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Abstract

Dyadic data arises in many real world applica-
tions such as social network analysis and infor-
mation retrieval. In order to discover the underly-
ing or hidden structure in the dyadic data, many
topic modeling techniques were proposed. The
typical algorithms include Probabilistic Latent
Semantic Analysis (PLSA) and Latent Dirichlet
Allocation (LDA). The probability density func-
tions obtained by both of these two algorithms
are supported on the Euclidean space. However,
many previous studies have shown naturally oc-
curring data may reside on or close to an under-
lying submanifold. We introduce a probabilistic
framework for modeling both the topical and ge-
ometrical structure of the dyadic data that explic-
itly takes into account the local manifold struc-
ture. Specifically, the local manifold structure is
modeled by a graph. The graph Laplacian, anal-
ogous to the Laplace-Beltrami operator on mani-
folds, is applied to smooth the probability density
functions. As a result, the obtained probabilis-
tic distributions are concentrated around the data
manifold. Experimental results on real data sets
demonstrate the effectiveness of the proposed ap-
proach.

1. Introduction

Dyadic data refers to domain where two sets of objects,
row or column objects, are characterized by a matrix of nu-
merical values which describe their mutual relationships.
Such data arises in many real world applications such as so-
cial network analysis and information retrieval (Hofmann
et al., 1998). A common example is term-document co-
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occurrence matrix. In order to discover the underlying or
hidden structure in the dyadic data, topic modeling tech-
niques are usually applied to learn a probabilistic interpre-
tation of the row and column objects. Two of the most
popular approaches for this purpose are Probabilistic La-
tent Semantic Indexing (PLSA) (Hofmann, 1999) and La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003).

In the dyadic aspect model applied to text analysis, a corpus
of document is modeled as a set of pairs(d,w), whered is
a document index andw is a word index. Each document
is represented as a unique distribution over thek settings of
the latent variablez. Each setting of the latent variablez
corresponds to an underlyingtopic. Associated with each
topic is a distribution over words in the vocabulary. Thus,
a document is seen as a distribution over topics where each
topic is described by a different distribution over words.
A word is generated for a document by choosing a topic
and then selecting a word according to the distribution over
words for the chosen topic.

PLSA has been shown to be a low perplexity language
model and outperforms Latent Semantic Indexing (LSI)
(Deerwester et al., 1990) in terms of precision-recall on
a number of document collections. However, the number
of parameters of PLSA grows linearly with the number of
documents, which suggests that PLSA is prone to overfit-
ting (Blei et al., 2003). LDA was introduced to address this
problem by incorporating a dirichlet regularization on the
underlying topics. These two approaches do yield impres-
sive results on exploratory dyadic data analysis. However,
both of them fails take into account the geometry of the
spaces where the objects (either column or row objects) re-
side. The learned probability distributions are simply sup-
ported on the ambient spaces.

Recent studies (Roweis & Saul, 2000; Belkin & Niyogi,
2001) have shown that naturally occurring data, such as
texts and images, cannot possibly “fill up” the ambient Eu-
clidean space, rather it must concentrate around lower di-
mensional structures. The goal of this paper is to extract
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this kind of low dimensional structure and use it to regular-
ize the learning of probability distributions. We construct
a nearest neighbor graph to model the underlying manifold
structure. The graph Laplacian, analogous to the Laplace-
Beltrami operator on manifolds, is then used as a smooth-
ing operator applied to the conditional probability distri-
butionspz(z|d). This way, two sufficiently close docu-
ments should have similar conditional probability distribu-
tions. We use Kullback-Leibler divergence to measure the
distance between two conditional probability distributions.
The local consistency is incorporated into the probabilis-
tic modeling framework through a regularizer. We discuss
how to solve the regularized log-likelihood maximization
problem using Expectation-Maximization techniques.

The rest of the paper is organized as follows. Section 2
provide a background of dyadic data analysis. Our Locally-
consistent Topic Modeling (LTM) approach is introduced
in Section 3. A variety experimental results are presented in
Section 4. Finally, we give concluding remarks in Section
5.

2. Background

One of the popular approaches for dyadic data analysis is
topic modeling. Recently, topic modeling algorithm re-
ceives a lot of interests (Li & McCallum, 2006; Rosen-Zvi
et al., 2004). Two of the most well known topic modeling
algorithms include Probabilistic Latent Semantic Analysis
(PLSA) (Hofmann, 2001) and Latent Dirichlet Allocation
(LDA) (Blei et al., 2003). In the following of the paper, we
will use text analysis to explain the algorithms.

The core of PLSA is a latent variable model for co-
occurrence data which associates an unobserved topic vari-
able zk ∈ {z1, · · · , zK} with the occurrence of a word
wj ∈ {w1, · · · , wM} in a particular documentdi ∈
{d1, · · · , dN}. As a generative model for word/document
co-occurrences, PLSA is defined by the following scheme:

1. Select a documentdi with probabilityP (di);

2. Pick a latent topiczk with probabilityP (zk|di);

3. Generate a wordwj with probabilityP (wj |zk).

As a result one obtains an observation pair(di, wj), while
the latent topic variablezk is discarded. Translating the
data generation process into a joint probability model re-
sults in the expression

P (di, wj) = P (di)P (wj |di),

P (wj |di) =

K
∑

k=1

P (wj |zk)P (zk|di).
(1)

The parameters can be estimated by maximizing the log-
likelihood

L =
N
∑

i=1

M
∑

j=1

n(di, wj) log P (di, wj)

∝
N
∑

i=1

M
∑

j=1

n(di, wj) log
K
∑

k=1

P (wj |zk)P (zk|di)

(2)

where n(di, wj) the number of occurrences of termwj

in documentdi. The above optimization problem can be
solved by using standard EM algorithm. Notice that there
areNK + MK parameters{P (wj |zk), P (zk|di)} which
are independently estimated in PLSA model. It is easy to
see that the number of parameters in PLSA grows linearly
with the number of training documents (N ). The linear
growth in parameters suggests that the model is prone to
overfitting (Blei et al., 2003).

To address this issue, Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) is then proposed. LDA assumes that the
probability distributions of documents over topics are gen-
erated from the same Dirichlet distribution withK param-
eters. TheK + MK parameters in aK-topic LDA model
do not grow with the size of the corpus. Thus, LDA does
not suffer from the same overfitting issue as PLSA.

3. Probabilistic Topic Modeling with Local
Consistency

Recent studies (Roweis & Saul, 2000; Belkin & Niyogi,
2001) have shown that naturally occurring data, such as
texts and images, cannot possibly “fill up” the ambient Eu-
clidean space, rather it must concentrate around lower di-
mensional structures. In this section, we describe a princi-
pled way to extract this kind of low dimensional structure
and use it to regularize the learning of probability distribu-
tions.

3.1. The Latent Variable Model with Graph
Regularization

Recall that the documentsd ∈ D are drawn according to
the distributionPD. One might hope that knowledge of the
distribution PD can be exploited for better estimation of
the conditional distributionP (z|d). Nevertheless, if there
is no identifiable relation betweenPD and the conditional
distributionP (z|d), the knowledge ofPD is unlikely to be
very useful.

Therefore, we will make a specific assumption about the
connection betweenPD and the conditional distribution
P (z|d). We assume that if two documentsd1, d2 ∈ D

are close in the intrinsic geometry ofPD, then the con-
ditional distributionsP (z|d1) and P (z|d2) are “similar”
to each other. In other words, the conditional probability
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distributionP (z|d) varies smoothly along the geodesics in
the intrinsic geometry ofPD. This assumption is also re-
ferred to asmanifold assumption(Belkin & Niyogi, 2001),
which plays an essential rule in developing various kinds of
algorithms including dimensionality reduction algorithms
(Belkin & Niyogi, 2001) and semi-supervised learning al-
gorithms (Belkin et al., 2006; Zhu & Lafferty, 2005).

Now we are facing two questions: 1.) how to measure the
distance between two distributions? and 2.) how to model
the local geometric structure in the data?

A popular way to measure the “distance” between two dis-
tributions is by using Kullback-Leibler Divergence (KL-
Divergence). Given two distributionsPi(z) andPs(z), the
KL-Divergence between these two distributions is defined
as:

D
(

Pi(z)||Ps(z)
)

=
∑

z

Pi(z) log
Pi(z)

Ps(z)
(3)

It is important to note that KL-Divergence is not a distance
measure because it is not symmetric.

Recent studies on spectral graph theory (Chung, 1997) and
manifold learning theory (Belkin & Niyogi, 2001) have
demonstrated that the local geometric structure can be ef-
fectively modeled through a nearest neighbor graph on a
scatter of data points. Consider a graph withN vertices
where each vertex corresponds to a document in the cor-
pus. Define the edge weight matrixW as follows:

Wis =

{

1, if di ∈ Np(ds) or ds ∈ Np(di)
0, otherwise.

(4)

whereNp(di) denotes the set ofp nearest neighbors ofds

(with respect to the Euclidean distance). It is important to
note thatW can be constructed to incorporate more infor-
mation. For example, we can naturally use the label infor-
mation of part of the data. If we know the labels of both
di andds, we can setWis = 1 whendi andds share the
same label and setWis = 0 if di andds belong to different
classes.

Let Pi(z)
.
= P (z|di) , the following term can be used to

measure the smoothness of the conditional probability dis-
tributionP (z|d) varies smoothly along the geodesics in the
intrinsic geometry of data.

R =
1

2

N
∑

i,s=1

(

D
(

Pi(z)||Ps(z)
)

+ D
(

Ps(z)||Pi(z)
)

)

Wis.

(5)

By minimizing R, we get a conditional probability distri-
bution which is sufficiently smooth on the intrinsic docu-
ment geometric structure. A intuitive explanation of mini-
mizingR is that if two documentsdi andds are close (i.e.
Wis is big), the distributionP (z|di) andP (z|ds) are simi-
lar to each other.

Now we can define our new latent variable model. The
new model adopts the generative scheme of PLSA. It aims
to maximize theregularizedlog-likelihood as follows:

L = L − λR

∝

N
∑

i=1

M
∑

j=1

n(di, wj) log

K
∑

k=1

P (wj |zk)P (zk|di)

−
λ

2

N
∑

i,s=1

(

D
(

Pi(z)||Ps(z)
)

+ D
(

Ps(z)||Pi(z)
)

)

Wis

(6)

whereλ is the regularization parameter.

Since this approach incorporates local consistency through
a regularizer, we call it Locally-consistent Topic Modeling
(LTM). It is important to note that this work is motivated
from our previous work LapPLSA (Cai et al., 2008; Mei
et al., 2008). The major difference is that LapPLSA con-
structs the regularizer using Euclidean distance. While in
this work, we use the divergence measure which leads to a
new objective function. We show how to apply EM algo-
rithm to solve the optimization problem.

3.2. Model Fitting with EM

The standard procedure for maximum likelihood estima-
tion in latent variable models is the Expectation Maximiza-
tion (EM) algorithm (Dempster et al., 1977). EM alter-
nates two steps: (i) an expectation (E) step where posterior
probabilities are computed for the latent variables, basedon
the current estimates of the parameters, (ii) a maximization
(M) step, where parameters are updated based on maxi-
mizing the so-called expected complete data log-likelihood
which depends on the posterior probabilities computed in
the E-step.

Same as PLSA, we also haveNK + MK parameters
{P (wj |zk), P (zk|di)} and the latent variables are the hid-
den topicszk in LTM. For simplicity, we useΨ to denote
all theNK + MK parameters.

E-step:

The E-step for LTM is exactly same as the E-step in
PLSA. The posterior probabilities for the latent variables
areP (zk|di, wj), which can be computed by simply apply-
ing Bayes’ formula on Eq. (1)(Hofmann, 2001):

P (zk|di, wj) =
P (wj |zk)P (zk|di)

∑K

l=1
P (wj |zl)P (zl|di)

(7)

M-step:

With simple derivations (Hofmann, 2001), one can ob-
tain the relevant part of the expectedcompletedata log-
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likelihood for LTM:

Q(Ψ) = Q1(Ψ) + Q2(Ψ)

=

N
∑

i=1

M
∑

j=1

n(di, wj)

K
∑

k=1

P (zk|di, wj) log
[

P (wj |zk)P (zk|di)
]

−
λ

2

N
∑

i,s=1

(

D
(

Pi(z)||Ps(z)
)

+ D
(

Ps(z)||Pi(z)
)

)

Wis

(8)

To obtain the M-step re-estimation equations, we need
to maximize Q(Ψ) with respect to the parametersΨ
and with the constraints that

∑K

k=1
P (zk|di) = 1 and

∑M

j=1
P (wj |zk) = 1.

Notice thatQ(Ψ) has two parts. The first part is exactly
the expected complete data log-likelihood for PLSA. The
second part is the regularization part which only involves
the parameters{P (zk|di)}. Thus, the M-step re-estimation
equation for{P (wj |zk)} will be exactly same as that in
PLSA. It is(Hofmann, 2001):

P (wj |zk) =

∑N

i=1
n(di, wj)P (zk|di, wj)

∑M

m=1

∑N

i=1
n(di, wm)P (zk|di, wm)

, (9)

Now let us derive the re-estimation equation for
{P (zk|di)}. In order to take care of the normalization con-
straints, Eq. (8) has to be augmented by appropriate La-
grange multipliersρi,

H = Q(Ψ) +

N
∑

i=1

ρi

(

1 −

K
∑

k=1

P (zk|di)

)

(10)

Maximization ofH with respect to{P (zk|di)} leads to the
following set of stationary equations

∑M

j=1
n(di, wj)P (zk|di, wj)

P (zk|di)
− ρi

−
λ

2

N
∑

s=1

(

log
P (zk|di)

P (zk|ds)
+ 1 −

P (zk|ds)

P (zk|di)

)

Wis = 0,

1 ≤ i ≤ N, 1 ≤ k ≤ K

(11)

Because of thelog term in the regularization part, it is hard
to solve the above equations system. Recall the motivation
of the regularization term, we hope that if two documents
di andds are close (i.e. Wis is big), the distributionP (z|di)
andP (z|ds) are similar to each other,i.e., P (zk|di) will be
close toP (zk|ds) and

(

P (zk|di)

P (zk|ds)

)Wis

≈ 1.

Thus, we can use the following approximation:

log(x) ≈ 1 −
1

x
, x → 1.

The above approximation is based on the first order expan-
sion of Taylor series oflog function. With this approxima-
tion, the equations in Eq. (11) can be written as

∑M

j=1
n(di, wj)P (zk|di, wj)

P (zk|di)
− ρi

−
λ

P (zk|di)

N
∑

s=1

(

P (zk|di) − P (zk|ds)
)

Wis = 0,

1 ≤ i ≤ N, 1 ≤ k ≤ K

(12)

We have:

N
∑

s=1

(

P (zk|di) − P (zk|ds)
)

Wis

=P (zk|di)

N
∑

s=1

Wis −

N
∑

s=1

P (zk|ds)Wis

(13)

Let D denote a diagonal matrix whose entries are col-
umn (or row, sinceW is symmetric) sums ofW , Dii =
∑

s Wis. DefineL = D − W , L is usually referred as
graph Laplacian (Chung, 1997). We also define vector
yk = [P (zk|d1), · · · , P (zk|dN )]T . It is easy to verify that
Eq. (13) equals to thei-th element of vectorLyk.

Let Ω denote an×n diagonal matrix whose entries areρi.
The equations system in Eq. (12) can be rewritten as









∑M

j=1
n(d1, wj)P (zk|d1, wj)

...
∑M

j=1
n(dN , wj)P (zk|dN , wj)









− Ωyk − λLyk = 0,

1 ≤ k ≤ K.

(14)

Let e ∈ R
n denote the vector with all ones. With the nor-

malization constraints, we know that
∑K

k=1
yk = e. We

can also easily verify thatLe = 0. Thus, add theK equa-
tions systems in Eq. (14) together, we can compute the
Lagrange multipliers

ρi =

K
∑

k=1

M
∑

j=1

n(di, wj)P (zk|di, wj) = n(di),

where n(di) =
∑

j n(di, wj) refers to the document
length.

One can easily verifies that the matrixΩ + λL is posi-
tive definite. By solving the linear equations systems in
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Eq. (14), one obtains the M-step re-estimation equation for
{P (zk|di)}

yk = (Ω + λL)−1









∑M

j=1
n(d1, wj)P (zk|d1, wj)

...
∑M

j=1
n(dN , wj)P (zk|dN , wj)









.

(15)
When the regularization parameterλ = 0, we can easily
see the above M-step re-estimation equation boils down to
the M-step in original PLSA.Ω+λL is usually a sparse ma-
trix. Some efficient iterative algorithms (e.g., LSQR (Paige
& Saunders, 1982)) can be used to solve the above linear
equations system instead of computing the matrix inver-
sion.

The E-step (Eq. 7) and M-step (Eq. 9 and 15) are alternated
until a termination condition is met.

4. Experiments

We evaluate our LTM approach in two application do-
mains: document clustering and classification.

4.1. Document Clustering

Clustering is one of the most crucial techniques to organize
the data in an unsupervised manner. The hidden topics ex-
tracted by the topic modeling approaches can be regarded
as clusters. The estimated conditional probability density
functionP (zk|di) can be used to infer the cluster label of
each datum. In this experiment, we investigate the use of
topic modeling approach for text clustering.

4.1.1. DATA AND EXPERIMENTAL SETTINGS

Our empirical study was conducted based on a subset of the
Reuters-21578 text data set, provided by Reuters and cor-
rected by Lewis.1 30 largest categories are chosen for our
experiments, which includes 8,067 documents and 18,832
distinct words.

The clustering result is evaluated by comparing the ob-
tained label of each document with that provided by the
document corpus. The accuracy (AC) is used to measure
the clustering performance (Xu et al., 2003). Given a doc-
umentxi, let ri and si be the obtained cluster label and
the label provided by the corpus, respectively. The AC is
defined as follows:

AC =

∑n

i=1
δ(si,map(ri))

n

wheren is the total number of documents andδ(x, y) is the
delta function that equals one ifx = y and equals zero oth-

1http://www.daviddlewis.com/resources/testcollections
/reuters21578/

erwise, and map(ri) is the permutation mapping function
that maps each cluster labelri to the equivalent label from
the data corpus. The best mapping can be found by using
the Kuhn-Munkres algorithm (Lovasz & Plummer, 1986).

In order to randomize the experiments, we conduct the
evaluations with the cluster numbers ranging from two to
ten. For each given cluster numberk, 20 test runs were
conducted on different randomly chosen clusters and we
record both the average and standard deviation. We evalu-
ate and compare three topic modeling algorithms and three
traditional clustering algorithms as follows:

• Probabilistic latent semantic analysis (PLSA in short)
(Hofmann, 2001).

• Latent dirichlet allocation (LDA in short) (Blei et al.,
2003).

• Locally-consistent Topic Modeling (LTM in short).
This is the method proposed in this paper.

• Kmeans clustering algorithm (Kmeans in short).

• Spectral clustering algorithm based on normalized cut
criterion (NCut in short) (Shi & Malik, 2000; Ng et al.,
2001).

• Nonnegative Matrix Factorization based clustering
(NMF in short) (Xu et al., 2003).

There are two parameters in our LTM approach: the num-
ber of nearest neighborsp and the regularization parame-
ter λ. Throughout our experiments, we empirically set the
number of nearest neighborsp to 5, the value of the regu-
larization parameterλ to 1000.

4.1.2. PERFORMANCEEVALUATION

Table 1 shows the clustering performance of the six ap-
proaches. We can see that both of the two traditional topic
modeling approaches (PLSA and LDA) fail to achieve good
performance (comparing to those standard clustering meth-
ods). One reason is that both PLSA and LDA discover the
hidden topics in the Euclidean space and fail to consider
the discriminant structure. By incorporating the geometric
structure information into a graph regularizer and preserv-
ing the local consistency, the LTM approach gets signifi-
cantly better performance than PLSA and LDA. The per-
formance of LTM is also comparable with other three clus-
tering algorithms. This shows that considering the intrinsic
geometrical structure of the document space is important
for learning a better hidden topic model in the sense of se-
mantic structure.

Figure 1 shows how the performance of LTM varies with
the parametersλ andp. The LTM is very stable with re-
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Table 1.Clustering performance on Reuters
k PLSA LDA LTM kmeans NCut NMF
2 0.775±0.144 0.803±0.155 0.892±0.128 0.865±0.160 0.866±0.138 0.854±0.149
3 0.548±0.112 0.651±0.148 0.814±0.108 0.724±0.199 0.760±0.170 0.774±0.143
4 0.570±0.145 0.621±0.159 0.775±0.133 0.695±0.179 0.748±0.133 0.725±0.145
5 0.458±0.146 0.577±0.194 0.712±0.141 0.618±0.180 0.668±0.163 0.681±0.144
6 0.447±0.108 0.535±0.129 0.675±0.115 0.596±0.212 0.672±0.157 0.659±0.126
7 0.432±0.077 0.475±0.113 0.644±0.113 0.561±0.165 0.595±0.167 0.609±0.136
8 0.363±0.091 0.381±0.093 0.534±0.097 0.408±0.147 0.433±0.128 0.480±0.100
9 0.362±0.113 0.404±0.167 0.596±0.101 0.448±0.193 0.494±0.156 0.544±0.103
10 0.378±0.069 0.452±0.137 0.576±0.092 0.524±0.172 0.528±0.145 0.544±0.106

Avg. 0.481 0.544 0.691 0.604 0.641 0.652
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Figure 1.The performance of LTM vs. parametersλ andp. The LTM is very stable with respect to the parameterλ. It achieves consistent
good performance with theλ varying from 100 to 10000. The performance is also stable when parameterp is between 3 than 9, then it
decreases as thep increases.

spect to the parameterλ. It achieves consistent good per-
formance with theλ varying from 100 to 10000. As we
described, LTM uses ap-nearest graph to capture the lo-
cal geometric structure of the data. It is more likely that
a document share the same cluster membership with itsp-
nearest neighbor whenp is small. Thus it is expected that
the performance decreases as thep increases.

4.2. Document Classification

In the document classification problem, we wish to classify
a document into two or more mutually exclusive categories.
As in any classification problem, we may wish to con-
sider generative approaches or discriminative approaches.
In particular, by using one topic model for each class, we
obtain a generative model for classification. It is also of in-
terest to use topic modeling approaches (PLSA, LDA and
LTM) in the discriminative framework, and this is our focus
in this section.

A challenging aspect of the document classification prob-
lem is the choice of features. Treating individual words as
features yields a rich but very large feature set (Joachims,
1998). One way to reduce this feature set is to use topic

modeling approaches for dimensionality reduction. In par-
ticular, PLSA or LTM reduces any document to a fixed set
of real-valued featuresP (zk|di). It is of interest to see how
much discriminatory information we lose in reducing the
document description to these parameters.

4.2.1. DATA AND EXPERIMENTAL SETTINGS

The experimental settings in this work are basically the
same as those in (Blei et al., 2003). Our empirical study
was conducted based on a subset of the Nist Topic Detec-
tion and Tracking corpus (TDT2)2. This corpus consists of
data collected during the first half of 1998 and taken from 6
sources, including 2 newswires (APW, NYT), 2 radio pro-
grams (VOA, PRI) and 2 television programs (CNN, ABC).
We use the largest 10 categories in this experiment, which
includes 7,456 documents and 33,947 distinct words.

In order to randomize the experiments, we conduct the
evaluations with the training size for each category ranging
from 2 to 20. For each case, 20 test runs were conducted on
different randomly chosen labeled samples and we record
both the average and standard deviation of the error rate.

2http://www.nist.gov/speech/tests/tdt/tdt98/index.htm
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Table 2.Classification error rate on TDT2
Word Feature PLSA LDA LTM LTM with Label

2 0.292±0.060 0.180±0.044 0.171±0.055 0.078±0.042 0.074±0.040
4 0.213±0.034 0.127±0.036 0.116±0.031 0.065±0.015 0.057±0.010
6 0.151±0.049 0.099±0.025 0.099±0.034 0.066±0.016 0.057±0.008
8 0.117±0.040 0.087±0.015 0.085±0.018 0.060±0.011 0.057±0.009
10 0.118±0.034 0.088±0.013 0.086±0.022 0.060±0.013 0.055±0.007
12 0.101±0.023 0.088±0.024 0.079±0.014 0.061±0.018 0.056±0.010
14 0.095±0.019 0.085±0.020 0.079±0.017 0.062±0.014 0.059±0.011
16 0.088±0.025 0.079±0.013 0.077±0.012 0.055±0.008 0.054±0.006
18 0.076±0.021 0.076±0.014 0.072±0.012 0.056±0.010 0.053±0.007
20 0.072±0.014 0.079±0.013 0.072±0.014 0.056±0.009 0.054±0.007

Avg. 0.132 0.099 0.094 0.062 0.057

In these experiments, we estimate the parameters of a
PLSA (LDA) model on all the documents, without refer-
ence to their true class label. We then trained a support vec-
tor machine (SVM) on the low-dimensional representations
and compared this SVM to an SVM trained on all the word
features. For LTM, the label information of the training set
can naturally be used to construct the graph. So we train
two kinds of LTM models. One is purely un-supervised
and we still use ap-nearest neighbor graph; the other uti-
lizes the label information of the training set. We construct
a graph in a semi-supervised manner,i.e., we modify the
p-nearest neighbor graph by removing edges between sam-
ples belonging to different categories and add edges be-
tween samples belonging to the same category.

4.2.2. PERFORMANCEEVALUATION

Table 2 shows the classification error rate of the five ap-
proaches. We can see that all the three topic modeling ap-
proaches gain improvement over the baseline (word fea-
ture), especially when the number of training sample is
small. By incorporating the geometric structure informa-
tion into a graph regularizer, the LTM approach gets signif-
icantly better performance than PLSA and LDA. When the
label information (training set) is incorporated, LTM (with
Label) obtains even better performance.

A key problem for all the topic modeling approaches is how
to estimate the number of hidden topics. Figure 2 shows
how the performance of three approaches varies with the
number of the topics. Comparing to PLSA and LDA, the
LTM model is less sensitive to the number of topics. This
is another merit of applying LTM.

5. Conclusion

We have presented a novel method for dyadic data analy-
sis, called Locally-consistent Topic Modeling (LTM). LTM
provides a principled way to incorporate the information in
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Figure 2.The performance of three algorithms vary with the num-
ber of topics.

the intrinsic geometric structure of the data. Specifically,
we adopt the popular manifold assumption and model the
document space as a submanifold embedded in the ambient
space and directly perform the topic modeling on this docu-
ment manifold in question. As a result, LTM can have more
discriminating power than traditional topic modeling ap-
proaches which discover the hidden topics in the Euclidean
space,e.g. PLSA and LDA. Experimental results on text
clustering and classification show that LTM provides better
representation in the sense of semantic structure.

Several questions remain to be investigated in our future
work:

1. There is a parameterλ which controls the smoothness
of our LTM model. LTM boils down to original PLSA
whenλ = 0. Also, it is easy to see thatP (zk|di) will
be the same for all the documents whenλ = +∞.
Thus, a suitable value ofλ is critical to our algorithm.
It remains unclear how to do model selection theoret-
ically and efficiently.

2. We consider the topic modeling on document mani-
fold and develop our approach based on PLSA. The
idea of exploiting manifold structure can also be nat-
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urally incorporated into other topic modeling algo-
rithms,e.g., Latent Dirichlet Allocation.

3. It would be very interesting to explore different ways
of constructing the document graph to incorporate
other prior knowledge. There is no reason to believe
that the nearest neighbor graph is the only or the most
natural choice. For example, for web page data it may
be more natural to use the hyperlink information to
construct the graph.
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