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ABSTRACT gap between low-level visual features and high-level semantic con-

Relevance feedback is a well established and effective framework CEPtS: One feasible way to address this problem is through learning
for narrowing down the gap between low-level visual features and from the user's r.elevance er edback [21].
high-level semantic concepts in content-based image retrieval. In In_real world image retrleva_l systems, the relevance feedba_cks
most of traditional implementations of relevance feedback, a dis- provu_jed bY the USeris often limited, typically less than 20, while
tance metric or a classifier is usually learned from user's provided e dimensionality of the image space can range from several hun-
negative and positive examples. However, due to the limitation dre_ds to th_ou_sands. O_ne of the_crumal prqblems encountered in ap-
of the user’s feedbacks and the high dimensionality of the feature plylng statl;tlcal t.echn'lques to image refrieval has .been called the
space, one is often confront with the issue ofthese of the dimen- curse of dimensionality P_rocedure_s that_are analytically or com-
sionality. Recently, several researchers have considered manifoldpmat'ona"y. manageaple in low dimensional spaces can become
ways to address this issue, such as Locality Preserving Projections COMPIetely impractical in a space of several hundreds or thousands
Augmented Relation Embedding, and Semantic Subspace F,rojec_dlmen_smns [8]_. Thu§, various techniques have b_een developed for
tion. In this paper, by using techniques from spectral graph embed- re.dpcmg the dimensionality of the feature space In the hope . .Ob'
ding and regression, we propose a unified framework, cafied- taining a more manageable problem. The most popular dlmen_5|o_n-
tral regression for learning an image subspace. This framework ality reduction (or, sub§pace Iearnlng) algorlt.hm§ |r_10|udes Prmpl-
facilitates the analysis of the differences and connections betweenP?! Component_AnaIyS|s (PCA) ?‘”d Linear Discriminant Analysis
the algorithms mentioned above. And more crucially, it provides (LDA)._PCA_prOJects the data pomts !nto a Ipwer dlme_nsmnal SUb'
much faster computation and therefore makes the retrieval systemSpa.Ce In Wh_'Ch t_he sample variance IS ma_X|m|zed while LDA finds
capable of responding to the user’s query more efficiently. projective _dlrectlons by maximizing the ratio of between-class_scat-
ter to within-class scatter. Both PCA and LDA have been widely

applied to image retrieval, face recognition, and pattern recogni-

Categones and SUbJeCt Descrlptors tion. However, PCA is unsupervised thus cannot utilize the rele-
H.3.3 Information Storage and Retrieval]: Information Search ~ vance feedback provided by the user. LDA is supervised, but it is
and Retrieval-Relevance feedback hard to learn a function with good generalization capability with a
small number of labeled examples (feedbacks) [8].
To this end, various researchers have considered the dimension-
General Terms ality reduction problem in semi-supervised situation. With both un-
Algorithms, Performance, Theory labeled and labeled images (relevance feedbacks), one hopes to find
a better subspace for image representation. In this subspace, the se-
Keywords mantic structure of the image data can be better revealed. The state-

of-the-art semi-supervised subspace learning algorithms in CBIR
'are incremental Locality Preserving Projection (LPP) [10], Aug-
mented Relation Embedding (ARE) [15] and Semantic Subspace
Projection (SSP) [28]. All of these algorithms consider the case
1. INTRODUCTION when the images live on or close to a submanifold of the ambi-
Content-Based Image Retrieval (CBIR) has attracted substantial€nt space. They estimate the geometrical and discriminant prop-
interests as the volumes of image data have grown rapidly during erties of the submanifold from random points lying on this un-
the last decade [9, 10, 15, 21, 22, 27, 28]. It is well known that one known submanifold (both labeled and unlabeled). The effective-

of the most challenging problems in CBIR is to bridge the semantic Ness of these approaches have been verified in several experiments
[10, 15, 28]. However, it is not clear what is the intrinsic relation

between these algorithms although they have the same manifold
assumption. Moreover, the computation of these methods involves

Image Retrieval, Relevance Feedback, Dimensionality Reduction
Manifold Learning, Subspace Learning, Spectral Regression
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to solve the corresponding optimization problems. This framework are “close” theny; andy; are close as well [7]. With some simple
provides with us a nice platform to analyze the difference and re- algebraic formulations, we have

lationship between various kinds of algorithms. Moreover, it can 5 T

also be used to design news algorithms. Based on this framework, > (Wi —y)* Wi =2y" Ly,

we develop a novel semi-supervised subspace learning algorithm, 6

SR which is shown to be able to make efficient use of both labeled whereL = D — W is thegraph Laplacian6] and D is a diagonal
and unlabeled points to discover the intrinsic discriminant structure matrix whose entries are column (or row, sifiééis symmetric)
in the data. The experimental results validate that the new methodsums of W, D;; = 3, Wj;. Finally, the minimization problem
achieves a significantly higher precision for image retrieval. The reduces to find

specific contributions of this paper include: T T
] - ) ) y* = argminy” Ly = arg min )’Tﬂ = arg max yTﬂ, (2)
e It provides a unified graph embedding analysis of three state- yT Dy=1 y* Dy y*' Dy
of-the-art semi-supervised subspace learning algorithms: LPP,

ARE, and SSP (Section 2). whc_ere the constra_ir}tTDy = 1 removes an arbitrary s_caling fac_—
tor in the embedding. Many recently proposed manifold learning
e It proposes a novel spectral regression approach to solve thealgorithms, like ISOAMP [26], Laplacian Eigenmap [2], Locally
optimization problem of the linear graph embedding, which Linear Embedding [20], can be interpreted in this framework with
reduces the cubic-time complexity to linear-time complexity different choices of¥’. The two matrice$¥” andD play the essen-
(Section 3). tial role in this graph embedding approach. The choices of these
two graph matrices can be very flexible. In later discussion, we
* Itdevelops a novel semi-supervised subspace learning algo-yse GEW, D) to denote the graph embedding with maximization
rithm SR in this framework, which is shown to be able to  problem ofmax(y” Wy)/(y” Dy).
make efficient use of both labeled and unlabeled points to  The graph embedding approach described above only provides
discover the intrinsic discriminant structure in the data (SeC' the mappings for the graph vertices in the training set. For some ap-

tion 3). plications, a mapping for all samples, including new test samples,
. . . is required. If we choose a linear functiom,, y; = f(x:;) = a” i,
e We have performed extensive experimental comparisons of we havey — XTawhereX = X0, Xm] € R™™. Egn. (1)

the four algorithms and provided the explanation of different

behaviors of these algorithms based on the SR framework

(Section 5). 2" — arg max wy _ arg max a’XwXxTa
yT Dy aTXDXTa’

The optimala’s are the eigenvectors corresponding to the maxi-
mum eigenvalue of eigen-problem:

2. GRAPHEMBEDDING VIEW OF SUBSPACE XWxTa=AXDX"a

LEARNING This approach is called linear extension of graph embedding. With
In this Section, we provide a general framework of analysis for different choices of affinity matri¥V’ and constraint matri¥, this
the existing subspace learning algorithms from the graph embed-framework will lead to many popular linear dimensionality reduc-
ding viewpoint. Particularly, the computational complexities of ion algorithmse.g, Linear Discriminant Analysis [4] and Locality

can be rewritten as:

We summarize our findings and discuss extensions to the current
work in Section 6, which concludes the paper.

these algorithms can be well studied within this framework. Preserving Projection [11]. _ )
. In the following, we will analyze in detail the three state-of-the-
2.1 Graph based Subspace Learning art semi-supervised subspace learning algorithms in CBIR. They

Givenm samples{x;}/>, C R", dimensionality reduction (or, are incremenial Locality I_Dreserving Projection (LPP)_[lO], Aug-
subspace learning) aims at findifig; } 7>, C R d < n, where menteq Relation Embeddlng.(ARE) [15], and Semantic Subspace
z; can “represent;. In the past decades, many algorithms, either Projection (SSP) [28]. We will show that all of these three algo-
supervised or unsupervised, have been proposed to solve this problithms are linear extensions of graph embedding.
lem. Despite the different motivations of these algorithms, they can Al the three algorithms use/anearest neighbors graph to model

be nicely interpreted in a genegriaph embeddinframework. the local geometric structure of the data. Let the corresponding
Given a graptG with m vertices, each representing a data point, Weight matrix bely” € R™*™, defined by

let W be a symmetrien x m matrix with W;; having the weight 1, if xi € Ni(x;) orx; € Ni(X:)

of the edge joining verticesand;. TheG andW can be defined Wii =9 0, otherwise. @

to characterize certain statistical or geometric properties of the data

set. The purpose of graph embedding is to represent each vertelvhereNi (x;) denotes the set df nearest neighbors of.
of a graph as a low dimensional vector that preserves similarities LPP

between the vertex pairs, where similarity is measured by the edge

weight. With the user-provided feedbacks (label information), the incre-
Lety = [y1,92,--- ,ym]” be the map from the graph to the real mental LPP updates thienearest neighbors grapi as follows:
line. The optimaly tries to minimize 1, if x; andx; share the same label,
E(yi — )W WEPP = { o, if x; andx; have different labels, (3)

7 Wi, otherwise.

under appropriate constraint. This objective function incurs a heavy LPP then finds the optimal projection directions as:
penalty_if_ngighbc_;ri_ng verticesandj are mapped far apart. There- .  alXLEPPXTy

fore, minimizing it is an attempt to ensure that if verticesnd j a =argmin T XDLPPXTa (4)



where DLEF is a diagonal matrix whose entries are column sums W is non-symmetric. LeD andD’ denote the diagonal matrices

(or row sums, sinc& 27" is symmetric) oW X7 and LEFF = whose entries are row sums and column sumB/ofespectively.
D™PF — W is the graph Laplacian. Itis easy to verify thatthe  Definel’ = W + T which is symmetric and be the diagonal
objective function of LPP has the following equivalent variations: 1, trices whose entries are row (or column) sUfRs It is easy to

) & XWLPPXTa al XWEPPXTa check thatD = D + D'. We have
YT DIPXTe M GTX L IP P X Ta Sessim = Z(Xi — %) (% = %) Wy
LPP is the linear extension of graph embedding problem i,
GEQV™"", D) or GEW ™, L*7F). = XDX" - XWXT + XD'X" - XW' X"
ARE — X(D - W)X”
Different from LPP, ARE uses an additional grapgh encode the — xILxT

label information provided by user’s relevance feedbacks.F et
denote the set of images in the user’s feedback that are relevaniyherel, is the graph Laplacian av.

to the query, and®™ denote the set of irrelevant images. ARE  The objective function of SSP in Eqn. (8) can be rewritten as
constructs the label graph as:

T eop
-y if X; € FJr andx,; € F+, a" = arg max M = arg max aTXW L~ PWXTa
ARE ro I - aTSgssima aT XLXTa
Wi = 1, if X; andx; have different labels,  (5)
0,  otherwise. It is now clear that SSP is the linear extension of graph embedding

T pll
where is a parameter used to take care of the possibility of unbal- Problem GEW " L557W, L).
anced feedback. ARE then finds the optimal projection directions 11,4 apove analysis shows that all the three subspace learning

as: algorithms are linear extensions of the graph embedding approach
aTXLAREXTa
a" = arg max a’XLXTa ©) arg ma ’ = arg ma 7aTXBXTa 9)
§ max yTCy M T XCXTa

whereL*%* and L are the graph Laplacians & *%* andW in

Eqn. (2) respectively. Clearly, ARE is the linear extension of graph with different choices of affinity grap and constraint grapty’

embedding problem GE(RF . L), The optimala’s (proj(_action fl_mctions) are t_he eigenvectors corre-
sponding to the maximum eigenvalue of eigen-problem:
SSP XBXTa=XXCX"a (10)
Similar to ARE, SSP also uses an additional graph to encode the . .
label information: 2.2 Computational Analysis
_ ‘ . To get a stable solution of the eigen-problem in Egn. (10), the
WSt = 1, if x; andx; have different labels, (7) matricesXCX7 is required to be non-singular [24] which is not
J 0, otherwise. .
true when the number of features is larger than the number of sam-
SSP finds the optimal projection directions as: ples. The Singular Value Decomposition (SVD) can be used to
solve this problem. Supposenk(X) = r, the SVD decomposi-
x a’ Spissa tion of X is
a — argmax m, (8)
Gssim X =vusv’ (11)
where
e asp whereX = diag(o1,--- ,0,) andoy > --- > o, > 0 are the
Spiss = Z(mi —mj)(m; —my)" W5 singular values ofX, U € R™*", V =€ R™*" and UTu =
i VIV =1 LetX =UTX =2V7T andb = U”a, we have

Sassim = Z(Xz —x;)(xi — %) "W,
i,

W =D"'W (W is defined in Eqn. (3)) and
mi = Wy a’xcxTa=a"Uusv'ovsuTa=b"XCX"b
J

a’ xBxTa=a"UusvT'BvsUTa=b"XBX"b

Now, the objective function in (9) can be rewritten as:
Let M = [my,---,m,,]. Itis easy to check that/ = Xw'.

T v v T
SinceW ¥ is symmetric, we have b* = arg max b XBX'b

b"XCXTh’
_ _m. _m\Twssr . . .
Spiss = Z(m' m;)(m: —m;)" W and the optimab’s are the eigenvectors corresponding to the max-
“J ssp T ssp T imum eigenvalues of eigen-problem:
=2MD">" "M~ —2MW>>" M ~ - ~ -
o sepe XBX"b=AXCX"b. (12)
=2XW L>”"WX

— - Itis clear thatX C X7 is nonsingular and the above eigen-problem
The original ARE paper [15] uses two additional graphs. These can be stably solved. After we get, thea* can be obtained by

two graphs can be equivalently unified into one as shown in this

paper. a* =Ub". (13)



The above SVD approach has been widely used in many subspace

learning algorithmse.g, LDA [4] and LPP [12]) to solve the sin-
gularity problem. For clarity, we name this approach as SVD+LGE
(Linear Graph Embedding). The LPP, ARE and SSP can be treated
as different instances of SVD+LGE.

Now let us analyze the computational complexity of SVD+LGE.
We consider the case that the number of featurgss(larger than
the number of samplesr( and use the terrflam [23], a com-
pound operation consisting of one addition and one multiplication,
to present operation counts.

All these algorithms need to construct thenearest neighbor

graph in Eqn. (2). The cost is aroudan®n + 2mn + m?logm
flam. %an + 2mn is used to calculate the pairwise distances and
m?logm is used form times sorting. The most efficient algo-
rithm to calculate the SVD decomposition requiges’n + Sm?®
flam [24]. Whenm < n, the rank ofX is usually ofm. Thus,
X is square matrix of sizex x m. The calculation of matrices
XBXT and XCXT” requires2m?® flam. The eigen-problem in
Eqgn. (12) requiregm?’ flam [24]. Overall, the time complexity of
these subspace learning algorithms measured by flam is

m?(2n +logm) + 11m?®,

which is cubic-time complexity with respect ta. For large scale
high dimensional data, these algorithms are unlikely to be applied.

3. SPECTRAL REGRESSION FRAMEWORK
FOR SUBSPACE LEARNING

Although those semi-supervised subspace learning algorithms
are effective in relevance feedback image retrieval, the high compu-
tational cost restricts them to be applied to large scale high dimen-
sional data sets. In this section, we describe our approach which
can overcome this difficulty.

3.1 Spectral Regression

In order to solve the this eigen-problem in Eqn. (10) efficiently,
we use the following theorem:

THEOREM 1. Lety be the eigenvector of eigen-problem
By = \Cy (14)
with eigenvalue\. If X7a =y, thena s the eigenvector of eigen-
problem in Egn. (10) with the same eigenvalue

PrROOF We haveBy = ACy. At the left side of Eqn. (10),
replaceXTabyy, we have

XBXTa=XBy=X\Cy=\XCy=\XCXTa

Thus,ais the eigenvector of eigen-problem Eqgn. (10) with the same
eigenvaluex. [

Theorem (1) shows that instead of solving the eigen-problem
Eqgn. (10), the linear embedding functions can be acquired through
two steps:

1. Solve the eigen-problem in Eqgn. (14) to get

2. Finda which satisfiesX”a = y. In reality, sucha might
not exist. A possible way is to find which can best fit the
equation in the least squares sense:

. T 2

a = arg min a Xi —Yi 15
g1 Zj( i = i) (15)
>There exist more efficient algorithms to obtain thenearest
neighbors in stead of sorting the numbers. We will not discuss

this since it is beyond the scope of this paper.

wherey; is thei-th element ofy.
The advantages of this two-step approach are as follows:

1. BothB andC are sparse matrices and the togigenvectors
of eigen-problem in Eqn. (14) can be efficiently calculated
with Lanczos algorithms [24].

2. The technique to solve the least square problem is already
matured [23] and there exist many efficient iterative algo-
rithms .9, LSQR [18]) that can handle very large scale least
square problems.

In the situation that the number of samples is smaller than the
number of features, the minimization problem (15)liposed We
may have infinitely many solutions for the linear equations system
XTa =y (the system is underdetermined). The most popular way
to solve this problem is to impose a penalty on the norma: of

) (16)

This is called regularization and is well studied in statistics. The

regularized least square is also called ridge regression [8]. The
« > 0is a parameter to control the amounts of shrinkage. Now we

can see the third advantage of the two-step approach:

m

S (@ —yi)? +allal®

a = arg min <
a -
=1

3 Since the regression was used as a building block, the regu-
larization techniques can be easily incorporated and produce
more stable and meaningful solutions, especially when there
exist a large number of features [8].

The two-step approach essentially performs regression after the
spectral analysis of the graph. Therefor, we name this new ap-
proachSpectral RegressiofsSR) [3].

3.2 Theoretical Analysis

The regularized least squares problem of SR in Egn. (16) can be
rewritten in the matrix form as:

a = arg min ((XTa—y)T(XTa—y) +aaTa> . a7
a

Requiring the derivative of right side with respectat@anish, we

get

(XX" +al)a= Xy

18
= a=(XX"+al) 'Xy (18)

Whena > 0, this regularized solution will not satisfy the linear
equations systenX 7a = y anda will not be the eigenvector of
eigen-problem in Eqn. (10). It is interesting and important to see
when SR gives the exact solutions of eigen-problem (10). Specifi-
cally, we have the following theorem:

THEOREM 2. Supposg is the eigenvector of eigen-problem in
Eqn. (14), ify is in the space spanned by row vectorsXof the
corresponding projective functiomof SR calculated in Eqn. (18)
will be the eigenvector of eigen-problem in Eqn. (10padeceases
to zero.

PROOF See Appendix A. []

When the the number of features is larger than the number of
samples, the sample vectors are usually linearly indepenident,
rank(X) = m. In this case, we will have a stronger conclusion
for SR which is shown in the following Corollary.



Table 1: Computational complexity of SVD+LGE and SR (operation caints, flam [23])

C'VV C'SVD CDEigen CAll
SVD+LGE Sm’n + Im’ Bm? m?(2n + logm) + 11m?
mQ(%n + logm) CsEigen CRrLs
SR dpim(k +8) | 2dpamn m?(zn +logm) + dm(pr + 2p2n)
Cw: Complexity of the graph construction. m: the number of data samples.

Csvp: Complexity of SVD decomposition.

n: the number of features. We consider the caserthatm

CbEigen: Complexity of dense eigen-problem. k: the number of nearest neighbors.
Csgigen: Complexity of sparse eigen-problem. d: the number of dimensions calculated in SR.
Crrs: Complexity of regularized least squares. p:: the number of iterations in Lanczos.

Cau: Complexity of the whole algorithm.

p2: the number of iterations in LSQR.

CoROLLARY 3. Ifthe sample vectors are linearly independent, loss of generality, we assume that the fireixamples are labeled
i.e.,, rank(X) = m, all the projective functions in SR are the eigen- and these examples are ordered according to their labels. The algo-

vectors of eigen-problem in Egn. (10) asleceases to zero. These
solutions are identical to those of SVD+LGE in Eqgn. (13).

PROOF See Appendix B. [J

3.3 Computational Complexity Analysis

Besides constructing thenearest neighbor graph, SR needs to
solve a sparse eigen-problem in Eqn. (14) and a regularized least
squares problem in Egn. (16).

Thek-nearest neighbor matrid” in Eqn. (2) is sparse and there
is aroundk non-zero elements in each row. Both matriéesind
C are developed ol and they are also sparse (withnon-zero
elements in each row). The Lanczos algorithm can be used to iter-
atively compute the first eigenvectors withinlp: m(k + 8) flam,
wherep; is the number of iteratiodsn Lanczos [24].

The regularized least squares problem in Eqn. (16) can be effi-
ciently solved by the iterative algorithm LSQR [18]. In each iter-
ation, LSQR needs to compute two matrix-vector products in the
form of Xp and X7 q. The remaining work load of LSQR in each
iteration is3m +5n flam [17]. Thus, the time cost of LSQR in each
iteration is2mn + 3m + 5n. If LSQR stops afteps iteration$,
the time cost ig2(2mn + 3m + 5n). Finally, the total time cost
for d projective functions iglpz (2mn + 3m + 5n).

We summarize our complexity analysis results in Table 1 and
only show the dominant part of the time cost for simplicity. It is
clear to see the computational advantage of SR over traditional
SVD+LGE, especially for the large scale high dimensional data
(with largem andn). Please refer our technical report [3][4] for
more detailed analysis.

3.4 An Algorithm Instance

SR provides an efficient framework for graph embedding prob-
lems. With the different choices of affinity graghand constraint
graphC' as discussed in Section (2), SR can efficiently calculate
the solutions of LPP, ARE and SSP. Moreover, the spectral regres-
sion framework provides us a powerful platform to design new al-
gorithms. In this subsection, we describe an algorithm instance
developed under this framework, which will then be tested in the
later experiments. For simplicity, we will name this algorithm as
SR. In the remaining part of the paper, SR will be referred to this
particular algorithm if there is no specific description.

SR is a semi-supervised subspace learning algorithm. Given a
labeled sef{x;}!_; and an unlabeled sék;},.,. These sam-
ples belong t@ classes and It be the number of labeled samples
inther-thclass§ c_, I, =1). Let X = [Xy,--- ,Xm]. Without

3Lanczos algorithm converges very fast, 20 iterations are usually
enough to achieve a satisfactory precision [24].

*LSRQ converges very fast [18]. In our experiments, 30 iterations
are enough.

rithmic procedure of SR is stated below:

1. Construct the adjacency graph Construct thek-nearest

neighbors graph matrix with label informatid#i as in Eqn.
(3). Calculate the graph Laplacidn= D — W, whereD is

a diagonal matrix whosg, ¢)-th element equals to the sum
of thei-th column (or row, sincéV is symmetric) ofiV.

. Construct the labeled graph Construct the weight matrix

WSE ¢ R™*™ for labeled graph as

1/1., ifbothx; andx; belong to
ther-th class, (19)
0, otherwise.

SR

It is clear thatW % has the structure as follows

sr_ | Wixi O
W *[ 0 0

whereW;,; € R™*! has the following structure

w® 0 0
0 w® ... 0
Wixi = . (20)
0 0 oo W@

whereW (™ e R!"*! with all the elements equal tb/l.
(7’:1,~-- ,C).

It is easy to check thai/° is of ranke. Let D% be the
diagonal matrix whoséi, 7)-th element equals to the sum of
thei-th column (or row, sincéV *% is symmetric) ofi/ 9%,
The firstl diagonal elements ab°* are 1 and all the other
elements ofD°F are zero.

. Responses generatianFind thec eigenvectors of general-

ized eigen-problem with respect to non-zero eigenvalues:
WSRy _ )\<DSR + L)y

SinceW *® is of ranke, we will have exactly: eigenvectors
with respect to non-zero eigenvalues [24]. We denote them

asy;, -, Ye-

. Regularized least squares Find ¢ vectorsay,--- ,a. €

R™. a, (r = 1,---,c¢) is the solution of regularized least
square problem:

. ~,.T 2 2
a, = arg min a X; —vy; + «flal
a1 (}j( yi)* +al ||)

=1



wherey! is thei-th element ofy,. Our theoretical analysis Table 2: Image features used in the experiment

shows that the regularized least squares gives the eigenvector Feat_ure Name Dimension
solution whena decreases to zero. In practical we can set Color Histogram [16] 166
a=10"° Color Correlogram [13] 144
) ) Color Moment [25] 9
5. SR Embedqlng Let_ A = [a,a2,++ ,a], Aisan x c Wavelet Texture [1] 18
transformation matrix. The samples can be embedded:into
; . Canny Edge [5] 72
dimensional subspace by i 700

X —z=ATx

It is clear that our algorithm is a linear extension of graph embed- .
9 arap 4.1 Features for Image Retrieval

ding problem:
TSR Low-level image representation is a crucial problem in CBIR.
W="y i i
y* = arg max y ) General visual features includes color, texture, shape, etc. Color
yT ( DSR 4 L) y and texture features are the most extensively used visual features in

CBIR. Compared with color and texture features, shape features are

To get a better understanding that why we choose this graph em-usually described after images have been segmented into regions or
bedding, we need to examine our graph structure. Notice that theobjects. Since robust and accurate image segmentation is difficult
SR essentially computes the optimal projections with respect to theto achieve, the sue of shape features for image retrieval has been

following objective function limited to special applications where objects or regions are readily

T SR T available. In this work, we use a 409-dimensional features as shown
. a' XwrtX"%a - - : . .
a" = argmax (21) in Table (2) which combines color, texture and shape infomration.

ar'x (DSR + L) XTa In fact, if the low-level visual features are accurate enough, that

. . is, if the Euclidean distances in the low-level feature space can ac-
Let X; =[x, -- 75)%] be thg}l_{abeled data matrix. Notice the spe- curately reflect the semantic relationship between images, then one

cial structure of/’>* and D~"*, we have can simply perform nearest neighbor search in the low-level fea-
al XWSBXxTa ture space and the retrieval performance can be guaranteed. Un-

a = argmax T XDSEXTat af XLXTa fortunately, there is no strong connection between low-level visual
T T features and high-level semantic concepts based on the state-of-
= arg max a XWX, a the-art computer vision techniques. Thus, one has to resort to user

alX;X'a+al’ XLXTa interactions to discover the semantic structure in the data.

The above objective function essentially includes two parts 4.2 Relevance Feedback Image Retrieval

a’ XiWixi Xj a and O, — mina’ XLX"a Relevance feedback is one of the most important techniques to
a'X; X[ a ’ narrow down the gap between low level visual features and high
tevel semantic concepts [21]. Traditionally, the user’s relevance
eedbacks are used to update the query vector or adjust the weight-
It is easy to see thaD is the objective function of Locality i_ng of diffgrent dimengions._ This process can be viewed as an on-
line learning process in which the image retrieval system acts as a

Preserving Projection (LPP) [11]. Minimizin@, means that SR | dth h h ical ieval
tries to preserve the local geometric structure of the whole data set.\€2"M€r an the user acts as a teacher. The typical retrieval process

When the labeled data poinf§, are centered, we hav€; X/ = is outlined as follows:
Sy and X, Wi, X[ = S, [12], whereS; is the total scatter matrix
and S, is the between-class scatter matrix [4]. Since the within-
class scatter matris,, = S; — Sp, we have

O; = max

where the first part focuses on the labeled set and the second par
focuses on the whole data set.

1. The user submits a query image example to the system. The
system ranks the images in database according to some pre-
defined distance metric and presents to the user the top ranked

a' Xi\WiaXla a’Spa a’Sya images.
aTxX,Xfa Y alSa alS,a

01 = max
2. The user provides his relevance feedbacks to the system by
which is exactly the objective function of Linear Discriminant Anal- labeling images as “relevant” or “irrelevant”.
ysis (LDA) [4]. Thus, maximizingD; means that SR tries to cal-
culate the prOjeCtionS with the best class Sepal’ability on the labeled 3. The system uses the user’s provided information to re-rank
examples. the images in database and returns to the user the top images.

The above analysis links our approach to LDA and LPP. Specif- Go to step 2 until the user is satisfied.
ically, SR searches for the project axes on which the data points
with different labels can be best separated and meanwhile the lo-  All the four subspace learning algorithms (LPP, ARE, SSP and
cal geometric structure on both labeled and unlabeled data is bestSR) can use the user’s relevance feedbacks to update their graphs,
preserved. which leads to better subspace for semantic conceptsy tdenote

the query image andl be the transformation matrix of one sub-

4. CONTENT-BASED IMAGE RETRIEVAL space learning algorithm, i.ex; = A”x; andq’ = A”q. The
USING SPECTRAL REGRESSION distance betweer; andq’ can be computed as follows:

In this section, we describe how to apply Spectral Regression to dist(x),q') = \/( L g)T (%, — q)
CBIR. Particularly, we consider relevance feedback driven image ‘ ‘
retrieval. = (xi —q)TAAT (x; — q)
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Figure 1: Precision at top 40 returns of the four algorithms after the 1st feedback iteration (a) and the 2nd feedback iteration (b).
Our SR algorithm is the best for almost all the categories.

For a general subspace learning algorithm, one needs to estimate In a real image retrieval system, a query image is usually not in
the optimal dimensionality of the subspace which could be very the image database. To simulate such environment, wivestold
hard in practical. Our analysis shows that there will be antji- cross validatiorto evaluate the algorithms which is also adopted in
mensions for SR subspace, wheris the number of classes. For the paper [15]. More precisely, we divide the whole image database
image retrievale = 2 since there are two classes (relevant or not). into five subsets with equal size. Thus, there are 20 images per
Since all the other three suffer the problem of dimensionality es- category in each subset. At each run of cross validation, one subset
timation, this is one of the advantages of applying SR instead of is selected as the query set, and the other four subsets are used as
LPP/ARE/SSP. the database for retrieval. The precision-scope curve and precision

In many situations, the number of images in the database can berate are computed by averaging the results from the five-fold cross
extremely large, which makes the computation of all the algorithms validation.

infeasible. In order to reduce the computational complexity, we do .
not take all the images in the database to construckthearest ~ Automatic Relevance Feedback Scheme

neighbors graphs. Instead, we only take the top 400 images at thewe designed an automatic feedback scheme to model the retrieval
previous retrieval iteration, plus the labeled images, to find the op- process. For each submitted query, our system retrieves and ranks

timal projection. the images in the database. The top 10 ranked images were selected
as the feedback images, and their label information (relevant or ir-
5. EXPERIMENTS AND DISCUSSIONS relevant) is used for re-ranking. Note that, the images which have

In this section, we present several experimental results and com-been selected at previous iterations are excluded from later selec-
parisons to show the effectiveness and efficiency of the proposedtions. For each query, the automatic relevance feedback mechanism
algorithm. All of our experiments have been performed on a P4 is performed for four iterations. The similar scheme was used in
3.20GHz Windows XP machine with 2GB memory. [10], [15], [28].

5.1 Evaluation and Implementation Settings ~ Compared Algorithms

The COREL data set is widely used in many CBIR systems, such To demonstrate the effectiveness and efficiency of our proposed
as [10, 15, 27, 28]. For the sake of evaluations, we also choose thisimage retrieval algorithm (SR), specifically the instance we de-
data set for testing. 30 categories of color images were selected scribed in Section 3.4, we compare it with three state-of-the-art
where each consists of 100 images. Each image is represented as $emi-supervised subspace learning algorithrasincremental Lo-
409-dimensional vector as described in Section 4.1. cality Preserving Projection (LPP) [10], Augmented Relation Em-

To exhibit the advantages of using our approach, we need a re-bedding (ARE) [15] and Semantic Subspace Projection (SSP) [28].
liable way of evaluating the retrieval performance and the com- A crucial problem of LPP (or, ARE and SSP) is how to deter-
parisons with other systems. Different aspects of the experimentalmine the dimensionality of the subspace. In our experiments, we

design are described below. iterate all the dimensions and select the dimension with respect to
. . the best performance. For SR, we simply use the 2-dimensional
Evaluation Metrics subspace. For all these algorithms, the Euclidean distances in the

Due to the relatively low recall in CBIR system, we do not use the reduced subspace are used for ranking the images in the database.
precision-recallcurve [14]. Instead, we ugwecision-scope curve  All these algorithms need to construck-aearest neighbors graph,
andprecision rateas the performance evaluation metrics [15]. The Wwe empirically set = 5.

scope is Specified by the numbqkfx of top_ranked images pre- It is important to .n(.)te that all the three algqrithms (LPP, ARE
sented to the user. The precision is the ratio of the number of rel- ahd SSP) can be fit into the spectral regression framework to be
evant images presented to the user to the s@dp@he precision-  efficiently computed. However, to show the advantages of SR,

scope curve describes the precision with various scopes and thugve implemented all the three algorithms in their ordinary ways
gives an overall performance evaluation of the algorithms. On the (SVD+LGE approach described in Section 2).

other hand, the precision rate emphasizes the precision at a partic-

ular value of scope.
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Figure 2: Compare the retrieval performance of different algorithms. (a)-(c) Via illustrating with the precision-scope curves, we
plot the results in the 1st, 2nd, and 4th feedback iteration, respaively. The SR algorithm performs the best on the entire scope fo
all the three feedback iterations.

2 Im Retrieval Performan
5 age Retrieval Performance Table 3: Time on processing one query for each method (s)

In real world, it is not practical to require the user to provide T tovn | tom: tall
many rounds of feedbacks. The retrieval performance after #te fir PP o igzn 1009
two rounds of feedbacks is the most important. Figure (1) shows . .

o . ARE 0.453 0.489 1.004
the precision at top 40 after the first and second round of feedback sSSP 0.062 0487 1.002
for all the 30 categories. As can be seen, the retrieval performance ' Tom t. s -
of these algorithms varies with different categories. Our SR ap- SR ) 692'21 ORO 1017

proach performs the best for almost all the 30 categories.

Figure 2 shows the averageecision-scopeurves of the differ-
ent algorithms for the 1st, 2nd and 4th feedback iterations. The
baselinecurve describes the initial retrieval result without feed-
back information. Specifically, at the beginning of retrieval, the
Euclidean distances in the original 409-dimensional space are used
to rank the images in the database. After the user provides rele-
vance feedbacks, the LPP, ARE, SSP, and SR algorithms are then

tw: time on the graph construction.

tsvp: time on SVD decomposition.

taEigen: time on generalized eigen-problem.
tsEigen: time on sparse eigen-problem
trrs: time on regularized least squares

Table 4: Graph embedding for different algorithms

applied to re-rank the images in the database. Our SR algorithm numerator denominator
significantly outperforms the other three algorithms on the entire LPP K[;E L

scope. The overall performances of LPP, ARE and SSP are very ARE L E

close to each other. ARE performs better than the other two at Ssp| W LSSPW L

the first round, especially with a small scope. All these four al- SR WSER DFE L,
gorithms are significantly better than the baseline, which indicates W is defined in Eqn. (3)L. is the graph Laplacian.

that the user provided relevance feedbacks are very helpful for im-

proving the retrieval perforr_nance. I_3y iteratively adding the user's .naices of the parameters and we have to apply some model selec-
feedbacks, the corresponding precisions (at top 20, top 40 and 0B methods (such as Cross Validation and Bootstrapping, [8]) for
60) of the algorithms are respectively shown in Figure 3. As can be ¢gtimating the generalization error. In this subsection, we evaluate
seen, our SR algorithm performs the best for all rounds of relevance 4,4 performance of the four algorithms with different values of
feedback. o Figure (4) shows the precision at top 40 returns of the four al-
_ Table 3 gives the processing time for each query of the four algo- ¢rithms after the first round of feedback with respect to different
rithms. All the three algorithms LPP, ARE and SSP are computed |1 1es ofk. As can be seen. SR and ARE are more stable with
by SVD+LGE approach as we described in Section 2. tis clear gigerent values ofk. We will try to explain this result in the dis-

to see the SR has a significant computational advantage over the,sgjon subsection. Overall, since all the algorithms try to discover
SVD+LGE approach. This results verified our theoretical analysis g |ocal geometrical structure of the data space, it is usually set to
on computational complexity in Table 1. a small number, typically less than 10.

5.3 Model Selection ork 5.4 Discussion

All the four algorithms are semi-supervised subspace learning  The spectral regression framework provides us a nice platform to
algorithms. They use k-nearest neighbor graph to model the local analyze different algorithms. All the four algorithms we compared
geometric structure of both labeled and unlabeled data. Thus, a in-in the experiment are linear extensions of graph embedding. Their
teresting and important question could be how these algorithm sen-essential differences should lie on the different choices of graphs
sitive to the parametér. This is so called model selection, whichis  (affinity graph and constraint graph). For convenience, we list the
a crucial problem in most of the learning problems. In some situa- different graphs used by four algorithms in Table 4.
tions, the learning performance may vary drastically with different ~ The numerator indicates part of the objective function that the
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Figure 4: Model selection for LPP, ARE,
Figure 3: Precisions at top 10 (P@10), top 20 (P@20), and top 50@%50) of the three ~ SSP and SR: P@40 vs. different values
algorithms. As can be seen, our MMP algorithm performs the best, specially atthe ~ ©f the parameterk.
first round of relevance feedback.

algorithm tries tomaximize while the denominator indicates the the data. There is no reason to believe that the nearest neigh-
part which will beminimized It can be see that the denomina- bor graph is the only or the most natural choice. For exam-
tors of all the four algorithms are essentially same, which is the ple, for web image search it may be more natural to use the
Laplacian ofk-nearest neighbor graph All these algorithms try hyperlink information to construct the graph.

to minimize a” X LXTa which is essentially the objective func-
tion of LPP [11]. The differences between these algorithms are in Acknowledgments
the numerator part. Both*** andW " are only dependent on

the labeled data, whiley’ and W L5SPW are dependent on the
whole k-nearest neighbor graph. This explains why LPP and SSP
are more sensitive to the parametess shown in Figure 4. As we
analyzed in the previous sectioi, % is essentially the graph of
between-class scatter matrix. Th#sR can obtain the projective 7. REFERENCES
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APPENDIX
A. PROOF OF THEOREM 2

PROOF Supposeank(X) = r, the SVD decomposition aX
is
X =Uusv” (22)

whereX = diag(o1,---,0.), U € R™*", V € R™*" and we
haveUTU = VTV = I. They is in the space spanned by row
vectors ofX, therefory is in the space spanned by column vectors
of V. Thus,y can be represented as the linear combination of the
column vectors of/. Moreover, the combination is unique because
the column vectors of are linear independent. Suppose the com-
bination coefficients aré;,--- ,b.. Letb = [b1,---,b,.]7, we
have:

Vb=y = V'vb=V"y = b=V"y = VVTy=y (23)
To continue our proof, we need introduce the concept of pseudo
inverse of a matrix [19], which we denote &3*. Specifically,
pseudo inverse of the matriX can be computed by the following
two ways:

Xt =y tyT
and
Xt = ;ir%(XTX + AN xT

The above limit exists even iK” X is singular and X” X)~!
does not exist [19]. Thus, the regularized least squares solution in
SR

-1
a= <XXT n aI) xy =% (xT)ty = ux~'vTy

Combine with the equation in Egn. (23), we have
XTa=veuTa=veUuTus 'viy=vviy=y

By Theorem (1),a is the eigenvector of eigen-problem in Eqgn.
(10). O

B. PROOF OF COROLLARY 3

PROOF The matrices3 andC' are of sizen x m and there are
m eigenvectorgy; }7-, of eigen-problem (14). Sinceink(X) =
m, all them eigenvectory; are in the space spanned by row vec-
tors of X. By Theorem (2), allm corresponding; of SR are
eigenvectors of eigen-problem in Eqn. (10)adecreases to zero.
They are

g =ux"'vTy,.

Consider the eigen-problem in Egn. (12), sincenheigenvectors
y; are also in the space spanned by row vector¥ ot UTX =
vV, eigenvectob; will be the solution of linear equations sys-
tem XTb; = y;. The row vectors ofX = xV7 are linearly
independent, thuss; is unique and

by =2"'V7Ty,.
Thus, the projective functions of SVD+LGE
a;}VDJrLGE _ UbJ _ UZflvak — a;}R

O



