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ABSTRACT

We consider the problem of image representation and clus-
tering. Traditionally, an n; X n2 image is represented by a
vector in the Euclidean space R™ *™2. Some learning algo-
rithms are then applied to these vectors in such a high di-
mensional space for dimensionality reduction, classification,
and clustering. However, an image is intrinsically a matrix,
or the second order tensor. The vector representation of the
images ignores the spatial relationships between the pixels
in an image. In this paper, we introduce a tensor frame-
work for image analysis. We represent the images as points
in the tensor space R™ ® R"? which is a tensor product
of two vector spaces. Based on the tensor representation,
we propose a novel image representation and clustering al-
gorithm which explicitly considers the manifold structure of
the tensor space. By preserving the local structure of the
data manifold, we can obtain a tensor subspace which is op-
timal for data representation in the sense of local isometry.
We call it TensorImage approach. Traditional clustering
algorithm such as k-means is then applied in the tensor sub-
space. Our algorithm shares many of the data representa-
tion and clustering properties of other techniques such as
Locality Preserving Projections, Laplacian Eigenmaps, and
spectral clustering, yet our algorithm is much more compu-
tationally efficient. Experimental results show the efficiency
and effectiveness of our algorithm.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval—clustering; 1.4.m [image processing
and computer vision]: miscellaneous—image clustering
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1. INTRODUCTION

Due to the rapid growth of the number of digital images,
there is an increasing demand for effective image manage-
ment tools. Image clustering and categorization is a means
for high-level description of image content [5], [9], [20]. It
maps the images in the database into different classes (clus-
ters) such that the images in the same class share some
common semantics. The generated classes provide a concise
summarization and visualization of the image content that
can be used for different tasks related to image management.
Some typical applications include the implementation of ef-
ficient Content-Based Image Retrieval [2] and browsing [15]
systems and the design of user-friendly interface [14].

In this paper, we consider the problem of image represen-
tation and clustering. Our framework of analysis is based on
the algebra of tensors and the geometry of manifolds. Tradi-
tionally, an image (face image in particular) of size ny X ng is
considered as a point of the vector space R™*"2. An image
vector is formed by concatenating all the column vectors (or
row vectors) of the image matrix together. The necessity of
such “matrix-to-vector” conversion is due to the fact that
most of the current learning algorithms can only be applied
to the vectorial data. Different from traditional algorithms
for image representation and clustering, we consider an im-
age as a matrix, or the second order tensor. An ni X ng
image is naturally represented as a second order tensor in
the tensor space R ® R™? which is a tensor product of two
vector spaces.

Generally, the representation space of the images is of
high dimensionality. For example, a typical face image is
of size 32 x 32, resulting in a 1024-dimensional vector, or a
32x32-dimensional matrix. Following the intuition that nat-
urally occurring image data may be generated by structured
systems with possibly much fewer degrees of freedom than
the ambient dimension would suggest, various researchers
have considered the case when the data lives on or close
to a submanifold of the ambient space. One hopes then to



estimate geometrical and topological properties of the sub-
manifold from random points lying on this unknown sub-
manifold. The typical manifold learning algorithms include
Principal Component Analysis (PCA, [4]), Linear Discrim-
inant Analysis (LDA, [4]), Locality Preserving Projections
(LPP, [7]), ISOMAP [18], Locally Linear Embedding (LLE,
[16]) and Laplacian Eigenmaps [1]. However, all of these
algorithms can only be applied to vectorial data rather than
data in matrix form. In this paper, we develop a novel al-
gorithm for learning a lower dimensional representation of
the image manifold embedded in the ambient tensor space.
We call this algorithm TensorImage. Our algorithm ex-
plicitly takes into account the manifold structure which is
modeled by a nearest neighbor graph. The basis functions
of the optimal tensor subspace in the sense of local isome-
try is obtained by approximating the eigenfunctions of the
Laplace Beltrami operator on the manifold.

Once we obtain a compact representation of the image,
clustering can be then performed in the lower dimensional
tensor subspace. Some typical clustering algorithms include
k-means, Gaussian Mixture Model, and spectral clustering
[13], [17]. Spectral clustering have attracted considerable
attention in recent years. It can be thought of as a combina-
tion of spectral dimensionality reduction [1] and traditional
clustering algorithms like k-means. In this work, we apply k-
means in the tensor subspace for clustering. The TensorIm-
age approach may be interpreted as a search for good spec-
tral partitioning functions by restricting our search to linear
functions (i.e. projections) alone. The objective function
of TensorImage is actually a min-cut like graph partitioning
criteria. In this sense, our method can be thought of as a
linear spectral clustering. The relationship between spectral
clustering and dimensionality reduction can be found in [1].

There are a few aspects of the developments in this paper
that are worth emphasizing:

1. Different from most of the existing algorithms for im-
age management that treat images as vectors, our Ten-
sorlmage approach treats images as matrices. Ten-
sorlmage provides a more natural representation for
images.

2. By using the algebra of tensors, our algorithm is much
more computationally efficient than traditional dimen-
sionality reduction algorithms such as PCA, LDA, and
LPP. Note that, in this paper our primary interest
is focused on images which can be considered as the
second order tensors. However, our algorithm can be
easily extended to higher order tensors. For example,
videos can be naturally considered as the third order
tensors in that the time is the third dimension.

3. Our results may also be of interest to researchers in
computer graphics who have considered the question
of modeling the Bidirectional Texture Function (BTF)
whose observational data is of six dimensions (i.e. sixth
order tensor), two variables for surface location, two
variables for view direction and two variables for il-
lumination direction [10]. Researchers in computer
vision, pattern recognition, molecular biology, infor-
mation retrieval, and other areas where large amount
of higher order tensor (rather than vector) based data
are available may find some use of the algorithm and
analysis of this paper.

The rest of the paper is organized as follows: Section 2
provides a brief description of the algebra of tensors. The
Tensorlmage approach for image analysis (representation
and clustering) is described in Section 3. In Section 4, we
give a theoretical justification of TensorImage and its con-
nections to LPP and Laplacian Eigenmap. The experimen-
tal results on image database are presented in Section 5. Fi-
nally, we provide some concluding remarks and suggestions
for future work in Section 6.

2. PRELIMINARIES

In this section, we provide a brief overview of the algebra
of tensors. For a detailed treatment please see [8].

2.1 TheAlgebraof Tensors

A tensor with order k is a real-valued multilinear function
on k vector spaces:

T:R"™ x---xR"™ - R

The number k is called the order of T. A multilinear func-
tion is linear as a function of each variable separately. The
set of all k-tensors on R™ i =1,--- ,k, denoted by 7%, is a
vector space under the usual operations of pointwise addi-
tion and scalar multiplication:

(aT)(alv T vak) = CL(T(a1, T 7ak))7

(T+T')(a1,4~ ,ak) :T(a1,--- ’ak)+T’(a1’... ,ak)

where a; € R". Given two tensors S € T® and T € 7',
define a map:

ST :R™ x .-« x R"+ - R
by
S®T(a, - ,ar) = S(ar, -+ ,ar)T(ak+1, -+, ak+1)

It is immediate from the multilinearity of S and T' that S®T
depends linearly on each argument a; separately, so it is a
(k + 1)-tensor, called the tensor product of S and T'.

For the first order tensors, they are simply the covectors
on R™. That is, 7' = R™, where R™ is the dual space of
R™ . The second order tensor space is a product of two first
order tensor spaces, i.e. 72 = R™ @ R"2. Let e1, -+ ,en,
be the standard basis of R"!, and €1, - ,&,, be the dual
basis of R™* which is formed by coordinate functions with
respect to the basis of R"!. Likewise, let €1, -+ ,€,, be a
basis of R"?, and €1,--- ,€n, be the dual basis of R"2. We
have,

5i(ej) = 61']' and gz(g]) = 51‘]‘

where §;; is the kronecker delta function. Thus, {e; ® €;}
(1 <i<ni1,1<j<ng) forms a basis of R™ ® R™2. For
any 2-tensor 7', we can write it as:

T = Z Tz‘jEi ® gj
1<i<ng
1<j<ny
This shows that every 2-tensor in R"' ® R™? uniquely cor-
responds to a ni X me matrix. Given two vectors a =



>orL,arer € R™ and b = Y2, big; € R"?, we have
ny no
Z Tije: ® 53'(2 aier, Z bier)
ij k=1 1=1
ny no
Z TijEi(Z akek)gj (Z blél)
ij k=1 =1
Z Tijaibj
ij

= aTTb

T(a,b) =

Note that, in this paper our primary interest is focused on
the second order tensors. However, the algebra presented
here and the algorithm presented in the next section can
also be applied to higher order tensors.

3. TENSORIMAGE: IMAGEANALYSISWITH
TENSOR REPRESENTATION

In this section, we introduce a tensor framework for image
analysis (representation and clustering). The following sec-
tion is based on the tensor algebra and the standard spectral
graph theory [3]. We begin with a brief description of the
coordinate transformation in the tensor space.

3.1 Coordinate System Transfor mation

Let {ux},L, be the new orthonormal basis of R™' and
{vi}}2, be the new orthonormal basis of R"?. We have

T
uk:(uk17"'7ukn1) =§ Uki€s
i

and

T ~
v, = (1)117 T 7'Uln2) = E V€5
J

It is easy to show that:

ni
&€ = E UkiUk
k=1

n2
g5 = E Vi Vi
=1

Thus, an image tensor can be computed using the new basis
as follows:

T

Z Tijei @ €5
ij
ni n2
Z Tij (Z ukiuk> %4 (Z Ulel)
i k=1 1=1
Z <Z Tijukivlj> ug ® vy

Kl ij

Z (ufTvl> u ® vy

kl

(1)

Eqn. 1 shows that {u; ® v;} forms a new basis of the tensor
space R™ ® R"2. Thus, the tensor T' becomes UTTV with
respect to the new basis, where U = (u1,--- ,up,) and V =
(Vi,-+ ,Vny). Specifically, the projection of T' on the basis
u; ® v; can be computed as their inner product:

<T,u;®v; >=<T, uiv;‘-F >= uiTTv]-

In this paper, we consider an image as a 2-tensor. For the
basis tensors u; ® v;, or uiva in matrix form, they can
also be considered as images. We call them TensorImages.
Therefore, for any image, it can be represented as a linear
combination of the Tensorlmages.

3.2 The Objective Function for Data Cluster-
ing and Dimensionality Reduction

Recently, there has been considerable interest in spectrally
based techniques to data clustering [13], [17], [20] and di-
mensionality reduction [1], [7] in high dimensional spaces.
Spectral clustering has very close tie to spectral dimension-
ality reduction. In fact, spectral clustering can be thought of
as a combination of spectral dimensionality reduction and
traditional clustering algorithms such as k-means. In this
subsection, we describe a novel objective function for data
reduction and clustering with tensor representation.

As we described previously, the images are probably sam-
pled from a low dimensional submanifold embedded in the
ambient space. One hopes then to estimate geometrical
and topological properties of the submanifold from random
points (“scattered data”) lying on this unknown submani-
fold. Particularly, We consider the problem of finding a lin-
ear subspace approximation to the submanifold in the sense
of local isometry.

Let X denote the second order image tensor, or matrix.
Given m data points X = {X1, -+, X} sampled from the
face submanifold M € R"* ® R"', one can build a nearest
neighbor graph G to model the local geometrical structure of
M. Let S be the weight matrix of G. A possible definition
of S is as follows:

1, if X, is among the p nearest
neighbors of X, or X is among
the p nearest neighbors of X;;

0, otherwise.

(2)

There are also other definitions of S, such as using heat
kernel. Please see [1] for details.

Let U and V be the transformation matrices. A reason-
able transformation respecting the graph structure can be
obtained by solving the following objective functions:

. T . _ T . 2q..
%IZHU X,V -U"X,;V|?Si; (3)
iJ

The objective function incurs a heavy penalty if neighboring
points X; and X; are mapped far apart. Therefore, mini-
mizing it is an attempt to ensure that if X; and X; are
“close” then UT X;V and UTXjV are “close” as well.

Our objective function in (3) can also be interpreted from
the perspective of min-cut graph partitioning. Without loss
of generality, we consider the problem of dividing the graph
G into two disjoint subgraphs, Gi and Ga, such that G =
G1 UGy and G1 NGz = (. The min-cut criteria can be stated

as follows:
gly.QQ Z Z Sij

i€G1 jEG2

(4)

Now, for each node (data point) X;, we assign it a label y; to
indicate whether it is in G1 or Ga, y; € {—1,1}. If X; and X
belong to the same subgraph, y; — y; = 0; otherwise, |y; —
y;| = 2. Thus, the min-cut graph partitioning problem can
be reduced to finding the optimal vector y(= (y1, - ,Ym)")



which minimizes the following objective function:

. 2

y,yf&lfll,l}%:(yl vi)*Si (5)
Since y; can only be 1 or -1, finding the optimal y is time
consuming. In order to reduce the computational complex-
ity, one may resort to spectral relaxation method to approx-
imate the optimal solution. Specifically, we can relax the
constraint that y; € {—1,1}, by allowing y; to be any real
number. Further, if we restrict the map from X, to y; to
be linear, i.e. y; = ul X;v, we get the objective function
(3). Please see [12], [6] for the details about spectral graph
partitioning.

3.3 Derivation

Let V; = UTX,V. Let D be a diagonal matrix, D;; =
>_; Sij. Since |A]|? = tr(AAT), we see that:

1
5 N IUTXV -UTX,V |28y

ij

= 32 (Ci-m0i-m)T) s

DN A AR AR G AR AR

ij

= tr (Z DuYY" =) SininT>
% iJ

= tr <Z DU X, VVIXTU =3 8,UT X, Vv X] U)

ij
= tr <UT (Z DuX,VVIXT =38, x,vvTx] ) U)
i ij

= ¢ (UT (Dv — Sv) U)

where Dy =32, Dy X;VVT X[ and Sv = 3, Si; X VVTXT .
“tr” denotes the trace operator. Similarly, ||A||? = trace(AT A),

so we also have

% SN IUTXV U X,V |28y
ij
1 T
= St (=Y (- Y)) S,
ij

= 2o (WYY YT - YY) 8

ij
= tr (Z DyYYi = Sﬂf}g)
i i
= tr (VT (Z DuX]UUTX, =Y Sy X[ UUTX]-> V)

ij

= tr <VT (Dv — Su) V)

where Dy = 32, Di X UUT X and Sy = 3, Sy X[ UUT X

Therefore, we should simultaneously minimize tr(UT (DV—

Sv)U) and tr (V7 (Du = Sp) V).
In addition to preserving the graph structure, we also aim
at maximizing the global variance on the manifold. Recall

that the variance of a random variable z can be written as
follows:

var(z) = /M (x — p)°dP(z)

uw= /M xdP(x)

where M is the data manifold, u is the expected value of
z and dP is the probability measure on the manifold. By
spectral graph theory [3], dP can be discretely estimated by
the diagonal matrix D(D;; = Zj Si;) on the sample points.
Let Y = UTXV denote the random variable in the tensor
subspace and suppose the data points have a zero mean.
Thus, the weighted variance can be estimated as follows:

var(Y) = ZHYZHZDM

> tr(Yi"Yi) Dii

Z tr (VTXiTUUTXiV> Dy;

tr <VT (Z Dy XF UUTX¢> V)

- (VTDUV)

Similarly, || ¥;]|? = tr(Y;Y;"), so we also have:

var(Y) = Ztr(YiYiT)Du'

= tr (UT (Z DiiXiVVTXiT> U)
= (U"DvU)
Finally, we get the following optimization problems:

. tr (U" (Dv — Sv)U)
UY  tr (UTDyU) ©)

_tr (VI (Dy — Su) V)
UV Tt (VTDuV) @)

The above two minimization problems (6) and (7) depends
on each other, and hence can not be solved independently.
In the following, we describe a simple yet effective compu-
tational method to solve these two optimization problems.

It is easy to see that the optimal U should be the gen-
eralized eigenvectors of (Dy — Sy, Dy) and the optimal V
should be the generalized eigenvectors of (Dy — Su, Dv).
However, it is difficult to compute the optimal U and V
simultaneously since the matrices Dv, Sy, Dy, Sy are not
fixed. In this paper, we compute U and V iteratively as
follows. We first fix U, then V' can be computed by solving
the following generalized eigenvector problem:

(DU — SU)V = )\DUV (8)

Once V is obtained, U can be updated by solving the fol-
lowing generalized eigenvector problem:

(DV — Sv)u = )\Dvu (9)



Thus, the optimal U and V can be obtained by iteratively
computing the generalized eigenvectors of (8) and (9). In
our experiments, U is initially set to be the identity matrix.

3.4 Image Clusteringin the Tensor Subspace

Once we project the images into a tensor subspace, clus-
tering can be performed in such a lower dimensional space.
We adopt k-means clustering algorithm for its simplicity in
this paper. Note that, for the images of size n1 X ng, our
TensorImage algorithm only needs to compute the eigen-
decomposition of matrices of size n1 X m1 or n2 X na. For
traditional vector based subspace learning algorithms such
PCA, LDA, and LPP [7], they need to compute the eigen-
decomposition of matrices of size n X n, where n = ny X na.
Clearly, our algorithm is much more computationally effi-
cient and can deal with images with large size.

4. THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of our al-
gorithm. We show that TensorImages are actually linear ap-
proximations to the eigenfunctions of the Laplace Beltrami
operator on the manifold.

4.1 Optimal Tensor Embedding

Given a face manifold M, let f : M C R™ @ R™?* —
R'" @ R" be a smooth map. Belkin and Niyogi [1] showed
that the optimal map preserving locality can be obtained by
solving the following optimization problem on the manifold:

min / 2k (10)
HfHEZ(M)Zl M

By Stokes’ theorem, we have:

/M IVFI2 = /M <Cff>

where L is the Laplace Beltrami operator, i.e. Lf = —divV(f).

Therefore, the optimal f to the objective function (10) has to
be an eigenfunction of £. In general the manifold M is un-
known, thus there is no way to solve the optimization prob-
lem. However, given some data points X = {X1, -, X}
sampled from M, one may find a discrete approximation to
L. By spectral graph theory [3], the Laplacian matrix L for
finite graph is analogous to £ on compact Riemannian mani-
fold. Therefore, the integral can be discretely approximated
as follows:

[ < @n@. s >~ 3 L < 5D £05) > (1)

1712 = /M < 1), @) > 3 < S0, 7(X0) > D

(12)
where L is the Laplacian matrix, L = D — S (D and S are
defined in Section 3). D;; models the local density of X;. If
we assume f to be a linear map, ie. f(X) = UTXV, we

have:
/ < (L)), f@) >
M

> Ly <UTXV,UTX;V >

Q

2
> Ly trUTXVVTX]U)
ij

tr (UT (Z LiniVVTX]T> U)

ij

tr <VT (Z Li; X! UUTXj) v)

ij

and,

If1? = /M < f(z), f(z) > dx

Z Dy <UTX,V,UTX,V >

2

Q

S Dy tr (UTXiVVTXiT U)
tr (UT (Z DuXxX;VVTxF ) U)
= tr (VT (Z Dy X[ UUTXi> V)

This ultimately leads to the optimization problems as in
Eqgn. (6) and (7). The derivation reflects the intrinsic geo-
metrical structure of the manifold.

4.2 Connectionsbetween L PP, L aplacian Eigen-
maps and Tensor | mage

In this section, we provide a theoretical analysis about
the connections between several spectral techniques for data
representation and clustering. Specifically, we consider the
following three algorithms: Locality Preserving Projection
(LPP, [7]), Laplacian Eigenmap (LE, [1]), and TensorImage.
All of these algorithms are based on a graph model induced
from the data points. We assume that they share the same
graph model in the following.

Recall that Laplacian Eigenmap tries to find an optimal
nonlinear embedding of the data points which preserves the
graph structure. Given m data points {x1, - ,xm} € R™.
X, is the wvector representation of the i-th image. Let y;
denote the one-dimensional representation of x; and y =
(y1,+- ,Ym). The embedding of Laplacian Eigenmap can
be obtained by solving the following generalized eigenvector
problem:

Ly = XDy (13)

where L is the Laplacian matrix of the graph. Please see
[1] for details. For LPP, the embedding is linear, i.e. y; =

wlx;. Thus, y = XTw, where X = (x1, ,Xm) € R™.
LPP can be obtained by solving the following eigen-problem:
XLX"w = AXDX"w (14)

The rank of X is no greater than min(m,n). Thus, if n >
m, we can reduce the image space into an m dimensional
subspace without losing any information by using Singular



Value Decomposition (SVD). Correspondingly, the data ma-
trix X in such a subspace becomes a square matrix. We have
the following proposition:

PRrROPOSITION 4.1. If X is a full rank square matriz, then
LPP and Laplacian Eigenmap have the same result.

Proor. Since y = XTw, Eqn. (14) can be rewritten as
follows:

XLy = AXXDy

Since X is a full rank square matrix, we get the following
equation:

Ly = ADy

which is just the eigenvalue problem of Laplacian Eigen-
maps. [

From the above proposition we see that, if the dimensional-
ity of the image space is larger than the number of sample
images and the sample images are linearly independent, LPP
and Laplacian Eigenmap will have the same embedding re-
sult.

While Laplacian Eigenmap is nonlinear and LPP is linear,
our TensorImage algorithm is multilinear, i.e. y; = u? X;v
where X; is the matriz representation of the i-th image. In
fact, TensorImage can be thought of as a special case of LPP
with the following constraint:

Wy (i-1)+5 = Wilj (15)

For ni1 X n2 images, the projection vector w is ni X na-
dimensional, so there are n1 X n2 parameters for LPP. For
TensorImage, there are only n1 +no parameters. Therefore,
TensorImage is much more computationally tractable and
especially suitable for small sample issues.

5. EXPERIMENTAL RESULTS

In this section, we evaluate our algorithm on a standard
image databases. We begin with a description of the data
preparation.

5.1 Data Preparation

The database used in our experiment is the PIE (Pose,
Tllumination, and Experience) database from CMU. It con-
tains 68 subjects with 41,368 face images as a whole. The
face images were captured under varying pose, illumination
and expression. We fixed the pose and expression. Thus,
for each subject, we got 22 images under different lighting
conditions. Figure 2 shows some sample images for a cer-
tain subject. Preprocessing to locate the faces was applied.
Original images were normalized (in scale and orientation)
such that the two eyes were aligned at the same position.
Then, the facial areas were cropped into the final images
for matching. The size of each cropped image in all the ex-
periments is 32 x 32 pixels, with 256 gray levels per pixel.
No further preprocessing is done. For traditional learning
algorithms (PCA and LPP), the image is represented as a
1024-dimensional vector. For Tensorlmage, the image is rep-
resented as a (32 x 32)-dimensional matrix, or the second
order tensor.

5.2 2-D Visualization of Image Set

As we described previously, PCA, LPP and TensorIm-
age are different dimensionality reduction algorithms. In
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Figure 1: 2D visualization of image set

this subsection, we use them to project the images into a
2-dimensional subspace for visualization. We randomly se-
lected 5 classes for this test. Figure 1 shows the 2D embed-
ding results. In this example, we did not show the embed-
ding result of Laplacian Eigenmaps [1] because it gives the
same result as LPP, please see Proposition 4.1 for details.
For Tensorlmage method, we can project the images into
either R? @ R? or RZQR!, both of which are 2-dimensional
spaces. R' ® R? is formed by the projection ui X[v1,va]
and R? ® R! is formed by the projection [u, UQ]TXV]_. As
can be seen, PCA performs the worst. It fails to distinguish
the different classes, and the five classes are mixed together.
Tensorlmage performed marginally better than LPP. For
LPP, we can see that there are two classes mixed together.
Clearly, these two classes will be grouped together when
clustering is performed. This illustrative example shows

that TensorImage can have more discriminating power than
PCA and LPP.

5.3 Evaluation Metricsof Clustering

We compared the following five algorithms for image clus-
tering:

e baseline: k-means in the original space (K-means)
e our algorithm: TensorImage-+k-means (Tensorlmage)

e PCA+k-means (PCA)

LPP+k-means (LPP, [20])
e Normalized Cut (NCut, [17])

Note that, TensorImage, PCA, and LPP are all linear algo-
rithms. Normalized cut (NCut, [17]) is nonlinear. NCut can
be thought of as a combination of Laplacian Eigenmaps and
k-means. We tested these algorithms on several cases. For
each case, k(= 5,10, 30,68) classes were randomly selected



Figure 2: Sample face images from CMU PIE data-
base. For each subject, there are 22 face images
under different lighting conditions and fixed pose
(C27) and expression.

Table 1: Clustering performance comparisons on
CMU PIE database

Accuracy (%)
k | Kmeans | PCA | LPP | NCut | TensorImage

5 49.3 51.3 | 96.6 | 96.6 99.95
10 39.7 40.8 | 86.1 | 86.1 92.95
30 34.9 354 | 77.8 | 778 84.32
68 33.6 34.4 | 745 | 73.5 82.23

Mutual Information (%)
k | Kmeans | PCA | LPP | NCut | TensorImage

5 46.7 47.8 | 97.0 | 97.0 99.88
10 50.1 51.1 | 92.9 | 92.9 96.95
30 56.1 56.9 | 90.9 | 90.9 94.95
68 62.6 63.9 | 91.3 | 90.6 95.20

from the data corpus. The data points and the cluster num-
ber k are provided to the clustering algorithms. The clus-
tering result is evaluated by comparing the obtained label
of each data point with that provided by the data corpus.
Two metrics, the accuracy (AC) and the normalized mutual
information metric (M) are used to measure the clustering
performance [19]. Given a data point x;, let r; and s; be
the obtained cluster label and the label provided by the data
corpus, respectively. The AC' is defined as follows:

iy 6(si, map(ri))

n

AC = (16)

where n is the total number of data points and 6(z,y) is
the delta function that equals one if x = y and equals zero
otherwise, and map(r;) is the permutation mapping function
that maps each cluster label r; to the equivalent label from
the data corpus. The best mapping can be found by using
the Kuhn-Munkres algorithm [11].

Given two sets of data clusters C, C’, their mutual infor-
mation metric MI(C,C") is defined as:

p(civ C;)

O CAN

MmIc,cy= Y

ci EC,09 ec’

p(ci, c;) - loga

where p(c;) and p(c}) are the probabilities that a data point
arbitrarily selected from the corpus belongs to the clusters ¢;
and ¢, respectively, and p(c;, ;) is the joint probability that
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Figure 3: Clustering results on 5 randomly chosen
classes

the arbitrarily selected data point belongs to the clusters ¢;
as well as ¢} at the same time. In our experiments, we use
the normalized mutual information M1 as follows:

MI(C,C")
max(H (C), H(C"))

where H(C) and H(C") are the entropies of C' and C’, re-
spectively. It is easy to check that MI(C,C’) ranges from
0 to 1. MI =1 if the two sets of clusters are identical, and
MI = 0 if the two sets are independent.

5.4 Clustering Results

The evaluations were conducted with different numbers
of clusters. For each given class number k, k classes were
randomly selected from the database. This process were
repeated 50 times, and the average performance was com-
puted. For each single test (given k classes of face im-
ages), we applied the above five methods. For each method,
the k-means step was repeated 10 times with different ini-
tializations and the best result was recorded. For LPP,
PCA, NCut, and Tensorlmage, they all need to estimate
the dimensionality of the subspace. In general, their per-
formance varies with the dimensionality of the subspace.
For LPP, PCA and NCut, the images were projected into
R¢(d < 1024). For TensorImage, the images were projected

MI(C,C') =

(18)
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Figure 4: Clustering results on 10 randomly chosen
classes

into R ® R4(1 < d < 32). Notice that, for Tensorlmage,
the images can be actually projected into RH ® Rd2(1 <
d1,d2 < 32). In our experiment, we set di = da for the sake
of simplicity. Figure 3-6 show the clustering performance of
these algorithms as a function of the dimensionality of the
subspace (d). Table 1 shows the best performance obtained
by each algorithm. As can be seen, our clustering algorithm
consistently outperformed PCA and LPP based clustering
algorithms. Note that, when the number of classes (k) is 5,
10, or 30, the total number of images (22 x k) is less than the
number of features (1024). Therefore, NCut has the same
result as LPP as suggested by Proposition 4.1. Moreover,
the performance of PCA based clustering algorithm is al-
most the same as that of baseline. This shows that PCA
fails to discover the intrinsic class structure of the image
database. Finally, it can be seen that LPP, NCut and Ten-
sorlmage achieved their best results at very low dimensions.
This indicates that dimensionality reduction is a necessary
preprocessing step for data clustering and classification.

6. CONCLUSIONSAND FUTURE WORK

In this paper we introduced a tensor framework for image
representation and clustering. In particular, we considered
the case that the images are sampled from a low dimensional
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Figure 5: Clustering results on 30 randomly chosen
classes

submanifold embedded in a higher dimensional space. The
algorithm and analysis presented in the paper are funda-
mentally based on the algebra of tensors and the geometry
of manifolds.

Different from traditional learning algorithms such as PCA
and LPP which consider an image as a vector, our algorithm
considers an image as a matrix, or the second order tensor.
By preserving the local structure of the image manifold, we
obtained a tensor subspace for image representation. We call
it TensorImage approach. By spectral relaxation, We have
showed that the objective function of our algorithm is an at-
tempt to find the optimal graph partitioning function based
on the min-cut criteria while restricting the function to be
linear. Furthermore, we have showed that Tensorlmages are
actually linear approximations to the eigenfunctions of the
Laplace Beltrami operator on the manifold. This indicates
that the local structure of the image manifold can be pre-
served in the tensor subspace spanned by the TensorImages.
Clustering experiments on PIE database show the efficiency
and effectiveness of our algorithm.

There are several interesting problems that we are going
to explore in the future work:

1. TensorImage is a linear method. Therefore, if the im-
age manifold is highly nonlinear, it may fail to discover
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7.
(1]

the intrinsic geometrical structures. It remains unclear
how to generalize our algorithm to nonlinear case.

. TensorImage is unsupervised. The local geometrical

structure of the image manifold is modeled by a near-
est neighbor graph. However, the graph constructed
in this paper (Eqn. 2) may not be optimal in the sense
of discrimination. When the label information is avail-
able, one may construct a graph according to the label
information. For example, we can put an edge between
two images if they belong to the same class.

. The algorithm and analysis presented in this paper is

primarily focused on images. But it can be easily ex-
tended to higher order tensors. For example, video
can be thought of as the third order tensor. We ex-
pect that tensor based techniques can provide better
representation for video.
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