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INTRODUCTION

This is the first year that our group participates in the Web track of the TREC conference. Here we report
our system and methods on the topic distillation task and the home/named page finding task.

All of our experiments are conducted on a Web search platform we designed and developed from scratch.
We originally want to use an existing retrieval system such as Okapi or the full text search mechanism of SQL
Server. But we soon find the limitations of such a strategy — these systems cannot fully support some
important Web search functions such as link analysis and anchor text, and they also lack of the flexibility to
arbitrarily adjust some parameters or add new ranking functions. So we decided to design and implement a
research platform to let researchers to test various algorithms or new ideas easily and, also, to conduct the
TREC experiments easily. We will introduce the framework of this system in the “Platform” section.

We feel that this year’s topic distillation is more close to the real Web search scenarios. The target is to
find a list of key resources for a particular (broad) topic and “key resources” are defined as the entry pages of
websites. So, different from the previous years, we think that link analysis may play a positive role on
identifying key resources in this year. As a consequence, we focus on using different link analysis techniques to
enhance the relevance ranking. In particularly, we propose a novel block-based HITS algorithm to solve the
noisy link and topic drifting problems of the classic HITS algorithm. The basic idea is to segment each Web
page into multiple semantic blocks using a vision-based page segmentation algorithm we developed before.
Then the main steps of the HITS algorithms, such as getting the seeds, expanding the neighbors using inlinks
and outlinks, and calculating hub/authority values, can be petformed at the block level instead of at the page
level. Thus the noisy link and topic drifting problems can be effectively overcome. We will detail these
techniques in the “Page Layout Analysis” and “Block-based HITS” section.

To our understanding, the biggest difference of this yeat’s topic distillation task from last year is that, in
general, only one most “suitable” page for each website should be returned as a top-ranked result. Any other
page at the same website should not be included in the results or ranked highly since it is a “part of a larger
site also principally devoted to the topic”, despite that the page also “is principally devoted to the topic”.
Therefore, we construct a hierarchical site map for each website by building up the parent-children
relationships of Web pages in the .GOV dataset. Then we apply a site compression technique to select the
most suitable entry pages for websites among the retrieval results and return these entry pages as top-ranked

MICROSOFT RESEARCH ASIA PAGE 1



pages. This site compression method has proved quite effective to increase the p@10 precision if used
appropriately, and will be introduced in the “Site Compression” section.

We totally submitted 5 runs for the topic distillation task and 3 runs for the home/named page finding
task. In the “Experimental results” section, we will introduce these runs and their evaluation results.

PLATFORM

We built a Web search platform from scratch since we found traditional IR-like platforms cannot meet

the requirements of comprehensive Web search algorithms. The architecture of the platform is shown at
Figure 1.
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Term Dictionary
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Figure 1. Architecture of our Web search platform

WEB PAGE PARSER

We built a robust Web page parser to extract the following information from each Web page:

1. Term hits — the type, format, position of each occurrence of each term in the page. Each term is
assigned a unique term ID and a lexicon is built to store the term-ID mapping information during
the parsing process. Similar to Google, we classify terms into five types:

<> Title: words in <title>...</title>
< Meta: keywords extracted form <meta keyword="...”>

< URL: words that occur in hypetlinks
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< Anchor text: words in anchor texts from other pages and can only be obtained through a
post-processing of all anchor texts

< Plain text: all the rest words, and they are further divided into 6 categories:

All of the above information are extracted and put into a storage called “forward index”.

H1_2: words in H1 and H2 tags

H3_6: words in H3 to H6 tags

STRONG: words with font type “bold”, “italic”, “underlined”, etc.
Large: words with large font size

Medium: words with medium font size

Small: words with small font size

2. URL and anchor text — all hypetlinks and their corresponding anchor texts are extracted and
stored in a “forward link” storage. Also, each URL is assigned a unique ID and a URL dictionary is
built. Two important functions rely on the forward link storage. One function is to add anchor
texts to pages which the hyperlinks point to. Another is to construct Web graph and facilitate link
analysis such as PageRank and HITS.

3. Meta data — some important meta data about each page, such as size, date and layout structure (will
introduce later) are recorded in this storage.

INVERTED INDEX

There is a significant difference of the structure of our inverted index from general ones. Since we use an
algorithm to segment web pages into semantic blocks, we add a block-level structure into the inverted index,
as illustrated by Figure 2. Through this structure, we can identify each term hit at each block of each Web
page. This structure is very critical to support our block-level search methods. Also, this structure occupies
nearly the same (or less if we omit hits) storage space as page-level index and is compatible with page-level

index.

I TermID | DocNum I

| DocID | HitNum | BlockNum |

| BlockiD | HitNum | Hit | Hit | Hit ... |
|

| BlockiD | HitNum | Hit | Hit | Hit ... |

Figure 2. Structure of the inverted index

MICROSOFT RESEARCH ASIA

PAGE 3



RANK FUNCTION

We use Okapi’s BM2500 as our fundamental relevance ranking function. Considering the characters of
Web search, we made some important modifications and augmentations to BM2500. First, it is allowed to set
different weights to different term types and formats. For example, we can assign high weight to terms in titles
of pages if we find title is more important for relevance ranking. Second, we use term proximity to adjust the
relevance scores since it is observed that the distributions of query terms in a page significantly affect the
relevance judgment.

PAGE LAYOUT ANALYSIS

As mentioned before, one distinguished feature of our platform is that each Web page is segmented into
multiple semantic blocks. We think that a web page as a whole is not a good information unit for search
because it often contains multiple topics and a lot of irrelevant information from navigation, decoration, and
interaction parts of the page. We use a VIsion-based Page Segmentation (VIPS) algorithm to detect the
semantic content structure in a web page based on visual cues such as color, line, font size, image, etc. For the
sample page shown in Figure 3(a), the visual blocks are detected are shown in Figure 3(b) and the global
layout structure is shown in Figure 3(c).
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Figure 3. Vision-based layout structure for the sample page
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VIPS can help to remove noisy information within a web page and detect multiple topics, and therefore it
can be very beneficial to web information retrieval. In [8], VIPS is used in pseudo-relevance feedback to
improve the quality of top ranked documents or blocks. About 27% improvement is achieved and it also wins
over the DOM-based approach.

BLOCK-BASED HITS

Noisy link and topic drifting are two main problems in the classic HITS algorithm. Some links such as
banners, navigation panels, and advertisements, can be viewed as “noise” with respect to the query topic.
Generally, noisy links do not carry human editorial endorsement, which is a basic assumption in topic
distillation. Also, hubs may be “mixed”, which means that only a portion of the hub content may be relevant
to the query. Most link analysis algorithms treat each Web page as an atomic, indivisible unit with no internal
structure. This leads to false reinforcements of hub/authority calculation.

By segmenting a Web page into separate semantic blocks, we implement a modified HITS algorithm at
block level. We hope to verify that page segmentation is an effective way to overcome the noisy link and topic
drifting problems of HITS, to some extent. Below are the main steps of the block-based HITS algorithm.

Step 1: A start set of pages matching the query is fetched by a block retrieval algorithm (described below),
and the top 200 pages are used.

Step 2: The start set is augmented by its neighbors, with no limitation on inlinks. When the neighborhood
graph is expanded using outlinks, only those outlinks in blocks with high block ranks are used to expand the
neighborhood set.

Step 3: Prune the neighborhood blocks by a query expansion algorithm (also described below). First, we
use the query expansion algorithm to get a list of blocks with relevance scores. Then these blocks are
intersected with the blocks in the nezghborhood set. The blocks in the intersection set are labeled using the scores
of the query expansion step. Finally, we use the median value as a threshold to prune the nodes whose weights
are below this threshold. The resulting set is used as a new neighborhood set.

Step 4: In the neighborhood set, if there are £ edges from pages on a first website to a single page on a
second website, we assign each edge an authority value of 7/4. This weight is used when computing the
authority score of the page on the second website. If there are 7 edges from a single page on a first website to
a set of pages on a second website, we assign each edge a hub weight value of 7/ Finally we remove isolated
nodes from the graph.

Step 5: Only each root block (i.e. the whole page) can be assigned an authority score. Every leaf block has
its hub score. So we build up a 7 X% matrix in which » stands for the number of blocks in the neighborhood
set and # stands for the number of pages in the neighborhood set.

Generally, the calculating results of our block-based HITS algorithm have a very “sharp” distribution —
generally only the first 15~30 authority or hub values are greater than zero. And all of the remaining pages
have a zero value. Therefore, only those most densely linked collection of hubs and authorities in the
neighborhood graph can be detected and distinguished by the algorithm. But this is not a serious problem for
us since P@10 is used as the evaluation measute this year. So such a value distribution is sufficient to provide
the differentiated capability for the top 10 results.
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BLOCK RETRIEVAL

Similar to passage retrieval, block retrieval performs the retrieval task on the block level and aims to adjust
the rank of documents with the blocks they contain. The block retrieval algorithm contains the following
steps:

Step 1. Initial Retrieval: An initial list of ranked web pages is obtained by using the general page level
retrieval method and a page-level rank called PR is obtained.

Step 2. Page Segmentation: In this step, the page segmentation algorithm VIPS is applied to partition
all of the retrieved pages into blocks. All the extracted blocks form a block set.

Step 3. Block Retrieval: This step is similar to Step 1 except that pages are replaced by blocks. The same
queries are used to produce a block-level rank called BR for each block.

For each page, the block with the highest BR rank is selected and its rank is called BRMax. In our
experiments, a combination of PR and BRMax, formatted as & - rank,, (d)+ - rankp, g, (d), is used as

the final rank of each page.

QUERY EXPANSION

In our experiments, we use pseudo-relevance feedback as a basic query expansion method. Its basic idea
is to extract expansion terms from the top-ranked pages to formulate a new query for a second round retrieval.
The effect of query expansion method strongly relies on the quality of selected expansion terms. Since our
VIPS algorithm can group semantically related content into a single block, the term correlations within a block
will be much higher than those within a whole page. With the improved term correlations, high-quality
expansion terms can be extracted from blocks and then used to improve retrieval performance. The query
expansion algorithm contains the following steps:

Step 1 — Step 3 are the same as those of block retrieval. We get a page rank PR for each page and a block
rank BR for each block after these steps.

Step 4. Expansion Term Selection: Top blocks are used for expansion term selection. We use an
approach similar to the traditional pseudo-relevance feedback algorithm to select expansion terms. All terms

except the original query terms in the selected blocks are weighted according to the following term selection
value TST

)

TSV =w *r/R

where #( is Robettson/Sparck Jones weight [7]. R is the number of selected blocks, and ris the number
of blocks which contain this term. In our experiments, top 10 terms are selected to expand the original query.

Step 5. Final Retrieval: The weights for the expanded query terms are set as the following:

® For original query terms, new weight is gzf -2 where g#fis its term frequency in the query;
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® For expansion query terms, new weight is 1—(n—1)/m if the current term ranks nth in TS rank.
7 is the number of expansion terms and is set to 10 in our experiments.

Then the expanded query is used to retrieve the data set again for the final results.

SITE COMPRESSION

It is a normal phenomenon that multiple Web pages from the same sites are ranked highly for a given
query. This is not a problem if the objective is to find relevant pages. But this year’s topic distillation task
targets to find a list of key resources for a particular topic. Key resources are defined as the entry pages for
websites and other pages should be discarded. So we should try to find as many different websites
(represented by their entry pages) as possible within the first ten results. So finding a method to detect the
entry page for each website is very important.

We construct a hierarchical site map for each website by building up the parent-children relationships of

Web pages in the .GOV dataset. Then we apply a site compression technique to select the most suitable entry
pages for websites at the retrieval results and return these entry pages as top-ranked pages. Figure 4 is a

sample site map of the “fitness.gov’” website.

1: activity ‘; { aboutpcpfs j (getmovingamerica.htmg (healthka.htm )

fitness.htm

7 \ s A\ Y A\
' activity2 | activity7 | | execorder |

digest_mar200C

digest_mar2000.html|
( 9est ) (digest_sep1996.htm|)

execorder.htm!
activity7.html

Figure 4. Site map
The solid boxes represent a page appearing in the search results and the dashed boxes represent virtual
directories which do not appear in the results. Take the topic of “physical fitness” as an example, below are
the pages and their ranks from the “fitness.gov’” website among the top 1000 results.

2. http://fitness.cov/activity/activity2/digest mar2000/digest mar2000.html

3. http://fitness.gov/aboutpcpfs/execorder/execorder.html

16. http://fitness.gcov

21. http://fitness.cov/getmovingamerica.html
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23. http://fitness.gov/healthy2k.html

To judge if a parent page (solid box) can represent all of its children results, we check the following two
conditions:

® If the parent page has more than three child pages (with solid box) in the top 1000 results

® If the parent page has more solid children than dashed children

If any of the two conditions is met, the children can be represented by their parent page, and the rank of
the parent page is assigned with the maximum of its rank and its children’s ranks. The above rules are applied

to each site maps in the results recursively from bottom up. This site compression method proved quite
effective in terms of increasing P@10 if used appropriately.

EXPERIMENTS

We totally submitted 5 runs for the topic distillation task and 3 runs for the home/named page finding
task. Below is the list of the runs:

e MSRA1001 — The augmented BM2500 (by adding term weights and term proximity) is used as the
rank function. Site compression is used to post-process the ranking results and only one page from
each website is kept in the top 10 results.

® MSRA1002 — Similar with MSRA1001 only except that the site compression step allows at most 2
pages from each website are kept in the top 10 results. Notice that we do not use any link analysis
technique in MSRA1001 and MSRA1002. We want to use these two runs as our baseline to compare
them with the runs with link analysis.

® MSRA3 — MSRA1001 is first used to get a result list. Then the importance value calculated by
PageRank is used to re-rank the results.

e MSRA4002 — MSRA1002 is first used to get a result list. Then the authority value calculated by our
block-based HITS algorithm is used to re-rank the results. Notice that the site compression step in
MSRA1002 is executed after the HITS step.

e MSRA4003 — MSRA1001 is first used to get a result list. Then the authority value calculated by our
block-based HITS algorithm is used to re-rank the results. Also, the site compression step in

MSRA1001 is executed after the HITS step.

The above 5 runs ate related to the topic distillation task.
¢ MSRANPI1-3 — These atre the 3 runs related to home/named page finding task. The rank function is

similar with MSRA 1001, except that no site compression is used and term weight settings are
different.
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TOPIC DISTILLATION

Table 1 shows results of our five topic distillation runs and the techniques used in each run are listed in
Table 2.

Run Precision@10 | Average precision | R-Precision
MSRA1001 0.0960 0.0699 0.1027
MSRA1002 0.1100 0.0824 0.1078
MSRA3 0.1040 0.0933 0.1016
MSRA4002 0.1160 0.1027 0.1354
MSRA4003 0.1140 0.0946 0.1052
Table 1: Topic distillation results of 5 runs
Run Term Weight | Term Proximity | PageRank Blo;ﬁ—?gsed Site Compression*
MSRA1001 Y Y Y (D
MSRA1002 Y Y Y (2
MSRA3 Y Y Y Y (2
MSRA4002 Y Y Y Y (2
MSRA4003 Y Y Y Y (D

Table 2: Techniques used in topic distillation runs
*Y (1) means that a run uses site compression and keeps only 1 page from a site in the top 10 results, while Y (2) means that a run uses
site compression and keeps at most 2 pages from a site in the top 10 results.

We found that term weight settings are important for relevance ranking. We use a greedy algorithm to
automatically learn weights for different term types and format by using the data of TREC02. In our
experiments, PageRank do not show significant improvement on P@10. But we found that the pages returned
are perceived well when browsing. Therefore, we have no conclusion on whether PageRank is useful based on
the experiments. Block-based HITS shows a steady improvement on retrieval performance. The two runs
containing block-based HITS, MSRA4002 and MSRA4003, got the best two p@10 and average precision. We
also find that the performance of block-based HITS is significantly better that PageRank at the .GOV dataset,
which further affirms that PageRank is not suitable to be used in a relatively small or moderate dataset.

Site compression is proved to be quit effective in terms of increasing P@10 (Figure 3). However, to retain
only one page for each website may be risky since the site compression method cannot identify the entry
pages with 100% accutacy. So we can see that MSRA1001 only achieve a slight increase of P@10 in
comparison with the baseline (without site compression). But if we adapt a conservative strategy to retain at
most two pages for each site, a significant increase of P@10 of MSRA1002 is shown.

Run Precision@10 | Average precision | R-Precision
Baseline 0.0940 0.0966 0.0995
(without site compression)

MSRA1001 0.0960 0.0699 0.1027
MSRA1002 0.1100 0.0824 0.1078

Table 3: Effect of site compression
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Finally, run MSRA4002, which combines augmented BM2500, block-based HITS and conservative site
compression, achieve the best petformance on P@10, average precision and R-Precision.

NAMED PAGE FINDING

For the named page finding task, we mainly focus on setting proper weights for different term types and
the weights are learned based on the data of TREC’02 named page finding task. We discovered that anchor
plays the most important role in this task as its weight is highest, and title is the second one. Run MSRANP1
is the baseline with term weight settings as shown in Table 4. MSRANP2 is a run by combining MSRANP1
and term proximity linearly. But its average reciprocal precision decreases quite a few. In run MSRANP3, only
anchor, title and url are used in the rank function and the result indicates that it lost 8% more named pages
than the run uses all fields.

Average Reciprocal | Named pages | Named pages

Run Precision in top 10 not found

Features

Anchor_weight = 3
MSRANP1 0.651 253 (84.3%) 27 (9.0%) Title_weight = 1.1
Other weights = 1
MSRANP2 0.540 214 (71.3%) | 56 (1870 | Hnear combined
with term proximity
MSRANP3 0.556 218 (72.7%) | 51 (17.0%) | Anchor, title and url only
Table 4: Named page finding results and features
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