimensionality would drastically
degrade its performance. One reason leading to this problem is
that LPI is non-orthogonal. Non-orthogonality distorts the metric
structure of the document space. In this paper, we propose a new
algorithm called Orthogonal LPI. Orthogonal LPI iteratively com-
putes the mutually orthogonal basis functions which respect the lo-
cal geometrical structure. Moreover, our empirical study shows
that OLPI can have more locality preserving power than LPI. We
compare the new algorithm to LSI and LPI. Extensive experimental
results show that Orthogonal LPI obtains better performance than
both LSI and LPI. More crucially, it is insensitive to the number of
dimensions, which makes it an efficient data preprocessing method
for text clustering, classification, retrieval, etc.
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1. INTRODUCTION
There are two fundamental problems in document processing:

how to represent the documents and how to evaluate their similar-
ity. If we denote bydocument spacethe set of all the documents,
different indexing algorithms see different structures of the docu-
ment space. The Vector Space Model (VSM) might be one of the
most popular model for document representation. Each document
is represented as abag of words. Correspondingly, the document
space is associated with a Euclidean structure and the inner product
(or, cosine similarity) is used as the standard similarity measure for
documents. Unfortunately, VSM suffers from some problems such
assynonymyandpolysemy.

Data representation is fundamentally related to the problem of
manifold learning [4][18][20] which is an emerging research area.
Given a set of high-dimensional data points, manifold learning tech-
niques aim at discovering the geometric properties of the data space,
such as its Euclidean embedding [4][18][20], intrinsic dimension-
ality [13], connected components [21], homology [16], etc. Par-
ticularly, learning representation is closely related to the embed-
ding problem, while clustering can be thought of as finding con-
nected components. Finding an Euclidean embedding of the doc-
ument space is the primary focus of our work in this paper. Mani-
fold learning techniques can be classified into linear and non-linear
techniques. For document processing, we are especially interested
in linear techniques due to the consideration of computational com-
plexity. However, our algorithm presented in this paper can be eas-
ily extended to nonlinear case. The typical linear techniques for
document representation include Latent Semantic Indexing [7], It-
erative Residual Rescaling [1][2], Non-negative Matrix Factoriza-
tion [22], and Locality Preserving Indexing [11].

LSI is originally motivated to deal with the problem ofsyn-
onymyandpolysemy. The mathematics behind LSI is the Singu-
lar Value Decomposition (SVD). The basis functions obtained by
SVD are the eigenvectors of the matrixXXT , whereX is the term-
document matrix. It would be important to note that LSI is different
from Principal Component Analysis (PCA) in thatXXT is gener-
ally not the data covariance matrix. In fact, this occurs only when
the documents has a zero mean. One of the main advantages of
LSI is that its basis functions are orthogonal. Therefore, the metric
structure in the LSI subspace can be well preserved. LSI received a
lot of attentions during these years and many variants of LSI have
been proposed [12][14][19].

LSI is optimal in the sense of preserving the global geometric
structure of the document space (inner product). However, it might
not be optimal in the sense of discrimination. Specifically, LSI
might not be optimal in separating documents with different topics.
Recently, LPI is proposed to discover the discriminant structure of
the document space. It has shown that it can have more discrimina-



tive power than LSI. A reasonable assumption behind LPI is that,
close inputs should have similar topics. The detailed discriminant
analysis of LPI can be found in [11]. Different from LSI, LPI is
non-orthogonal. Therefore, it can not preserve the metric struc-
ture of the document space and suffers from the problem of dimen-
sionality estimation. In fact, inaccurate estimation of the intrinsic
dimensionality of the document space would drastically degrade
LPI’s performance. In the worst case, it can even produce worse
performance than in the original representation space.

In this paper, we propose a new algorithm calledOrthogonal
Locality Preserving Indexing. Orthogonal LPI is fundamentally
based on LPI. It shares the same locality preserving character as
LPI, but at the same time it requires the basis functions to be or-
thogonal. Orthogonal basis functions preserve the metric structure
of the document space. In fact, if we use all the dimensions ob-
tained by Orthogonal LPI, the projective map is simply a rotation
map which does not distort the metric structure. Therefore, the
performance of Orthogonal LPI is not sensitive to the number of
dimensions. While for LPI, since it does not preserve the metric
structure, its performance can be much worse than that in the origi-
nal document space if the dimensionality is inaccurately estimated.
Moreover, our empirical study shows that Orthogonal LPI can have
more locality preserving power than LPI. Since it has been shown
that the locality preserving power is directly related to the discrim-
inating power [11], the Orthogonal LPI is expected to have more
discriminating power than LPI.

The rest of the paper is organized as follows: in Section 2, we
give a brief review of LSI and LPI. Section 3 introduces our al-
gorithm. We provide a theoretical justification of our algorithm in
Section 4. Extensive experimental results on document similarity,
local structure of document space and clustering are presented in
Section 5. Finally, we provide some concluding remarks and sug-
gestions for future work in Section 6.

2. A BRIEF REVIEW OF LSI AND LPI
LSI is one of the most popular algorithms for document index-

ing. It is fundamentally based on SVD (Singular Value Decompo-
sition). Given a set of documents{x1, · · · , xn} ⊂ R

m, they can
be represented as a term-document matrixX = [x1, x2, · · · , xn].
Suppose the rank ofX is r, LSI decompose theX using SVD as
follow:

X = UΣV
T

WhereΣ = diag(σ1, · · · , σr) andσ1 ≥ σ2 ≥ · · · ≥ σr are the
singular values ofX, U = [a1, · · · , ar] andai is called left singu-
lar vectors,V = [v1, · · · , vr] andvi is called right singular vectors.
LSI use the firstk vectors inU as the transformation matrix to em-
bed the original document into ak dimensional subspace. It can be
easily checked that the column vectors ofU are the eigenvectors of
XXT . The basic idea of LSI is to extract the most representative
features and at the same time the reconstruction error can be min-
imized. Leta be the transformation vector andyi = aT xi. The
objective function of LSI can be stated below:

aopt = arg min
a

‖X − aaT
X‖2

= arg max
a

aT
XX

T a

with the constraint

aT a = 1

SinceXXT is symmetric, the basis functions of LSI are orthog-
onal. It would be important to note thatXXT becomes the data
covariance matrix if the data points have a zero mean, i.e.Xe = 0

wheree = (1, · · · , 1). In such a case, LSI is identical to Principal
Component Analysis [9]. More details on theoretical interpreta-
tions of LSI using SVD can refer to [3][8][17].

Different from LSI which aims to extract the most representa-
tive features, LPI aims to extract the most discriminative features.
Given a similarity matrixS, LPI can be obtained by solving the
following minimization problem:

aopt = arg min
a

mX
i=1

�
aT xi − aT xj

�2

Sij

= arg min
a

aT
XLX

T a

with the constraint

aT
XDX

T a = 1

whereL = D − S is thegraph Laplacian[6] andDii =
P

j Sij .
Dii measures the local density aroundxi. LPI constructs the simi-
larity matrixS as:

Sij =

8<: xT
i xj , if xi is among thep nearest neighbors ofxj

or xj is among thep nearest neighbors ofxi

0, otherwise.

Thus, the objective function in LPI incurs a heavy penalty if neigh-
boring pointsxi andxj are mapped far apart. Therefore, minimiz-
ing it is an attempt to ensure that ifxi andxj are “close” thenyi

(= aT xi) andyj (= aT xj) are close as well [11]. Finally, the basis
functions of LPI are the eigenvectors associated with the smallest
eigenvalues of the following generalized eigen-problem:

XLX
T a = λXDX

T a

XDXT is non-singular after some pre-processing steps onX in
LPI, thus, the basis functions of LPI can also be regarded as the
eigenvectors of the matrix(XDXT )−1XLXT associated with the
smallest eigenvalues. Since(XDXT )−1XLXT is not symmetric
in general, the basis functions of LPI are non-orthogonal.

Once the eigenvectors are computed, letAk = [a1, · · · , ak] be
the transformation matrix. Thus, the Euclidean distance between
two data points in the reduced space can be computed as follows:

dist(yi, yj) = ‖yi − yj‖

= ‖AT xi − A
T xj‖

= ‖AT (xi − xj)‖

=
p

(xi − xj)T AAT (xi − xj)

If A is an orthogonal matrix,AAT = I and the metric structure is
preserved.

3. THE ALGORITHM
In this Section, we introduce a novel algorithm for document

indexing and representation, called Orthogonal LPI. The theoretical
justifications of our algorithm will be presented in Section 4.

In the document analysis and processing problems one is often
confronted with the fact that the dimension of the document vec-
tor (m) is much larger than the number of documents (n). Thus,
the m × m matrix XDXT is singular. To overcome this prob-
lem, we can apply PCA to project the documents into a subspace
without losing any information and the matrixXDXT becomes
non-singular.

The algorithmic procedure of OLPI is stated below:

1. PCA Projection: We project the document setxi into the
PCA subspace by throwing away the components correspond-
ing to zero eigenvalue. We denote the transformation matrix



of PCA by WPCA. By PCA projection, the extracted fea-
tures are statistically uncorrelated and the rank of the new
data matrix is equal to the number of features (dimensions).

2. Constructing the adjacency graph: Let G denote a graph
with n nodes. Thei-th node corresponds to the document
xi. We put an edge between nodesi andj if xi andxj are
“close”, i.e. xi is amongp nearest neighbors ofxj or xj

is amongp nearest neighbors ofxi. Note that, if the doc-
uments have been classified into different semantic classes,
one might construct an adjacency graph based on the class
labels. That is, we can put an edge between two nodes if and
only if they have the same class label.

3. Choosing the weights: If nodei andj are connected, put

Sij = xT
i xj

Otherwise, putSij = 0. The weight matrixS of graphG

models the local structure of the document space.

4. Computing the Orthogonal Locality Preserving Projec-
tions: We defineD as a diagonal matrix whose entries are
column (or row, sinceS is symmetric) sums ofS, Dii =P

j Sji. We also defineL = D − S, which is called Lapla-
cian matrix in spectral graph theory [6]. Let{a1, a2, · · · , ak}
be the orthogonal locality preserving projections, we define:

A
(k−1) = [a1, · · · , ak−1]

B
(k−1) =

h
A

(k−1)
iT

(XDX
T )−1

A
(k−1)

The orthogonal locality preserving vectors{a1, a2, · · · , ak}
can be iteratively computed as follow:

• Computea1 as the eigenvector of(XDXT )−1XLXT

associated with the smallest eigenvalue.

• Computeak as the eigenvector of

M
(k) =

�
I − (XDX

T )−1
A

(k−1)
h
B

(k−1)
i
−1h

A
(k−1)

iT �
· (XDX

T )−1
XLX

T

associated with the smallest eigenvalue ofM (k).

5. OLPI Embedding: Let WOLPI = [a1, · · · , al], the embed-
ding is as follows:

x → y = W
T x

W = WPCAWOLPI

wherey is al-dimensional representation of the documentx.
W is the transformation matrix.

4. JUSTIFICATIONS
In this section, we provide theoretical justifications of our pro-

posed algorithm.

4.1 Optimal Orthogonal Embedding
We begin with the following definition:

DEFINITION 1. Leta ∈ R
m be a projective map. TheLocality

Preserving Functionf is defined as follows:

f(a) =
aT XLXT a
aT XDXT a

The Locality Preserving Functionf(a) evaluates the locality pre-
serving power of the projective mapa. Directly minimizing this
function will lead to the original LPI algorithm. Our OLPI algo-
rithm tries to find a set of orthogonal basis vectors which minimizes
the locality preserving function.

Thus the objective function of OLPI is:

a1 = arg min
a

aT XLXT a
aT XDXT a

ak = arg min
a

aT XLXT a
aT XDXT a

with the constraint

aT
k a1 = aT

k a2 = · · · = aT
k ak−1 = 0

SinceXDXT is positive definite after PCA projection, for any
a, we can always normalize it such thataT XDXT a = 1, and the
ratio of aT XLXT a andaT XDXT a keeps unchanged. Thus, the
above minimization problem is equivalent to minimizing the value
of aT XLXT a with an additional constraint as follows,

aT
XDX

T a = 1

Note that, the above normalization is only for simplifying the com-
putation. Once we get the optimal solutions, we can re-normalize
them to get a othonormal basis vectors.

It is easy to check thata1 is the eigenvector of the generalized
eigen-problem:

XLX
T a = λXDX

T a

associated with the smallest eigenvalue. SinceXDXT is non-
singular,a1 is the eigenvector of the matrix(XDXT )−1XLXT

associated with the smallest eigenvalue.
In order to get thek-th basis vector, we minimize the following

objective function:

f(ak) =
aT

k XLXT ak

aT
k XDXT ak

(1)

with the constraints:

aT
k a1 = aT

k a2 = · · · = aT
k ak−1 = 0, aT

k XDX
T ak = 1

We can use the Lagrange multipliers to transform the above ob-
jective function to include all the constraints

C
(k) = aT

k XLX
T ak − λ(aT

k XDX
T ak − 1)

− µ1aT
k a1 − · · · − µk−1aT

k ak−1

The optimization is performed by setting the partial derivative of
C(k) with respect toak to zero:

∂C(k)

∂ak

= 0

⇒2XLX
T ak − 2λXDX

T ak − µ1a1 · · · − µk−1ak−1 = 0

(2)

Multiplying the left side of (2) byaT
k , we obtain

2aT
k XLX

T ak − 2λaT
k XDX

T ak = 0

⇒λ =
aT

k XLXT ak

aT
k XDXT ak

(3)

Comparing to (1),λ exactly represents the expression to be mini-
mized.



Multiplying the left side of (2) successively byaT
1 (XDXT )−1,

· · · , aT
k−1(XDXT )−1, we now obtain a set ofk − 1 equations:

µ1aT
1 (XDX

T )−1a1 + · · · + µk−1aT
1 (XDX

T )−1ak−1

=2aT
1 (XDX

T )−1
XLX

T ak

µ1aT
2 (XDX

T )−1a1 + · · · + µk−1aT
2 (XDX

T )−1ak−1

=2aT
2 (XDX

T )−1
XLX

T ak

· · · · · ·

µ1aT
k−1(XDX

T )−1a1 + · · · + µk−1aT
k−1(XDX

T )−1ak−1

=2aT
k−1(XDX

T )−1
XLX

T ak

We define:

µ
(k−1) = [µ1, · · · , µk−1]

T
, A

(k−1) = [a1, · · · , ak−1]

B
(k−1) =

h
B

(k−1)
ij

i
=
h
A

(k−1)
iT

(XDX
T )−1

A
(k−1)

B
(k−1)
ij = aT

i (XDX
T )−1aj

Using this simplified notation, the previous set ofk − 1 equations
can be represented in a single matrix relationship

B
(k−1)

µ
(k−1) = 2

h
A

(k−1)
iT

(XDX
T )−1

XLX
T ak

thus

µ
(k−1) = 2

h
B

(k−1)
i
−1 h

A
(k−1)

iT
(XDX

T )−1
XLX

T ak (4)

Let us now multiply the left side of (2) by(XDXT )−1

2(XDX
T )−1

XLX
T ak − 2λak − µ1(XDX

T )−1a1

− · · · − µk−1(XDX
T )−1ak−1 = 0

This can be expressed using matrix notation as

2(XDX
T )−1

XLX
T ak − 2λak

− (XDX
T )−1

A
(k−1)

µ
(k−1) = 0

With equation (4), we obtain�
I − (XDX

T )−1
A

(k−1)
h
B

(k−1)
i
−1 h

A
(k−1)

iT�
· (XDX

T )−1
XLX

T ak = λak

As shown in (3),λ is just the criterion to be minimized, thusak is
the eigenvector of

M
(k) =

�
I − (XDX

T )−1
A

(k−1)
h
B

(k−1)
i
−1 h

A
(k−1)

iT�
· (XDX

T )−1
XLX

T

associated with the smallest eigenvalue ofM (k).
Finally, we get the optimal orthogonal basis vectors. The orthog-

onal basis of OLPI preserves the metric structure of the document
space.

Recall in LPI [11], the basis vectors of LPI is the firstk eigenvec-
tors associated with the smallest eigenvalues of the eigen-problem:

XLX
T b = λXDX

T b (5)

Thus, the basis vectors satisfy the following constraint:

bT
i XDX

T bj = 0 (i 6= j)

The transformation of LPI is non-orthogonal. Actually, it isXDXT -
orthogonal.
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Figure 1: The eigenvalues of LPI and OLPI

4.2 Locality Preserving Power
Both LPI and OLPI try to preserve the local geometric structure.

They find the basis vectors by minimizing the Locality Preserving
Function:

f(a) =
aT XLXT a
aT XDXT a

(6)

f(a) reflects the locality preserving power of the projective mapa.
In LPI, based on the Rayleigh Quotient format of the eigen-

problem (Eqn. 5) [10], the value off(a) is exactly the eigenvalue
of Eqn. (5) corresponding to eigenvectora. Therefore, the eigen-
values of LPI reflect the locality preserving power of LPI. In OLPI,
as we show in Eqn. (3), the eigenvalues of OLPI also reflect its lo-
cality preserving power. This observation motivates us to compare
the eigenvalues of LPI and OLPI.

Fig. 1 shows the eigenvalues of LPI and OLPI. The data set used
for this study is the document set “air” in Table 2 (please see Sec-
tion 5.2.1 for details). As can be seen, the eigenvalues of OLPI is
consistently smaller than those of LPI, which indicates that OLPI
can have more locality preserving power than LPI. We also did ex-
periments on the other 29 document sets in Table 2 and get the
similar results.

Since it has been shown in [11] that the locality preserving power
is directly related to the discriminating power, we expect that the
OLPI based applications on document processing can obtain better
performance than those based on LPI.

5. EXPERIMENTAL RESULTS
In this section, several experiments on TDT2 data corpus were

performed to show the effectiveness of our proposed algorithm. We
compared our proposed algorithm Orthogonal LPI with LSI and
LPI.

5.1 Data Corpus
The TDT2 corpus1 consists of data collected during the first half

of 1998 and taken from 6 sources, including 2 newswires (APW,
NYT), 2 radio programs (VOA, PRI) and 2 television programs
(CNN, ABC). It consists of 11201 on-topic documents which are
classified into 96 semantic categories. In this experiment, those
documents appearing in two or more categories were removed, and
only the largest 20 categories were kept, thus leaving us with 8741
documents in total as described in table 1. Each document is rep-
resented as a term-frequency vector. We simply removed the stop

1Nist Topic Detection and Tracking corpus at
http://www.nist.gov/speech/tests/tdt/tdt98/index.html



Table 1: 20 semantic categories from TDT2 used in our experi-
ments

category num of doc category num of doc

20001 1844 20048 160
20015 1828 20033 145
20002 1222 20039 141
20013 811 20086 140
20070 441 20032 131
20044 407 20047 123
20076 272 20019 123
20071 238 20077 120
20012 226 20018 104
20023 167 20087 98

word and no further preprocessing was done. Each document vec-
tor is normalized to 1 and the Euclidean distance is used as the
distance measure.

5.2 Similarity Evaluation

5.2.1 Data Preparation
From the<title> field of 300 TREC ad hoc topics (topic 251∼550),

we chose 30 keywords that appear in our data collection with high-
est frequencies, say,qi (i = 1, 2, · · · , 30). For each keywordqi,
let Di denote the set of the documents containingqi. Let D =
D1 ∪ · · · ∪ D30. Finally, we get 30 document subsets and each
subset contains multiple topics. Note that, these subsets are not
necessarily disjoint. The numbers of documents of these 30 docu-
ment subsets ranged from 256 to 805 with an average of 507, and
the number of topics ranged from 6 to 20 with an average of 16.7
(Table 2). The reason for generating such 30 document subsets is to
split the data collection into small subsets so that we can compare
our algorithm to LSI and LPI on each subset. In fact, the key-
words can be thought of as queries in information retrieval. Thus,
the comparison can be thought of as being performed on different
queries [11].

Table 2: 30 document subsets
Query Num of Doc Query Num of Doc

air 658 impact 430
british 516 information 641

building 356 legal 565
control 647 material 762

cooperation 348 money 805
court 736 peace 600

decision 764 police 486
domestic 421 robert 351

drug 284 russia 613
fire 320 school 440
food 494 smoking 256

growth 569 technology 349
health 447 trade 622
history 444 violence 349
human 400 women 530

5.2.2 Similarity Measure
The accuracy of similarity measure plays a crucial role in most

of the information processing tasks, such as document clustering,
classification, retrieval, etc. In this subsection, we evaluate the ac-
curacy of similarity measure using three different indexing algo-
rithms, i.e. OLPI, LPI and LSI. The similarity measure we used is
the cosine similarity.

For the original document setD, we compute its lower dimen-
sional representationsDOLPI , DLPI andDLSI by using OLPI,
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Figure 2: The average precisions of LSI, LPI and OLPI vary
with the dimensionality reduction rate. The optimal perfor-
mances obtained by both LPI and OLPI are better than LSI.
Also, OLPI is less sensitive to the dimensionality reduction rate
than LPI.

LPI and LSI respectively. Similarly,DOLPI consists of 30 subsets,
DOLPI,1, · · · , DOLPI,30. DLPI consists of 30 subsets,DLPI,1,
· · · , DLPI,30. DLSI also consists of 30 subsets,DLSI,1, · · · ,
DLSI,30. We take the number of nearest neighbors for the OLPI
and LPI algorithm to be 7.

For each document subsetDi (or, DOLPI,i, DLPI,i, DLSI,i),
we evaluate the similarity measure between the documents inDi.
Intuitively, we expect that similarity should be higher for any doc-
ument pair related to the same topic (intra-topic pair) than for any
pair related to different topics (cross-topic pair). Therefore, we
adopted the average precision used in TREC, regarding an intra-
topic pair as a relevant document and the similarity value as the
ranking score. Specifically, we denote bypi the document pair
which has thei-th highest similarity value among all pairs of doc-
uments in the document setDi. For each intra-topic pairpk, its
precision is evaluated as follows:

precision(pk) =
# of intra-topic pairspj wherej ≤ k

k

The average of the precision values over all intra-topic pairs inDi

was computed as the average precision ofDi. Note that, the defin-
ition of precision we used here is the same as that used in [1][11].

5.2.3 Result
The experimental results on similarity are reported in this sub-

section. We compared OLPI (corresponding to document setDOLPI )
to LPI (corresponding to document setDLPI ), LSI (corresponding
to document setDLSI ) and the original document representation
(corresponding to document setD as baseline algorithm). In gen-
eral, the performance of OLPI, LPI and LSI varies with the number
of dimensions. We compared their results on different dimensions.
Figure 2 shows the average precision over 30 document sets (Ta-
ble 2) with different dimensionality reduction rates. In Figure 2(a),
the rate ranges from 0.3% to 100%. In Figure 2(b), the rate ranges
from 0.3% to 10%. Figure 2(b) provide us with a better view of the
performance changes when the dimensionality is small.

As can be seen from Figure 2, the best performances of both
LPI and OLPI are better than baseline. However, the LPI is very
sensitive to the dimensionality, which makes the dimensionality es-
timation extremely crucial in LPI. When the dimensionality is in-
accurately estimated, the performance of LPI can be much worse
than the baseline. The orthogonal basis functions of OLPI preserve
the metric structure of the document space. Moreover, it has more
locality preserving power (or, discriminating power) than LPI, as



we have shown in Figure 1. Also, it can be seen that, both LPI and
OLPI outperform LSI when the dimensionality is small.

By using LPI or OLPI, we can obtain an extremely low dimen-
sional representation for documents, which might facilitate some
real world applications such as clustering, classification and re-
trieval. And the insensitivity to the dimension makes OLPI more
applicable than LPI.

5.3 Discriminating Power
As pointed in [11], LPI is an unsupervised approximation to

LDA algorithm which is supervised. Orthogonal LPI share the sim-
ilar objective function with LPI. It is intrinsically similar with LPI.
Thus Orthogonal LPI also has discriminating power. Meanwhile,
the orthogonal basis in OLPI make it less sensitive to the reduced
dimensionality.

In many cases, the data points (documents) may lack of labels.
Specifically, for each data point, we do not know to what specific
topic it is related to. However, it might be possible to discover the
discriminant structure hidden in the data points. In other words, it
might be possible to know if two data points are related to the same
topic. In the context of learning theory, it is often assumed that
if two pointsx1, x2 are close in the intrinsic geometry of the data
space, then they are related to the same topic [5]. In this section,
we evaluate the discriminating power of OLPI, LPI and LSI. The
dataset we used here is the same as that used in Section 5.2.1.

For each document subset, we project the documents into a sub-
space by using OLPI, LPI, LSI and baseline algorithm. For the
baseline algorithm, we simply use SVD to remove those compo-
nents corresponding to zero eigenvalue. In other words, the base-
line algorithm preserves inner product and there is no information
loss, while the dimensionality is reduced. Letn denote the number
of data points in the subset andc denote the number of semantic
classes contained in this subset. For each semantic class, letpi

denote the number of data points in thei-th class. Letxj
i the j-th

sample in thei-th semantic class. For each data pointxj
i , we find its

pi nearest neighbors in the subspace. Among thesepi data points,
those sharing the same label asxj

i are called relevant examples.
Thus, we can compute the accuracy forxj

i as follows:

accuracy(xj
i ) =

# of relevant examples
pi

Correspondingly, the average precision can be computed:

average accuracy =
1

n

X
i

X
j

precision(xj
i )

As before, the accuracy varies with the dimensionality reduc-
tion rates as shown in Figure 3. The rate in Figure 3(a) ranges from
0.3% to 100% and the rate in Figure 3(b) ranges from 0.3% to 10%.
As can be seen, the optimal performances obtained by both LPI and
OLPI are better than LSI. Also, OLPI is less sensitive to the dimen-
sionality reduction rate than LPI. Therefore, OLPI can work more
stably than LPI in the real world applications, such as document
clustering.

5.4 Clustering Evaluation
Document clustering is one of most crucial techniques to orga-

nize the documents in an unsupervised manner. In this subsection,
we investigate the use of indexing algorithms for document cluster-
ing.

We chose K-means as our clustering algorithm and compared
four methods. These four methods are listed below:

• K-means on original term-document matrix (K-means) - This
method is treated as our baseline
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Figure 3: The average accuracies of LSI, LPI and OLPI vary
with the dimensionality reduction rate. The optimal perfor-
mances obtained by both LPI and OLPI are better than LSI.
Also, OLPI is less sensitive to the dimensionality reduction rate
than LPI.

• K-means after LSI (LSI)

• K-means after LPI (LPI)

• K-means after OLPI (OLPI)

Note that, the two methods LPI and OLPI need to construct a graph
on the documents. In this experiment, we used the same graph for
these two methods and the parameterp (number of nearest neigh-
bors) was set to 7.

5.4.1 Evaluation Metric
The clustering result is evaluated by comparing the obtained la-

bel of each document with that provided by the document corpus.
Two metrics, the accuracy (AC) and the normalized mutual in-
formation metric (MI) are used to measure the clustering perfor-
mance [22]. Given a documentxi, let ri andsi be the obtained
cluster label and the label provided by the corpus, respectively. The
AC is defined as follows:

AC =

Pn

i=1 δ(si, map(ri))

n

wheren is the total number of documents andδ(x, y) is the delta
function that equals one ifx = y and equals zero otherwise, and
map(ri) is the permutation mapping function that maps each clus-
ter labelri to the equivalent label from the data corpus. The best
mapping can be found by using the Kuhn-Munkres algorithm [15].

Let C denote the set of clusters obtained from the ground truth
and C′ obtained from our algorithm. Their mutual information
metricMI(C, C′) is defined as follows:

MI(C, C
′) =

X
ci∈C,c′

j
∈C′

p(ci, c
′

j) · log2
p(ci, c

′

j)

p(ci) · p(c′j)

wherep(ci) andp(c′j) are the probabilities that a document arbi-
trarily selected from the corpus belongs to the clustersci andc′j ,
respectively, andp(ci, c

′

j) is the joint probability that the arbitrar-
ily selected document belongs to the clustersci as well asc′j at
the same time. In our experiments, we use the normalized mutual
informationMI as follows:

MI(C, C
′) =

MI(C, C′)

max(H(C), H(C′))

whereH(C) andH(C′) are the entropies ofC andC′, respec-
tively. It is easy to check thatMI(C, C′) ranges from 0 to 1.



MI = 1 if the two sets of clusters are identical, andMI = 0
if the two sets are independent.

5.4.2 Clustering Results
The evaluations were conducted with different number of clus-

ters, ranging from 2 to 10. For each given cluster numberk, 50
tests were conducted on different randomly chosen categories, and
the average performance was computed over these 50 tests. For
each test, K-means algorithm was applied 10 times with different
start points and the best result in terms of the objective function of
K-means was recorded.

Figure 4 shows the average accuracy and average mutual infor-
mation for different number of classes (differentk). Both LPI and
OLPI reach their best performance at very low dimensionality. Af-
ter the optimal dimension, the performance of LPI decreases dras-
tically. For OLPI, its performance fluctuates slightly and is always
above the performance of the baseline. For LSI, the clustering per-
formance does not outperform the baseline.

5.5 Discussions
We summarize the experiments below:

1. The low dimensionality of the document subspace obtained
in our experiments show that dimensionality reduction is in-
deed necessary as a preprocessing for document clustering,
classification, retrieval, etc.

2. The discriminating power and orthogonal basis functions are
two important factors in acquiring a good document repre-
sentation method. OLPI combines the advantages of LSI and
LPI. Thus, it is expected to be a natural alternative to LPI.

6. CONCLUSIONS AND FUTURE WORK
We have proposed a new algorithm for document indexing and

representation, called Orthogonal Locality Preserving Indexing. The
new algorithm combines the advantages of both Latent Semantic
Indexing and Locality Preserving Indexing. As shown in our ex-
periment results, Orthogonal LPI can have as much discriminative
power as the standard LPI, while it does not suffer from the prob-
lem of dimensionality estimation.

Several questions remain unclear and will be investigated in our
future work:

1. In most of previous work on document indexing, it is as-
sumed that the data space is connected. Correspondingly,
the data space has an intrinsic dimensionality. However, this
might not be the case for real world data. The data space can
be disconnected and different components can have differ-
ent dimensionality. It remains unclear how often such a case
may occur and how to deal with it.

2. Orthogonal LPI is linear, but it can be also performed in re-
producing kernel Hilbert space which gives rise to nonlinear
maps. It is unclear if the document space is linear or non-
linear. If it is nonlinear, better performance may be obtained
by nonlinear techniques. The difficulty is that the document
space is always embedded in an extremely high-dimensional
ambient space whose bases correspond to the terms. Thus,
correctly identifying the geometric structure of the document
space require a large amount of sample points.
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(a) 2 Classes
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(b) 3 Classes
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(c) 4 Classes
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(d) 5 Classes
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(e) 6 Classes
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(f) 7 Classes
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(g) 8 Classes
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(h) 9 Classes
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(i) 10 Classes

Figure 4: The average accuracy and average mutual information for different number of classes. The clustering performance was
evaluated at different dimensionality (1∼20) for LSI, LPI and OLPI. Both LPI and OLPI reach their best per formance at very low
dimensionality. After the optimal dimension, the performance of LPI decreases drastically. For OLPI, its performance fluctuates
slightly and is always above the performance of the baseline. For LSI, the clustering performance does not outperform the baseline.


