
Spectral Regression: A Unified Approach for Sparse Subspace Learning∗

Deng Cai
UIUC

dengcai2@cs.uiuc.edu

Xiaofei He
Yahoo!

hex@yahoo-inc.com

Jiawei Han
UIUC

hanj@cs.uiuc.edu

Abstract

Recently the problem of dimensionality reduction (or,
subspace learning) has received a lot of interests in many
fields of information processing, including data mining, in-
formation retrieval, and pattern recognition. Some popu-
lar methods include Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA) and Locality Preserv-
ing Projection (LPP). However, a disadvantage of all these
approaches is that the learned projective functions are lin-
ear combinations of all the original features, thus it is of-
ten difficult to interpret the results. In this paper, we pro-
pose a novel dimensionality reduction framework, called
Unified Sparse Subspace Learning (USSL), for learning
sparse projections. USSL casts the problem of learning the
projective functions into a regression framework, which fa-
cilitates the use of different kinds of regularizers. By using
a L1-norm regularizer (lasso), the sparse projections can
be efficiently computed. Experimental results on real world
classification and clustering problems demonstrate the ef-
fectiveness of our method.

1. Introduction

Dimensionality reduction has been a key problem in
many fields of information processing, such as data mining,
information retrieval, and pattern recognition. When data
is represented as points in a high-dimensional space, one
is often confronted with tasks like nearest neighbor search.
Many methods have been proposed to index the data for
fast query response, such as K-D tree, R tree, R* tree, etc
[13]. However, these methods can only operate with small
dimensionality, typically less than 100. The effectiveness
and efficiency of these methods drop exponentially as the
dimensionality increases, which is commonly referred to as
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the “curse of dimensionality”.

To deal with this problem, the dimensionality reduction
technique can be used. One of the most popular dimension-
ality reduction algorithms might be Principal Component
Analysis (PCA) [20]. PCA performs dimensionality reduc-
tion by projecting the original n-dimensional data onto the
d(� n)-dimensional linear subspace spanned by the lead-
ing eigenvectors of the data’s covariance matrix. Its goal
is to find a set of mutually orthogonal basis functions that
capture the directions of maximum variance in the data so
that the pairwise Euclidean distances can be best preserved.
If the data is embedded in a linear subspace, PCA is guar-
anteed to discover the dimensionality of the subspace and
produces a compact representation.

In many real world problems, however, there is no ev-
idence that the data is sampled from a linear subspace.
For example, it is always believed that the face images are
sampled from a nonlinear low-dimensional manifold which
is embedded in the high-dimensional ambient space [19].
Various researchers (see [2, 24, 26]) have considered the
case when the data lives on or close to a low dimensional
sub-manifold of the high dimensional ambient space. One
hopes then to estimate geometrical and topological prop-
erties of the sub-manifold from random points (“scattered
data”) lying on this unknown sub-manifold. Along this di-
rection, many subspace learning algorithms have been pro-
posed for face recognition. Some popular ones include Lo-
cality Preserving Projection (LPP) [19], Neighborhood Pre-
serving Embedding (NPE) [17] and Isometric Projection
(IsoP) [5]. Despite the different motivations of these al-
gorithms, they can be nicely interpreted in a general graph
embedding framework [3, 19, 28].

One of the major disadvantages of all the above algo-
rithms is that the learned projective functions are linear
combinations of all the original features, thus it is often
difficult to interpret the results. Recently, there are con-
siderable interests on developing sparse subspace learning
algorithms. Zou et al. [30] proposed an elegant sparse
PCA algorithm (SPCA) using their “Elastic Net” frame-
work for L1-penalized regression on regular principle com-
ponents, solved very efficiently using least angle regression
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(LARS) [11]. Subsequently, d’Aspremont et al. [9] relaxed
the hard cardinality constraint and solved for a convex ap-
proximation using semi-definite programming. In [21, 22],
Moghaddam et al. proposed a spectral bounds framework
for sparse subspace learning. Particularly, they proposed
both exact and greedy algorithms for sparse PCA and sparse
LDA.

In this paper, we propose a novel Unified Sparse Sub-
space Learning framework (USSL), for sparse projections
learning. The proposed approach is fundamentally based
on regression and spectral graph analysis [8]. Specifically,
USSL decomposes the subspace learning as a two-step ap-
proach: graph embedding for responses learning and regres-
sion for projective functions learning. This decomposition
links subspace leaning and regression. By incorporating the
regression as a building block, different kinds of regular-
izers can be naturally incorporated. With a L1-norm regu-
larizer (lasso or elastic net), the sparse projections can be
efficiently computed in USSL.

The specific contributions of this paper include:

• It reviews and provides a unified graph embedding
analysis of many existing subspace learning algo-
rithms, e.g., LDA, LPP and NPE (Section 2).

• It gives the formulation of sparse subspace learning
and discusses the advantages and disadvantages of ex-
isting sparse subspace learning approaches (Section 3).

• It proposes a novel unified sparse subspace learning
framework. This framework builds the connection be-
tween regression and many popular graph-based sub-
space learning algorithms. Their sparse solutions can
be efficiently computed with a L1-norm regularizer in
the proposed framework (Section 4).

• We have performed extensive experimental compar-
isons on both supervised and unsupervised learning,
which demonstrate the effectiveness of our method.
(Section 5).

We summarize our findings and discuss extensions to the
current work in Section 6, which concludes the paper.

2. Graph Embedding View of Subspace Learn-
ing

In this Section, we provide a general framework of anal-
ysis for the existing subspace learning algorithms from the
graph embedding viewpoint.

Suppose we have m data samples {xi}m
i=1 ⊂ R

n, X =
[x1, · · · , xm]. In the past decades, many dimensionality re-
duction algorithms have been proposed to find a low dimen-
sional representation of xi. Despite the different motiva-
tions of these algorithms, they can be nicely interpreted in a
general graph embedding framework [3, 19, 28].

Given a graph G with m vertices, each vertex represents
a data point. Let W be a symmetric m × m matrix with
Wij having the weight of the edge joining vertices i and j.
The G and W can be defined to characterize certain statis-
tical or geometric properties of the data set. The purpose
of graph embedding is to represent each vertex of the graph
as a low dimensional vector that preserves similarities be-
tween the vertex pairs, where similarity is measured by the
edge weight.

Let y = [y1, y2, · · · , ym]T be the map from the graph to
the real line. The optimal y is given by minimizing∑

i,j

(yi − yj)2Wij

under appropriate constraint. This objective function incurs
a heavy penalty if neighboring vertices i and j are mapped
far apart. Therefore, minimizing it is an attempt to ensure
that if vertices i and j are “close” then yi and yj are close
as well [15]. With some simple algebraic formulations, we
have ∑

i,j

(yi − yj)2Wij = 2yT Ly,

where L = D − W is the graph Laplacian [8] and D is a
diagonal matrix whose entries are column (or row, since W
is symmetric) sums of W , Dii =

∑
j Wji. Finally, the min-

imization problem reduces to a quadratically-constrained
quadratic program (QCQP):

min yT Ly
subject to yT Dy = 1

The constraint yT Dy = 1 removes an arbitrary scaling fac-
tor in the embedding. Notice that L = D − W , it is easy to
see that the above optimization problem has the following
equivalent variation:

max yT Wy
subject to yT Dy = 1 (1)

The optimal y’s can be obtained by solving the maximum
eigenvalue eigen-problem [12]:

Wy = λDy. (2)

Many recently proposed manifold learning algorithms, like
ISOAMP [26], Laplacian Eigenmap [2], Locally Linear
Embedding [24], can be interpreted in this framework with
different choice of W .

The graph embedding approach described above only
provides the mappings for the graph vertices in the train-
ing set. For classification purpose (e.g., face recognition,
text categorization), a mapping for all samples, including
new test samples, is required. If we choose a linear func-
tion, i.e., yi = f(xi) = aT xi, we have y = XT a. Eq. (1)
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can be rewritten as:

max aT XWXT a
subject to aT XDXT a = 1 (3)

The optimal a’s are the eigenvectors corresponding to the
maximum eigenvalue of eigen-problem:

XWXT a = λXDXT a. (4)

This approach is called Linear extension of Graph Embed-
ding (LGE). With different choices of W , the LGE frame-
work leads to many popular linear dimensionality reduction
algorithms, e.g., LDA, LPP and NPE. We will briefly list
the choices of W for these algorithms as follows.

LDA:
Suppose we have c classes and the t-th class have mt

samples, m1 + · · · + mc = m. Define

Wij =




1/mt, if xi and xj both belong to
the t-th class;

0, otherwise.
(5)

With such W , it is easy to check that D = I . Please see
[19], [7] for the detailed derivation.

LPP:
Let Nk(xi) denote the set of k nearest neighbors of xi.

Wij =

{
e
− ‖xi−xj‖2

2σ2 , if xi ∈ Nk(xj) or xj ∈ Nk(xi)
0, otherwise.

(6)

For supervised case, one can also integrate the label infor-
mation into W by searching the k nearest neighbors of xi

among the points sharing the same label with xi. Please see
[19] for the details.

NPE:
Let Nk(xi) denote the set of k nearest neighbors of xi

and M be a m × m local reconstruction coefficient matrix.
M is defined as follows:

For i-th row of M , Mij = 0 if xj /∈ Nk(xi). The other
Mij can be computed by minimizing the following objec-
tive function,

min ‖xi −
∑

j∈Nk(xi)

Mijxj‖2,
∑

j∈Nk(xi)

Mij = 1.

Define
W = M + MT − MT M (7)

and it is easy to check that D = I . Please see [17], [28] for
the detailed derivation.

All the above mentioned linear subspace learning algo-
rithms need to solve the eigen-problem in Eqn. (4). To
get a stable solution of this eigen-problem, the matrices

XDXT is required to be non-singular [14] which is not
true when the number of features is larger than the num-
ber of samples. A popular way to deal with the singularity
of XDXT is to apply the idea of regularization, by adding
some constant values to the diagonal elements of XDXT ,
as XDXT + αI , for any α > 0. It is easy to see that
XDXT + αI is nonsingular. The computational complex-
ity of this approach scales as O(n3 + mn2) where m is the
number of samples and n is the number of features.

3. Sparse Subspace Learning Formulation

For simplicity, we define A = XWXT , B = XDXT

and rewrite the optimization problem of LGE in Eqn. (3)
as:

max aT Aa
subject to aT Ba = 1

Following [22], we define the Sparse Subspace Learning
(SSL) optimization in terms of the following cardinality-
constrained QCQP:

max aT Aa
subject to aT Ba = 1

card(a) = k
(8)

The feasible set is all sparse a ∈ R
n with k non-zero el-

ements and card(a) as their L0-norm. Unfortunately, this
optimization problem is NP-hard and therefor generally in-
tractable .

In [21, 22], Moghaddam et al. proposed a spectral
bounds framework for sparse subspace learning. Particu-
larly, they proposed both exact and greedy algorithms for
sparse PCA and sparse LDA. Their spectral bounds frame-
work is based on the following optimal condition of the
sparse solution.

A sparse vector a ∈ R
n with cardinality k yielding the

maximum objective value in Eqn. (8) would necessarily
imply that

λmax =
aT Aa
aT Ba

=
bT Akb

bT Bkb

where b ∈ R
k contains the k non-zero elements in a and the

k × k principle sub-matrices of A and B obtained by delet-
ing the rows and columns corresponding to the zero indices
of a. The k-dimensional quadratic form in b is equivalent
to a standard unconstrained generalized Rayleigh quotient,
which can be solved by a generalized eigen-problem.

The above observation gives the exact algorithm for
sparse subspace learning: a discrete search for the k in-
dices which maximize λmax of the subproblem (Ak, Bk).
However, such observation does not suggest an efficient al-
gorithm because an exhaustive search is still NP-hard. To
solve this problem, Moghaddam et al. proposed an effi-
cient greedy algorithm which combines backward elimina-
tion and forward selection [21, 22]. As we discussed in
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Section 2, many of the popular graph-based subspace learn-
ing algorithms can be formulated as the generalized eigen-
problem, Moghaddam’s approach provides a general solu-
tion for learning sparse projections in all these subspace
learning algorithms. However, there are two major draw-
backs of their approach:

1. Even their algorithm is a greedy one, the cost of back-
ward elimination is with complexity O(n4+mn2)[22].

2. In reality, more than one projective functions are usu-
ally necessary for subspace learning. However, the op-
timal condition of the sparse solution only gives the
guide to find ONE sparse “eigenvector”, which is the
first projective function. It is unclear how to find the
following projective functions. Although [21] suggests
to use recursive deflation, the sparseness of the the fol-
lowing projective functions is not guaranteed.

In [30], Zou et al. proposed an elegant sparse PCA al-
gorithm (SPCA) using their “Elastic Net” framework for
L1-penalized regression on regular principle components,
solved very efficiently using least angle regression (LARS)
[11]. The key idea of SPCA is formulating PCA as a
regression-type optimization problem.

Without loss of generality, we assume the data are cen-
tered1. The PCA objective function is

max aT XXT a
subject to aT a = 1 (9)

and the optimal a’s are the eigenvectors with respect to the
maximum eigenvalues of the following eigen-problem:

XXT a = λa. (10)

Suppose the rank of X is r and the Singular Value Decom-
position (SVD) of X is:

X = UΣV T , (11)

it is easy to verify that the column vectors in U are the
eigenvectors of XXT [14], i.e., the projective functions of
PCA. Let Y = [y1, · · · , yr] = UT X = ΣV T , each row
vector of Y is the sample vector in the r-dimensional PCA
subspace. Thus, the projective functions of PCA are essen-
tially the solutions of the linear equation systems:

XT at = yt, t = 1, · · · , r

in other words, at is the solution of the regression system:

at = arg min
a

m∑
i=1

(aT xi − yt
i)

2

1This can be achieved by subtracting the mean vector from all the sam-
ple vectors.

where yt
i is the i-th element of yt. Zou et al. [30] add L1-

regularizer to get the sparse solutions:

at = arg min
a

m∑
i=1

(aT xi − yt
i)

2 + β

n∑
j=1

|aj |

where aj is the j-th element of a. The above regression
problem is called Lasso [16] and can be efficiently com-
puted using LARS algorithm [11].

If we want to apply the similar technique to those lin-
ear graph embedding algorithms (LGE), the key problem is
how we can formulate LGE as a regression-type optimiza-
tion problem.

4. Unified Sparse Subspace Learning via Re-
gression

In this section, we describe our regression formulation
of graph based subspace learning which is the key of the
proposed unified sparse subspace learning approach.

4.1. Spectral Regression

In order to formulate LGE as a regression-type optimiza-
tion problem, we use the following theorem:

Theorem 1 Let y be the eigenvector of eigen-problem in
Eqn. (2) with eigenvalue λ. If XT a = y, then a is the
eigenvector of eigen-problem in Eqn. (4) with the same
eigenvalue λ.

Proof We have Wy = λDy. At the left side of Eqn. (4),
replace XT a by y, we have

XWXT a = XWy = XλDy = λXDy = λXDXT a

Thus, a is the eigenvector of eigen-problem Eqn. (4) with
the same eigenvalue λ.

Theorem (1) shows that instead of solving the eigen-
problem in Eqn. (4), the linear projective functions can be
obtained through two steps:

1. Solve the eigen-problem in Eqn. (2) to get y.

2. Find a which satisfies XT a = y. In reality, such a
might not exist. A possible way is to find a which can
best fit the equation in the least squares sense:

a = arg min
a

m∑
i=1

(aT xi − yi)2 (12)

where yi is the i-th element of y.

It is clear that Eqn. (12) is exactly what we want, the
regression-type formulation of LGE problem.
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In the situation that the number of samples is smaller
than the number of features, the minimization problem (12)
is ill posed. We may have infinitely many solutions to the
linear equations system XT a = y (the system is underde-
termined). The most popular way to solve this problem is to
apply the regularization technique, i.e., impose a penalty on
the norm of a. L2-norm and L1-norm are two of the most
popular ones.

With a L2-norm on a, we have

a = arg min
a


 m∑

i=1

(
aT xi − yi

)2 + α

n∑
j=1

a2
j


 , (13)

where aj is the j-th element of a. This is usually referred as
ridge regression in statistics [16]. The α ≥ 0 is a parameter
to control the amounts of shrinkage. The ridge penalty does
not provide a sparse solution.

With a L1-norm on a, we have

a = arg min
a


 m∑

i=1

(
aT xi − yi

)2 + β
n∑

j=1

|aj |

 , (14)

which is usually referred as lasso regression [16]. Due
to the nature of the L1 penalty, some coefficients will be
shrunk to exact zero if β is large enough. Therefore the
lasso produces a sparse model, which is exactly what we
want. However, the lasso has several limitations as pointed
out in [29]. The most relevant one to this work is that the
number of selected features by the lasso is limited by the
number of samples. For example, if applied to the face im-
age data where there are thousands of features (n > 1000)
with less than 100 samples (m < 100), the lasso can only
select at most m features, which is clearly unsatisfactory.
The Elastic Net [29] generalizes the lasso to overcome its
drawbacks by combining both the ridge and lasso penalty:

a = arg min
a

(
m∑

i=1

(
aT xi − yi

)2
+ α

n∑
j=1

a2
j + β

n∑
j=1

|aj |
)
(15)

When α > 0 or β > 0, the solution of the above opti-
mization problem will not satisfy the linear equations sys-
tem XT a = y and a will not be the eigenvector of eigen-
problem in Eqn. (4). It is interesting and important to see
when the solution of the optimization problem in Eqn. (15)
gives the exact solutions of eigen-problem (4). Specifically,
we have the following theorem:

Theorem 2 Suppose y is the eigenvector of eigen-problem
in Eqn. (2), if y is in the space spanned by row vectors of X ,
the solution of the optimization problem in Eqn. (15) will
be the eigenvector of eigen-problem in Eqn. (4) as α and β
decease to zero.

Proof See Appendix A.

When the the number of features is larger than the num-
ber of samples, the sample vectors are usually linearly in-
dependent, i.e., rank(X) = m. In this case, we will have a
stronger conclusion which is shown in the following Corol-
lary.

Corollary 3 If the sample vectors are linearly independent,
i.e., rank(X) = m, all the solution of the optimization
problem in Eqn. (15) (with different eigenvector y’s) are
the eigenvectors of eigen-problem in Eqn. (4) as α and β
deceases to zero.

Proof See Appendix B.

Our above two-step approach essentially performs re-
gression after the spectral analysis of the graph, we called it
Spectral Regression (SR) [6]. With lasso penalty, it provides
a Unified Sparse Subspace Learning framework (USSL).

4.2. Eigenvectors of Eigen-problem in Eqn. (2)

With different choices of W , the optimization problem
in Eqn. (3) gives the solutions of various subspace learn-
ing algorithms, i.e., LDA, LPP and NPE. Thus, the USSL
approach introduced in the previous section provides the
sparse solutions of LDA, LPP and NPE.

Generally, we need to solve the eigen-problem in Eqn.
(2) to get the responses vectors y’s. In some cases, i.e. LDA,
the W has a block diagonal structure and there is no need to
solve the eigen-problem.

Without loss of generality, we assume that the data points
in {x1, · · · , xm} are ordered according to their labels. It is
easy to check that the matrix W defined in Eqn. (5) has a
block-diagonal structure

W =




W (1) 0 · · · 0
0 W (2) · · · 0
...

...
. . .

...
0 0 · · · W (c)




where c is the number of classes, mt is the number of sam-
ples in t-th class and {W (t)}c

t=1 is a mt×mt matrix with all
the elements equal to 1/mt. Since the W is block-diagonal,
its eigenvalues and eigenvectors are the union of the eigen-
values and eigenvectors of its blocks (the latter padded ap-
propriately with zeros) [14]. It is straightforward to show
that W (t) has eigenvector e(t) ∈ R

mt associated with eigen-
value 1, where e(t) = [1, 1, · · · , 1]T . Also there is only one
non-zero eigenvalue of W (t) because the rank of W (t) is 1.
Thus, there are exactly c eigenvectors of W with the same
eigenvalue 1. These eigenvectors are

yt = [ 0, · · · , 0︸ ︷︷ ︸∑ t−1
i=1 mi

, 1, · · · , 1︸ ︷︷ ︸
mt

, 0, · · · , 0︸ ︷︷ ︸∑ c
i=t+1 mi

]T . (16)
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Since 1 is a repeated eigenvalue of W , we could just pick
any other c orthogonal vectors in the space spanned by
{yk}, and define them to be our c eigenvectors. The vector
of all ones e is naturally in the spanned space. This vector
is useless since the responses of all the data points are the
same. In reality, we can pick e as our first eigenvector and
use Gram-Schmidt process to get the remaining c − 1 or-
thogonal eigenvectors. The vector of all ones can then be
removed.

In binary classification case, the above procedure will
produce one response vector

y = [
m

m1
, · · · ,

m

m1︸ ︷︷ ︸
m1

,
−m

m2
, · · · ,

−m

m2︸ ︷︷ ︸
m2

]T . (17)

This is consistent with the previous well-known result on
the relationship between LDA and regression for a binary
problem [16]. The framework proposed in this paper ex-
tends this relation to multi-class case. Moreover, this frame-
work also establishes the connection between regression
and many other graph based subspace learning algorithms,
e.g., LPP, NPE.

4.3. Computational Complexity of USSL

The USSL computation involves two steps: responses
generation (calculate the eigenvectors of eigen-problem in
Eqn. (2)) and regularized regression.

For the W in LDA, the cost of the first step is mainly
the cost of Gram-Schmidt method, which is O(mc2) [25].
For a k-NN graph W in LPP, the cost of the first step is
O(m2n+m2 log m+ qdmk). O(m2n) is used to calculate
the pairwise distance between m samples with n features
and O(m2 log m) is used for k-nearest neighbors finding
for all the m samples. The k-NN graph matrix W is sparse
and the Lanczos algorithm [14] can be used to efficiently
compute the first d eigenvectors of the eigen-problem in
Eqn. (2) within O(qdmk), where q is number of iterations
in Lanczos.

All of the three types of regularized regression problems
can be solved in O(n3 +mn2) [16][11]. By using the Least
Angel Regression (LARS) algorithm [11], the entire solu-
tion path (the solutions with all the possible cardinality on
a) of lasso and elastic net with a specific α can be computed
in O(n3 + mn2).

Considering m � c and m � d, USSL provides a
sparse LDA solution with O(n3 + mn2) complexity and a
sparse LPP solution with O(m2n+m2 log m+n3 +mn2)
complexity. This complexity is exactly the same as the
ordinary non-sparse solution solved by generalized eigen-
problem. Comparing to the O(n4 +mn2) greedy algorithm
described in [22], USSL is much more efficient.

5. Experimental Results

In this section, we investigate the performance of our
proposed USSL approach for both supervised learning (face
recognition) and unsupervised learning (face clustering).
All of our experiments have been performed on an Intel
Pentium D 3.20GHz Linux machine with 2GB memory.

Two face databases were used in the experiment. The
first one is the PIE (Pose, Illumination, and Experience)
database2 from CMU, and the second one is the Extended
Yale-B database3.

The CMU PIE face database contains 68 human subjects
with 41,368 face images as a whole. The face images were
captured by 13 synchronized cameras and 21 flashes, under
varying pose, illumination and expression. We choose the
frontal poses (C27) and use all the images under different
illuminations and expressions, thus we get 3329 face images
in total.

The Extended Yale-B face database contains 16128 im-
ages of 38 human subjects under 9 poses and 64 illumina-
tion conditions. In this experiment, we choose the frontal
pose and use all the images under different illumination. Fi-
nally we get 2414 images in total.

All the face images are manually aligned and cropped.
The size of each cropped image is 32 × 32 pixels, with 256
gray levels per pixel. Thus each image is represented as a
1024-dimensional vector.

5.1. USSL for Supervised Learning

In this experiment, we use the W in Eqn. (5). Thus,
USSL provides a sparse LDA solution. We compare our
algorithm with PCA, LDA and SparsePCA [30]. In face
recognition, PCA and LDA are also called Eigenface [27]
and Fisherface [1]. They are two of the most popular lin-
ear methods for face recognition. We do not compare with
Sparse LDA [22] since it can only be applied to two-class
case. Please refer to [22] for the details.

For each database, r (= 33, 50, 67) percent of samples
are randomly selected for training and the rest are used
for testing. The training samples are used to learn the ba-
sis functions. By using these basis functions, the testing
images can be mapped into lower dimensional subspace
where recognition is carried out by using nearest neigh-
bor classifier. 5-fold cross validation has been performed
in SparsePCA and USSL for selecting the best cardinality
of the basis functions. The choices of the cardinality are 10,
20, · · · 100, 150, 200, · · · , 1000, 1024.

For each given r, we average the recognition results
over 20 random splits. Figure 1 and 2 show the plots
of error rate versus dimensionality reduction for the PCA,
SparsePCA, LDA, USSL and baseline methods on PIE and

2http://www.ri.cmu.edu/projects/project 418.html
3http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
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Table 1. Comparison of classification error rate on PIE

Method
33% Training 50% Training 67% Training

error (%) dim sparsity error (%) dim sparsity error (%) dim sparsity
Baseline 11.7±0.5 1024 − 6.1±0.7 1024 − 3.6±0.6 1024 −

PCA 11.7±0.5 700 0 6.1±0.7 1000 0 3.6±0.6 1000 0
SparsePCA 7.0±0.6 380 92.2% 3.9±0.5 410 92.2% 2.6±0.5 480 92.2%

LDA 4.0±0.2 67 0 3.3±0.3 67 0 2.5±0.5 67 0
USSL 2.4±0.2 64 90.2% 2.0±0.2 67 90.2% 1.6±0.3 66 90.2%
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Figure 1. Error rate vs. dimensionality reduction on PIE database

Table 2. Comparison of classification error rate on Yale-B

Method
33% Training 50% Training 67% Training

error (%) dim sparsity error (%) dim sparsity error (%) dim sparsity
Baseline 28.4±1.3 1024 − 21.5±1.3 1024 − 17.3±0.7 1024 −

PCA 28.4±1.3 700 0 21.5±1.3 860 0 17.3±0.7 830 0
SparsePCA 16.7±1.1 230 95.1% 10.7±0.9 270 95.1% 8.0±0.5 250 95.1%

LDA 6.0±0.6 37 0 4.5±0.5 37 0 2.7±0.5 37 0
USSL 3.9±0.6 37 86.3% 1.7±0.4 37 86.3% 1.0±0.3 37 86.3%
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Figure 2. Error rate vs. dimensionality reduction on Yale-B database
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Figure 3. Normalized mutual information vs. dimensionality (a) and Normalized mutual information vs. cardinality (b) on PIE database

Yale-B databases, respectively. For the baseline method,
the recognition is simply performed in the original 1024-
dimensional image space without any dimensionality reduc-
tion. Note that, the upper bound of the dimensionality of
LDA is c− 1 where c is the number of individuals [10]. We
use the LDA graph W as defined in Section 2 in our USSL
algorithm. Thus, the upper bound of the dimensionality of
USSL is also c − 1. As can be seen, the performance of the
PCA, SparsePCA, LDA and USSL algorithms varies with
the number of dimensions. We show the best results to-
gether with the standard deviations obtained by them in Ta-
ble 1 and 2 and the corresponding face subspaces are called
optimal face subspace for each method. Particularly, we
also shown the sparsity of the basis functions for these al-
gorithms. The sparsity is computed as the ratio of the num-
ber of zero entries and the total number of entries. As can
be seen, the sparsity for PCA and LDA are both zero, while
the sparsity for sparse PCA and USSL are very high.

5.2. USSL for Unsupervised Learning

In this subsection, we investigate the use of our pro-
posed approach for face clustering. Face clustering is
an unsupervised task and we compare our algorithm with
PCA, SparsePCA and Locality Preserving Projection (LPP)
[18][19]. We use the same p-nearest neighbor graph in LPP
and USSL. Thus, USSL provides a sparse LPP solution. We
empirically set the value of p to 5.

We choose K-means as our clustering algorithm. K-
means can be performed in the original feature space (Base-
line) or in the reduced feature space (by using the dimen-
sionality reduction algorithms, e.g., PCA, LPP and USSL).
The clustering result is evaluated by comparing the ob-
tained label of each image with that provided by the ground
truth. We use the normalized mutual information (MI) to

measure the clustering performance [4]. Let C denote the
set of clusters obtained from the ground truth and C ′ ob-
tained from an algorithm. Their mutual information metric
MI(C,C ′) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)

where p(ci) and p(c′j) are the probabilities that a sample
arbitrarily selected from the data set belongs to the clusters
ci and c′j , respectively, and p(ci, c

′
j) is the joint probability

that the arbitrarily selected document belongs to the clusters
ci as well as c′j at the same time. In our experiments, we use
the normalized mutual information MI as follows:

MI(C,C ′) =
MI(C,C ′)

max(H(C),H(C ′))

where H(C) and H(C ′) are the entropies of C and C ′, re-
spectively. It is easy to check that MI(C,C ′) ranges from
0 to 1. MI = 1 if the two sets of clusters are identical, and
MI = 0 if the two sets are independent.

Figure (3(a)) shows the plot of normalized mutual in-
formation versus dimensionality for the PCA, SparsePCA,
LPP, USSL and baseline methods. As can be seen, all the
methods obtain the best performance with dimensionality
less than 100, and there is no performance improvement
with more dimensions. Our USSL algorithm outperforms
the other four methods. LPP performs the second best. PCA
performs the worst, close to the baseline.

Figure (3(b)) shows the performances of all the algo-
rithm in the 100-dimensional subspace. We show the per-
formance change with the cardinality of basis functions in
SparsePCA and USSL. As can be seen, the best perfor-
mance is obtained with relatively small cardinality.
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6. Conclusions

In this paper, we proposed a novel unified framework for
learning sparse projections. Our framework is developed
from a graph embedding viewpoint of dimensionality re-
duction algorithms. It combines the spectral graph analysis
and regularized regression to provide an efficient and effec-
tive approach for sparse subspace learning problem. Many
recently proposed linear subspace learning algorithms, e.g.,
LDA [1], LPP [18], NPE [17] and IsoP [5] can be inter-
preted as the linear extensions of specific graph embedding.
Thus, all these algorithms can be fit into our framework and
get sparse solutions. Extensive experimental results show
effectiveness of the proposed approach.
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Appendix

A. Proof of Theorem 2

Proof Let β = 0, the regularized least squares in Eqn. (15)
can be rewritten in the matrix form as:

a = arg min
a

(
(XT a − y)T (XT a − y) + αaT a

)
. (18)

Requiring the derivative of right side with respect to a van-
ish, we get

(XXT + αI)a = Xy

⇒ a = (XXT + αI)−1Xy
(19)

Suppose rank(X) = r, the SVD decomposition of X is

X = UΣV T

where Σ = diag(σ1, · · · , σr), U ∈ R
n×r, V ∈ R

m×r and
we have UT U = V T V = I . The y is in the space spanned
by row vectors of X , therefor, y is in the space spanned by
column vectors of V . Thus, y can be represented as the lin-
ear combination of the column vectors of V . Moreover, the
combination is unique because the column vectors of V are

linear independent. Suppose the combination coefficients
are b1, · · · , br. Let b = [b1, · · · , br]T , we have:

V b = y

⇒ V T V b = V T y

⇒ b = V T y

⇒ V V T y = y

(20)

To continue our proof, we need introduce the concept of
pseudo inverse of a matrix [23], which we denote as (·)+.
Specifically, pseudo inverse of the matrix X can be com-
puted by the following two ways:

X+ = V Σ−1UT

and
X+ = lim

α→0
(XT X + αI)−1XT

The above limit exists even if XT X is singular and
(XT X)−1 does not exist [23]. Thus, the regularized least
squares solution in Eqn. (19)

a =
(
XXT + αI

)−1

Xy α→0= (XT )+y = UΣ−1V T ȳ

Combine with the equation in Eqn. (20), we have

XT a = V ΣUT a = V ΣUT UΣ−1V T y = V V T y = y

By Theorem (1), a is the eigenvector of eigen-problem in
Eqn. (4).

B. Proof of Corollary 3

Proof The matrices W and D are of size m × m and there
are m eigenvectors {yj}m

j=1 of eigen-problem (2). Since
rank(X) = m, all these m eigenvectors yj are in the space
spanned by row vectors of X . By Theorem (2), all m corre-
sponding aj in Eqn (19) are eigenvectors of eigen-problem
in Eqn. (4) as α and β decreases to zero.
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