
Isometric Projection

Deng Cai
Computer Science Department

University of Illinois at Urbana-Champaign
dengcai2@cs.uiuc.edu

Xiaofei He
Yahoo! Research Labs
hex@yahoo-inc.com

Jiawei Han
Computer Science Department

University of Illinois at Urbana-Champaign
hanj@cs.uiuc.edu

Abstract

Recently the problem of dimensionality reduction has re-
ceived a lot of interests in many fields of information pro-
cessing. We consider the case where data is sampled from a
low dimensional manifold which is embedded in high dimen-
sional Euclidean space. The most popular manifold learning
algorithms include Locally Linear Embedding, ISOMAP, and
Laplacian Eigenmap. However, these algorithms are nonlin-
ear and only provide the embedding results of training sam-
ples. In this paper, we propose a novel linear dimensional-
ity reduction algorithm, called Isometric Projection. Iso-
metric Projection constructs a weighted data graph where the
weights are discrete approximations of the geodesic distances
on the data manifold. A linear subspace is then obtained by
preserving the pairwise distances. In this way, Isometric Pro-
jection can be defined everywhere. Comparing to Principal
Component Analysis (PCA) which is widely used in data pro-
cessing, our algorithm is more capable of discovering the in-
trinsic geometrical structure. Specially, PCA is optimal only
when the data space is linear, while our algorithm has no
such assumption and therefore can handle more complex data
space. Experimental results on two real life data sets illustrate
the effectiveness of the proposed method.

Introduction
In many real world applications, such as information re-
trieval, face recognition, bioinformatics, etc., one is of-
ten confronted with high-dimensional data. However, there
might be reason to suspect that the naturally generated high-
dimensional data probably reside on a lower dimensional
manifold. This leads one to consider methods of dimension-
ality reduction that allow one to represent the data in a lower
dimensional space.

One of the most popular dimensionality reduction al-
gorithms might be Principal Component Analysis (PCA)
(Duda, Hart, & Stork 2000). PCA performs dimensional-
ity reduction by projecting the original n-dimensional data
onto the d(≪ n)-dimensional linear subspace spanned by
the leading eigenvectors of the data’s covariance matrix. Its
goal is to find a set of mutually orthogonal basis functions
that capture the directions of maximum variance in the data
so that the pairwise Euclidean distances can be best pre-
served. If the data is embedded in a linear subspace, PCA
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is guaranteed to discover the dimensionality of the subspace
and produces a compact representation.

In many real world problems, however, there is no evi-
dence that the data is sampled from a linear subspace. For
example, it is always believed that the face images are sam-
pled from a nonlinear low-dimensional manifold which is
embedded in the high-dimensional ambient space (He et al.
2005b). This motivates us to consider manifold based tech-
niques for dimensionality reduction. Recently, various man-
ifold learning techniques, such as ISOMAP (Tenenbaum, de
Silva, & Langford 2000), Locally Linear Embedding (LLE)
(Roweis & Saul 2000) and Laplacian Eigenmap (Belkin &
Niyogi 2001) have been proposed which reduce the dimen-
sionality of a fixed training set in a way that maximally
preserve certain inter-point relationships. LLE and Lapla-
cian Eigenmap are local methods which attempt to preserve
local geometry of the data; essentially, they seek to map
nearby points on the manifold to nearby points in the low-
dimensional representation. ISOMAP is a global method
which attempts to preserve geometry at all scales, map-
ping nearby points on the manifold to nearby points in low-
dimensional space, and faraway points to faraway points.
One of the major limitations of these methods is that they
do not generally provide a functional mapping between the
high and low dimensional spaces that are valid both on and
off the training data.

There are some approaches that try to address this issue
by explicitly defining an embedding function either linear or
in reproducing kernel Hilbert space (RKHS) when minimiz-
ing the objective function (He & Niyogi 2003), (He et al.
2005a). They provide natural out-of-sample extensions of
Lapalcian Eigenmaps and LLE. However, when the number
of features is larger than the number of samples, these algo-
rithms need to apply Singular Value Decomposition (SVD)
first to get the stable solution of the optimization problems.
Due to the high computational cost of SVD, these algorithms
may not be applied to very high dimensional data with large
size.

In this paper, we propose a novel dimensionality reduc-
tion algorithm called Isometric Projection (IsoProjection),
which explicitly takes into account the manifold structure.
To model the manifold structure, we first construct a near-
est neighbor graph of the observed data. We then compute
shortest paths in the graph for all pairs of data points. The



shortest-paths computation gives an estimate of the global
metric structure. Using techniques from Multi-Dimensional
Scaling (MDS) and requiring the mapping function to be lin-
ear, we obtain the objective function of Isometric Projection.
Finally, the optimization problem can be efficiently solved
by techniques from spectral graph analysis and regression,
which leads to Isometric Projection.

The points below highlight several aspects of the paper:

1. IsoProjection provides an optimal linear approximation to
the true isometric embedding of the underlying data man-
ifold. It tends to give a more faithful representation of the
data’s global structure than PCA does.

2. IsoProjection is defined everywhere. Therefore, query
points can also be mapped into the low-dimensional rep-
resentation space in which retrieval, clustering and classi-
fication may be performed.

3. While the linear versions of Laplacian Eigenmaps (He &
Niyogi 2003) and LLE (He et al. 2005a) need to apply
SVD first which can be very computational expensive,
IsoProjection is computed by using spectral graph anal-
ysis and regression which are very efficient even for high
dimensional data of large size.

4. IsoProjection is fundamentally based on ISOMAP
(Tenenbaum, de Silva, & Langford 2000), but ISOMAP
does not have properties (2) above.

Background

In this section, we provide mathematical background of
manifold based dimensionality reduction. For a detailed
treatment of manifolds, please see (Lee 2002).

Data are generally represented as points in high-
dimensional vector space. For example, a 32 × 32 image
can be represented by a 1024-dimensional vector. Every el-
ement of the vector corresponds to a pixel. A text document
can be represented by a term vector. In many cases of in-
terests, the data may not fill the whole ambient space, but
reside on or near a submanifold embedded in the ambient
space. One hopes then to estimate geometrical and topo-
logical properties of the submanifold from random samples
(“scattered data”) lying on this unknown submanifold. The
formal definition of manifold is as follows.

Definition An p-dimensional manifold (denoted by Mp) is
a topological space that is locally Euclidean. That is, around
every point, there is a neighborhood that is topologically the
same as the open unit ball in R

p.

In order to compute distances on the manifold, one needs
to equip a metric to the topological manifold. A manifold
possessing a metric is called Riemannian Manifold, and the
metric is commonly referred to as Riemannian Metric.

Definition Suppose for every point x in a manifold M, an
inner product 〈·, ·〉x is defined on a tangent space TxM of
M at x. Then the collection of all these inner products is
called the Riemannian metric.

Once the Riemannian metric is defined, one is allowed to
measure the lengths of the tangent vectors v ∈ TxM:

‖v‖2 = 〈v, v〉

For every smooth curve r : [a, b] → M, we have tangent
vectors:

r′(t) =
dr

dt
∈ Tr(t)M

and can therefore use the Riemannian metric (inner product
of the tangent spaces) to define their lengths. We can then
define the length of r from a to b:

length(r) =

∫ b

a

‖
dr

dt
‖dt =

∫ b

a

‖r′(t)‖dt

Note that, a Riemannian metric is not a distance metric on
M. However, for a connected manifold, it is the case that
every Riemannian metric induces a distance matric on M,
i.e. Geodesic Distance.

Definition The geodesic distance dM(a, b) is defined as the
length of the shortest curve connecting a and b.

In the plane, the geodesics are straight lines. On the
sphere, the geodesics are great circles (like the equator).
Suppose Mp is embedded in a n-dimensional Euclidean
space R

n (p ≤ n). Let us consider a low dimensional map,
f : R

n → R
d(d ≤ n), and the f has a support on a sub-

manifold Mp, i.e. supp(f) = Mp. Note that, p ≤ d ≤ n,
and p is generally unknown. Let dRd denote the standard
Euclidean distance measure in R

d. In order to preserve the
intrinsic (invariant) geometrical structure of the data mani-
fold, we seek a function f such that:

dMp(x, y) = dRd(f(x), f(y)) (1)

In this paper, we are particularly interested in linear map-
pings, i.e. projections. The reason is for its simplicity.
And more crucially, the same derivation can be performed
in reproducing kernel Hilbert space (RKHS) which naturally
leads to its nonlinear extension (Cai, He, & Han 2006).

Isometric Projection

In this section, we introduce a novel dimensionality reduc-
tion algorithm, called Isometric Projection. We begin with
a formal definition of the problem of dimensionality reduc-
tion.

The Problem

The generic problem of dimensionality reduction is the fol-
lowing. Given a set of points x1, · · · , xm in R

n, find a map-
ping function that maps these m points to a set of points
y1, · · · , ym in R

d (d << n), such that yi “represents” xi,
where yi = f(xi). Our method is of particular applicability
in the special case where x1, x2, · · · , xm ∈ M and M is a
nonlinear manifold embedded in R

n.

The Objective Function

We define X = (x1, x2, · · · , xm). Let dM be the geodesic
distance measure on M and d the standard Euclidean dis-
tance measure in R

d. Isometric Projection aims to find a
embedding function f such that Euclidean distances in R

d



can provide a good approximation to the geodesic distances
on M. That is,

fopt = arg min
f

∑

i,j

(
dM(xi, xj)− d

(
f(xi), f(xj)

))2

(2)

In real life data set, the underlying manifold M is of-
ten unknown and hence the geodesic distance measure is
also unknown. In order to discover the intrinsic geometri-
cal structure of M, we first construct a graph G over all data
points to model the local geometry. There are two choices:

1. ǫ-graph: we put an edge between i and j if d(xi, xj) < ǫ.

2. kNN -graph: we put an edge between i and j if xi is
among k nearest neighbors of xj or xj is among k nearest
neighbors of xi.

Once the graph is constructed, the geodesic distances
dM(i, j) between all pairs of points on the manifold M
can be estimated by computing their shortest path distances
dG(i, j) on the graph G. The procedure is as follows: ini-
tialize dG(xi, xj) = d(xi, xj) if xi and xj are linked by an
edge; dG(xi, xj) = ∞ otherwise. Then for each value of
p = 1, 2, · · · ,m in turn, replace all entries dG(xi, xj) by

min
{
dG(xi, xj), dG(xi, xp) + dG(xp, xj)

}
.

The matrix of final values DG = {dG(xi, xj)} will contain
the shortest path distances between all pairs of points in G.
This procedure is named Floyd-Warshall algorithm (Cormen
et al. 2001).

In the following, we apply techniques from Multi-
Dimensional Scaling (MDS) to convert distances to inner
products, which uniquely characterize the geometry of the
data in a form that supports efficient optimization (Mardia,
Kent, & Bibby 1980),(Tenenbaum, de Silva, & Langford
2000).

Specifically, let D be the distance matrix such that Dij

is the distance between xi and xj . Define matrix Sij = D2
ij

and H = I− 1
m

eeT where I is the identity matrix and e is the
vector of all ones. It can be shown that τ(D) = −HSH/2 is
the inner product matrix. That is, D2

ij = τ(D)ii +τ(D)jj −
2τ(D)ij , ∀ i, j (Mardia, Kent, & Bibby 1980).

The matrix H is often called “centering matrix”. Let DY

denote the Euclidean distance matrix in the reduced sub-
space, and τ(DY ) be the corresponding inner product ma-
trix. Thus, the objective function (2) becomes minimizing
the following:

‖τ(DG) − τ(DY )‖L2 (3)

where ‖A‖L2 is the L2 matrix norm
√∑

i,j A2
i,j .

Learning Isometric Projections

Consider a linear function f(x) = aT x. Let yi = f(xi) and
Y = (y1, · · · , ym) = aT X . Thus, we have

τ(DY ) = Y T Y = XT aaT X

The optimal projection is given by solving the following
minimization problem:

a∗ = min
a

‖τ(DG) − XT aaT X‖2 (4)

Following some algebraic steps and noting tr(A) = tr(AT ),
we see that:

‖τ(DG) − XT aaT X‖2

= tr

((
τ(DG) − XT aaT X

)(
τ(DG) − XT aaT X

)T
)

= tr
(
τ(DG)τ(DG)T − XT aaT Xτ(DG)T −

τ(DG)XT aaT X + XT aaT XXT aaT X
)

Note that, the magnitude of a is of no real significance be-
cause it merely scales yi. Therefore, we can impose a con-
straint as follows:

aT XXT a = 1

Thus, we have

tr
(
XT

aa
T XXT

aa
T X
)

= tr
(

a
T XXT

aa
T XXT

a

)
= 1

And,

‖τ(DG) − XT aaT X‖2

= tr
(
τ(DG)τ(DG)T

)
− 2tr

(
aT Xτ(DG)XT a

)
+ 1

Now, the minimization problem (4) can be written as fol-
lows:

arg max
aT XXT a=1

aT Xτ(DG)XT a. (5)

The vectors ai(i = 1, 2, · · · , l) that minimize the above ob-
jective function are given by the eigenvectors correspond-
ing to the maximum eigenvalues of the generalized eigen-
problem:

X[τ(DG)]XT a = λXXT a (6)

Let A = [a1, · · · , al], the linear embedding is as follows:

x → y = AT x

where y is a l-dimensional representation of the high dimen-
sional data point x. A is the transformation matrix.

To get a stable solution of eigen-problem (6), the matrix
XXT is required to be non-singular (Stewart 2001) which is
not true when the number of features is larger than the num-
ber of samples. The Singular Value Decomposition (SVD)
can be used to solve this problem. Suppose rank(X) = r,
the SVD decomposition of X is

X = UΣV T

where Σ = diag(σ1, · · · , σr) and σ1 ≥ · · · ≥ σr > 0 are
the singular values of X , U ∈ R

n×r, V =∈ R
m×r and

UT U = V T V = I . Let X̃ = UT X = ΣV T and b = UT a,
we have

a
T Xτ(DG)XT

a = a
T UΣV T τ(DG)V ΣUT

a = b
T X̃τ(DG)X̃T

b

and

aT XXT a = aT UΣV T V ΣUT a = bT X̃X̃T b.

Now, the objective function of IsoProjection in (5) can be
rewritten as:

arg max
bT X̃X̃T b=1

bT X̃τ(DG)X̃T b.



and the optimal b’s are the maximum eigenvectors of eigen-
problem:

X̃τ(DG)X̃T b = λX̃X̃T b. (7)

It is easy to check that X̃X̃T = Σ2 is nonsingular and the
eigen-problem can be stably solved. After we get b, the a
can be obtained by

a = Ub.

Efficient Computation with Regression

The above linear extension approach has also been applied
on Laplacian Eigenmaps and LLE which leads to Locality
Preserving Projection (LPP) (He & Niyogi 2003) and Neigh-
borhood Preserving Embedding (NPE) (He et al. 2005a).
However, when the number of features (n) is larger than the
number of samples (m), the high computational cost of SVD
makes this approach unlikely to be applied on large scale
high dimensional data.

Let us analyze the computational complexity of this linear
extension approach. We use the term flam (Stewart 1998),
a compound operation consisting of one addition and one
multiplication, to present operation counts. The most effi-
cient algorithm to calculate the SVD decomposition requires
3
2m2n + 9

2m3 flam (Stewart 2001). When n > m, the rank

of X is usually of m. Thus, X̃ is a square matrix of size

m × m. The calculation of matrices X̃τ(DG)X̃T requires
2m3 flam. The top l eigenvectors of eigen-problem (7) can
be calculated within plm2 flam by Lanczos algorithm, where
p is the number of iterations in Lanczos (usually less than
20) (Stewart 2001). Thus, the time complexity of the the
linear extension approach measured by flam is

3

2
m2n +

13

2
m3 + plm2, (8)

which is cubic-time complexity with respect to m. For large
scale high dimensional data, this approach is unlikely to be
applied.

In order to solve the eigen-problem (6) efficiently, we use
the following theorem:

Theorem 1 Let y be the eigenvector of τ(DG) with eigen-
value λ. If XT

a = y, then a is the eigenvector of eigen-
problem in Eqn. (6) with the same eigenvalue λ.

Proof We have τ(DG)y = λy. At the left side of Eqn. (6),
replace XT a by y, we have

Xτ(DG)XT a = Xτ(DG)y = Xλy = λXy = λXXT a

Thus, a is the eigenvector of eigen-problem (6) with the
same eigenvalue λ.

Theorem (1) shows that instead of solving the eigen-
problem in Eqn. (6), the linear projective functions can be
obtained through two steps:

1. Compute the eigenvector of τ(DG), y.

2. Find a which satisfies XT a = y. In reality, such a might
not exist. A possible way is to find a which can best fit
the equation in the least squares sense:

a = arg min
a

m∑

i=1

(aT xi − yi)
2 (9)

where yi is the i-th element of y.

In the situation that the number of samples is smaller than
the number of features, the minimization problem (9) is ill
posed. We may have infinitely many solutions to the linear
equations system XT a = y. The most popular way to solve
this problem is to impose a penalty on the norm of a:

a = arg min
a

(
m∑

i=1

(
aT xi − yi

)2
+ α‖a‖2

)
(10)

This is so called regularization and is well studied in statis-
tics and the α ≥ 0 is a parameter to control the amounts of
shrinkage. The regularized least squares in Eqn. (10) can be
rewritten in the matrix form as:

a = arg min
a

(
(XT a − y)T (XT a − y) + αaT a

)
.

Requiring the derivative of right side with respect to a van-
ish, we get

(XXT + αI)a = Xy

⇒ a = (XXT + αI)−1Xy
(11)

When α > 0, this regularized solution will not satisfy the
linear equations system XT a = y and a will not be the
eigenvector of eigen-problem in Eqn. (6). It is interesting
and important to see when (11) gives the exact solutions of
eigen-problem (6). Specifically, we have the following the-
orem:

Theorem 2 Let y be the eigenvector of τ(DG), if y is in the
space spanned by row vectors of X , the corresponding pro-
jective function a calculated in Eqn. (11) will be the eigen-
vector of eigen-problem in Eqn. (6) as α deceases to zero.

Proof The proof is omitted due to the space limitation. A
complete proof will be provided in a technical report.

When the the number of features is larger than the number
of samples, the sample vectors are usually linearly indepen-
dent, i.e., rank(X) = m. In this case, any vector y is in the
space spanned by row vectors of X . Thus, all the projec-
tive functions calculated in Eqn. (11) are the eigenvectors of
eigen-problem in Eqn. (6) as α deceases to zero.

The top l eigenvectors of τ(DG) can be calculated within
plm2 flam by Lanczos algorithm. The regularized least
squares in Eqn. (10) can be efficiently solved by the iterative
algorithm LSQR within sl(2mn + 3m + 5n) flam, where s
is the number of iterations in LSQR (usually less than 30)
(Paige & Saunders 1982). The total time complexity mea-
sured by flam is

sl(2mn + 3m + 5n) + plm2, (12)

which is a significant improvement over the cost in Eqn. (8).
It would be important to note that the cost in Eqn. (8) is
exactly the cost of LPP (He & Niyogi 2003) and NPE (He et
al. 2005a).



Table 1: Clustering accuracy (%) and learning time (s) on Reuters-21578

k
Baseline LSI LPP NPE IsoProjection

AC AC Time AC Time AC Time AC Time

2 87.6 88.2 0.044 91.9 0.21 83.1 0.23 92.8 0.022

3 77.8 78.5 0.066 79.5 0.41 75.7 0.45 81.6 0.041

4 72.0 72.6 0.100 75.5 0.85 70.1 0.89 77.5 0.074

5 69.8 70.6 0.175 73.2 1.76 65.0 1.81 72.4 0.123

6 66.6 67.2 0.256 69.5 3.06 54.6 3.12 70.2 0.199

7 64.2 64.5 0.327 69.6 4.02 52.9 4.10 68.7 0.250

8 56.4 57.4 0.426 61.7 5.23 44.7 5.33 60.9 0.337

9 55.6 55.8 0.544 63.7 6.78 46.2 6.88 61.6 0.420

10 53.9 54.6 0.677 56.9 9.41 41.1 9.52 57.9 0.535

Ave. 67.1 67.7 0.291 71.3 3.53 59.3 3.59 71.5 0.222
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Figure 1: Generalization capability of Iso-
Projection.

Experimental Results

In this subsection, we investigate the use of IsoProjection for
clustering and classification. Several popular linear dimen-
sionality reduction algorithms are compared, which include
Latent Semantic Indexing (LSI) (Deerwester et al. 1990),
PCA (Duda, Hart, & Stork 2000), LDA (Belhumeur, Hep-
anha, & Kriegman 1997), LPP (He & Niyogi 2003) and
NPE (He et al. 2005a). In the reduced subspace, the or-
dinary clustering and classification algorithms can then be
used. In our experiments, we choose k-means for cluster-
ing and nearest neighbor classifier for classification for their
simplicity.

Clustering on Reuters-21578

Reuters-21578 corpus contains 21578 documents in 135 cat-
egories. In our experiments, we discarded those documents
with multiple category labels, and selected the largest 30 cat-
egories. It left us with 8,067 documents. Each document is
represented as a term-frequency vector and each vector is
normalized to 1.

The evaluations were conducted with different numbers
of clusters. For each given class number k(= 2 ∼ 10), k
classes were randomly selected from the document corpus.
The documents and the cluster number k are provided to the
clustering algorithms. The clustering result is evaluated by
comparing the obtained label of each document with that
provided by the document corpus. The accuracy (AC) is
used to measure the clustering performance. Given a docu-
ment xi, let ri and si be the obtained cluster label and the
label provided by the corpus, respectively. The AC is de-
fined as follows:

AC =

∑n

i=1 δ(si,map(ri))

n

where n is the total number of documents and δ(x, y) is the
delta function that equals one if x = y and equals zero other-
wise, and map(ri) is the permutation mapping function that
maps each cluster label ri to the equivalent label from the
data corpus. The best mapping can be found by using the
Kuhn-Munkres algorithm (Lovasz & Plummer 1986).

This process were repeated 25 times, and the average
performance was computed. For each single test (given
k classes of documents), the k-means step was repeated
10 times with different initializations and the best result in

terms of the objective function of k-means was recorded.
Table 1 shows the best performance as well as the time on
learning the subspace for each algorithm.

As can be seen, our algorithm achieves similar perfor-
mance to LPP, both of which consistently outperformed LSI,
NPE and the baseline. For the baseline method, the cluster-
ing is simply performed in the original document space with-
out any dimensionality reduction. Moreover, IsoProjection
is the most efficient algorithm. This makes IsoProjection can
be applied on large scale high dimensional data.

Generalization capability The advantage of IsoProjec-
tion over Isomap is that it has an explicit mapping function
defined everywhere. For all these dimensionality reduction
algorithms, learning the low dimensional representation is
time consuming and the computational complexity scales
with the number of data points. Since IsoProjection has ex-
plicit mapping functions, we can choose part of the data to
learn a mapping function and use this mapping function to
map the rest of data points to the reduced space. In this way,
the computational complexity can be significantly reduced.
It is hard for Isomap to adopt such technique since Isomap
does not have the mapping function.

To demonstrate the generalization capability of IsoProjec-
tion, we designed the following experiment: For each test
in the previous experiments, we only chose part of the data
points (training set) to learn a mapping function. This map-
ping function is then used to map the rest of data points to
the reduced space in which clustering is performed. The size
of the training set ranged from 5% to 90% of the data set.

The average accuracy (averaged over 2∼10 classes) is
shown in Fig. (1). It is clear that the performance improves
with the number of training samples. Both IsoProjection and
LSI have good generalization capability, however, there is
no significant performance improvement of LSI over base-
line which makes LSI less practical. For IsoProjection, it
achieved similar performance to that using all the samples
when only 30% of training samples were used. This makes
it practical for clustering large sets of documents.

Face Recognition on Yale-B

The Extended Yale-B face database contains 16128 images
of 38 human subjects under 9 poses and 64 illumination con-
ditions (Lee, Ho, & Kriegman 2005). In this experiment, we



Table 2: Recognition accuracy (%) and learning time (s) on the extended Yale-B database

Train/Test
Baseline PCA LDA LPP NPE IsoProjection

AC AC Time AC Time AC Time AC Time AC Time

G5/P59 36.6 36.6 (189) 0.095 76.0 (37) 0.111 75.6 (37) 0.164 76.2 (37) 0.151 75.2 (37) 0.084

G10/P54 53.4 53.4 (379) 0.480 86.9 (37) 0.512 86.7 (37) 0.910 87.0 (37) 0.837 87.7 (37) 0.105

G20/P44 69.2 69.2 (759) 3.048 89.6 (37) 3.116 91.2 (198) 5.960 89.6 (37) 5.777 94.9 (37) 0.234

G30/P34 77.4 77.4 (900) 6.787 87.0 (37) 7.339 88.5 (215) 13.98 85.6 (477) 14.50 97.9 (37) 0.423

G40/P24 81.9 81.9 (900) 6.974 95.5 (37) 7.697 96.6 (173) 14.77 91.9 (500) 15.41 98.7 (37) 0.677

G50/P14 84.2 84.2 (1000) 7.124 97.8 (37) 8.036 98.4 (277) 15.46 91.7 (493) 16.14 99.4 (37) 1.042

choose the frontal pose and use all the images under dif-
ferent illumination, thus we get 64 images for each person.
All the face images are manually aligned and cropped. The
cropped images are 32 × 32 pixels, with 256 gray levels per
pixel. The image set is then partitioned into the gallery and
probe set with different numbers. For ease of representation,
Gp/Pq means p images per person are randomly selected for
training and the remaining q images are for testing.

In general, the performance of all these methods varies
with the number of dimensions. We show the best results
and the optimal dimensionality obtained by PCA, LDA,
LPP, NPE, IsoProjection and baseline methods in Table 2.
For each Gp/Pq, we average the results over 20 random
splits. In IsoProjection, the regularization parameter α is
set to be 0.01 empirically.

As can be seen, our algorithm performed the best in al-
most all the cases. This is because IsoProjection uses the re-
gression as a building block and incorporates the regulariza-
tion technique. When there exist a large number of features,
IsoProjection with regularization can produce more stable
and meaningful solutions (Hastie, Tibshirani, & Friedman
2001).

Conclusion

In this paper, we propose a new linear dimensionality reduc-
tion algorithm called Isometric Projection. Isometric Pro-
jection is based on the same variational principle that gives
rise to the Isomap (Tenenbaum, de Silva, & Langford 2000).
As a result it is capable of discovering the nonlinear degree
of freedom that underlie complex natural observations. Our
approach has a major advantage over recent nonparamet-
ric techniques for global nonlinear dimensionality reduction
such as (Roweis & Saul 2000), (Tenenbaum, de Silva, &
Langford 2000), (Belkin & Niyogi 2001) that the functional
mapping between the high and low dimensional spaces are
valid both on and off the training data. Comparing to LPP
and NPE, which are the linear version of Laplacian Eigen-
map and LLE, our approach has the computational advan-
tage. Thus our algorithm can be applied on large scale high
dimensional data. Performance improvement of this method
over PCA, LDA, LPP and NPE is demonstrated through sev-
eral experiments.
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